
Recent Progress in Neural Information
Retrieval

CS293S. 2022. Tao Yang

1

Neural Models for Information Retrieval

Documents

Sparse Vector
Representation

Dense Vector
Representation

Inverted
Index

Document
retrieval

Re-ranking

Online inference

Sparse or Dense
RepresentationQuery

Every document/query is a vector

2

Relevance and Cost Tradeoffs

Cost

Relevance

Sparse retrieval
E.g. BM25

L2R tree ensembles
E.g. LambdaMART

Neural ranking with non-
contextual embeddings.
E.g. ConvKNRM

Transformer based ranking

E.g. BERT

3

Outline
● Part 1: Time Efficiency Optimization for Faster BERT-based Neural

Ranking
● Part 2: Space Efficiency Optimization for BERT-based Ranking

○ Document representation compression
● Part 3: Document Retrieval: Revisited

● Learned sparse representations
● Dense representations

4

References:

“Pretrained Transformers for Text Ranking: BERT and Beyond” by Andrew Yates,
Rodrigo Nogueira, and Jimmy Lin, 2021

Recent papers

Part 1: Time Efficiency Optimization

Ranking

Late interaction of query
and document tokens

Precomputed
doc
representations

Late interaction of query
and document tokens

Precomputed
doc
representations

CPU friendly
query
encoding

query

Cross Encoder

1.Late Interaction

DPR (Karpukhin et al,.
ACL’20),
ColBERT (Khattab et al.
SIGIR’20)

2.CPU Friendly Ranking

TILDE (Zhang and Zuccon,
SIGIR’21),
BECR (Yang et al., WSDM’22)

3. Simplification of neural network
architectures 5

Efficiency Optimization: Architecture Simplification for Cross-Encoder
Key technique: Architecture simplifica<on (Hofsta?er et al., ECAI’20). Called TK, TKL, CK

• Reduce the number of transformer layers

• Knowledge dis<lla<on: train a simpler student model based on a complex teacher model

Simpler transformer architecture KNRM-style interaction

Feed forward net for scoring

• Use the outcome of a teacher ranker to construct positive/negative
document pairs

• Train the simpler student ranking model using these pairs

6

Simplified Transformer Efficiency: TK
Architecture

Compared to Conv-KNRM: Around 2.5x inference time, MRR 12% higher.

Compared to BERT_base, 1/37 inference time, MRR 18% lower.

7

Efficiency Optimization via Late Interaction between Query

and Doc Embeddings: Dual-Encoder Architecture

Document representaAon can be pre-computed

before online query processing

Late interaction of query and
document tokens

Precomputed doc
representations

query

- Single-Vector Dual Encoder (Dense
Representation Models):

- Each document is a vector of

elements

- DPR (Karpukhin et al,. ACL’20)

- Sentence BERT (Reimers, EMNLP’19)

- ANCE (Xiong et al., ICLR’21)

- Multi-vector dual encoder:
- Each doc is a vector of vectors

- ColBERT (Khattab et al. SIGIR’20)

- PreTTR (MacAvaney et al. SIGIR’20)

- MVR (Zhang et al., ACL’22)
8

Multi-vector dual encoder: ColBERT (Khattab et al. Stanford,
SIGIR’20)

Key technique: fine-grained contextual late interaction

• Each passage is encoded as a set of token-level embeddings during offline

• At search time, it embeds every query into another set of token embeddings
• Rank score = maximum vector similarity between query q and terms in

document d based on dot products and max pooling

For each query
token embeddings

Precomputed embedding space cost is high.

For each doc token
embeddings

9

ColBERT Performance on MS MARCOS Passages
Reranking

End-to-end

Similar
relevance as
BERT-base but
much lower
latency.

10

CPU-friendly Ranker

Dual encoder designs speeds up document encoding in online
processing. Some work further alleviate query encoding step for
online.

1. Ranker Based on Exact Match
a. TILDE (Zhang and Zuccon, SIGIR’21)

2. Query Decomposition
a. BECR (Yang et al., WSDM’22)

Late interaction of query
and document tokens

Precomputed
doc
representations

CPU friendly
query
encoding

Ranking scores

11

TILDE: Term Independent Likelihood Model for Passage Re-
ranking (Zhang and Zuccon, SIGIR’21)

- No query encoder, so query
latency is much lower

- TILDE assumes that query terms
are independent.

Can be precomputed for all tokens.

Models that learn token weights distribution for each document can use a
sparse learned inverted index for retrieval efficiency. Examples include
SPLADE (Formal et al., SIGIR’21) and DeepImpact (Mallia et al., SIGIR’21).

12

Query Latency (ms)
Query inference + rerank

TILDE Relevance and Latency

The query likelihood option (QL)
achieve good latency by removing
query encoding.

GPU

CPU

GPU

13

BECR (BERT-based Composite Reranking) (Yang
et al., WSDM’22)

Late interaction of query
and document tokens

Precomputed
doc token
embedding

Precomputed skip n-
gram embeddings

Query
embedding
composition

3 key optimization techniques for a trade-off
triangle

Time
efficiency

Relevance

Compose query token
representations with
precomputed skip n-
gram embeddings

Offset approximation loss
with non-neural signal
composition

Compress
embedding
storage with
LSH +model
simplification

Space
efficiency

14

Runtime Embedding Composition for Query
Tokens

Example query: neural ranking model

…

neural

ranking

model

(neural, ranking)

(neural, model)

(ranking, model)

Benefits: Drastically lower time cost of query token embedding computation

Pre-computed skip n-gram
embeddings

Query token: neural

Embedding lookup for related
unigrams/word pairs

Fast embedding composition
for query tokens

15

Online Composite Re-Ranking

- Deep soft matching component
- similar to CEDR-KNRM architecture
- The deep score is a summation of all term subscores

- Lexical matching component
- Linear combination of BM25 features, word proximity features etc

- Other features
- [CLS] representation of documents
- pageRank

Strategy: Linear combination of deep and non-neural ranking signals
Benefits: Offset relevance loss due to query token embedding approximation

16

Flow of Training, Indexing, and Online Inference

17

Relevance Evaluation on ClueWeb09CatB,
Robust04, MS MARCO Dev/DL19/DL20

Compared to BERT-base, beFer relevance for ClueWeb, Robust04, and a degradaIon
on MS MARCO.

18

BECR: 15x less operation counts than

ColBERT, 234Kx less than BERT

Tens of milliseconds without GPU

Operation counts (FLOP) and inference time
Re-rank 150 ClueWeb-Cat-B pages. Query length n=3 or 5

19

Outline
● Part 1: Time Efficiency Optimization for Faster BERT-based Neural

Ranking
● Part 2: Space Efficiency Optimization for BERT-based Ranking

○ Document representation compression
● Part 3: Document Retrieval: Revisited

● Learned sparse representations
● Dense representations

20

Document Representa/on Compression: Why?

- Embedding footprint of the precomputed multi-
vector document representation is too large

- ColBERT
- 143GB (for MS MARCO 8.8M passages)
- 1.6TB (for 3.2M documents)

- Large random I/O access latency and subject to
high I/O contention
- Compression reduces storage and speeds up

inference in industrial settings.
- Challenges

- Unsupervised compression techniques such as
product quantization achieves unsatisfactory
performance.

How to efficiently
store the
document
representations?

Online late interaction of query
and document tokens

Precomputed doc
representations

query

21

A Comparison with Related Embedding Compression
Techniques

- Use an encoder to reduce the dimensionality. Slower ranking than ColBERT
- PreTTR (MacAvaney et al., 2020)

- SDR (Cohen et al., 2021)

- Compress embedding storage with Locality-Sensitive Hashing. Unsupervised
- BECR (Yang et al., 2022)

- Vector quantization with codebooks
- Product quantization (Jégou et al., 2011)

- Codebook (Shu and Nakayama, 2018)

- JPQ (Zhan et al., 2021)
Ranking oriented with jointly learned compression
Doesn’t decompose contextual signals of tokens

Unsupervised, not optimized
for ranking

Contextual Quantization (Yang et al., ACL’22)
● Contextual decomposition of token representations with better compressibility
● Jointly learned compression with fast ColBERT ranking 22

Example of context-aware token codes by CQ
M =4, K=4.

Different tokens in similar contexts have similar codes (different by 0-1 digit)

Same tokens in different contexts have different codes (3-4)

Each token is compressed as a vector of M codewords. Each codeword has K possible values called codebook.

Each codeword is a vector of D/M values with product quantization. Uncompression yields a vector of D dimensions.

23

Example of quan.za.on and online decoding

24

• Writer =[4,4,3]
• M = 3 codebooks. Use log K bits for each code

(e.g. 2 bits for K=4)
• Given a compressed code vector with 3 codes,

what is the uncompressed embedding for
“writer”?

• Find the codeword vectors stored for code a4 in
the first book, b4 in the second book etc.

• Product quantization: Embedding = concatenation
of a4 b4 c3

• Additive quantization: Embedding = sum of a4 b4
c3

Binary
codes
stored
for
online
use

4
4
3

Compression ratio for embeddings:
Each embedding has D dimensions

M codebooks and K codewords per codebook.
Log K bits space per code: logK .
Compressed space per embedding: M logK bits
Space compression ratio: 32D/(M log K)
Example: D=128, M=16, K=256 à Ratio 32.

Traditional method to train vector quantization

s.t.

of codebooks:
codewords per codebook:

Embedding y is approximated as q(y) which is decompressed from the compressed code vector for y.

Decompression in product quantization concatenates M codeword
subvectors for each token through codeword lookup. Training finds M
coodbooks with K codewords per book, e.g. using K-means clustering

• The above cost function does not
optimize relevance

• Contextual Quantization: Jointly train
quantization with ColBERT based ranking
to maximize the relevance 25

Compact Token Representations with Contextual Quantization for Efficient
Document Re-ranking (Yang et al., ACL’22)
● Key techniques:

○ Decomposition of contextual token representations
○ Ranking oriented learning with distillation

[CLS] tok TOK tok tok …

Contextual Embedding = Doc-independent component + Doc-dependent component

The space of doc-independent
embeddings is limited

[CLS] TOK [SEP]

● Large space
demand

26

End-to-end Encoding and Decoding for
Contextual Quantization

Binary
codes
stored for
online
use

Offline contextual quantization:
• Input E(t) is the token output from the last

BERT layer as contextual document
embedding.

• is the last layer of BERT applied with
[CLS] o t [SEP] as doc-independent
embedding.

ENCODER DECODER

Online inference recovers ranking
contribution via embedding composition:

: estimated doc-dependent component

: estimated contextual embedding 27

Training Loss for Learning Codebooks and Codes
- Reconstruction

- General codebook learning loss
- Doesn’t optimize for ranking

- Pairwise cross-entropy
- Ranking oriented loss
- Same loss for training rankers

- Distillation loss
- Use the original ranking model as teacher
- Minimize score discrepancy between reconstructed and original

embeddings

- Codebook cold start or warm start
- Joint training ranker and codebook vs

- Train ranker, freeze, then train codebook 28

Teacher difference Student difference

Probability of being correct

Offline Processing and Online Ranking Pipeline
What we store

Ranking score

Contextual
Quantization

29

MSMARCO Passage

Uncompressed baseline

Compression baseline

Gain from
ranking
oriented
training

Gain from
contextual
decomposition

● CQ outperforms other quantization
approaches in relevance effectiveness

● Small degradation of relevance compared to
original ColBERT re-ranking.

Jointly Optimizing Query Encoder and Product Quantization to Improve
Retrieval Performance (Zhan et al., CIKM’21)

Key techniques:
• Ranking oriented PQ

centroid optimization.
• End-to-end dynamic

negative sampling.

Warmup using traditional
OPQ model to get the
index assignment.

Update PQ centroid
embeddings using training
triplets and ranking loss.

Negatives are retrieved
during training using the
updated query embedding
and PQ centroids.

31

Outline
● Part 1: Time Efficiency Op6miza6on for Faster BERT-based Neural

Ranking
● Part 2: Space Efficiency Op6miza6on for BERT-based Ranking

○ Document representa6on compression
● Part 3: Document Retrieval: Revisited

● Learned sparse representa6ons
● Dense representa6ons

33

Document Retrieval: Sparse vs. Dense Representations
• For a web-scale large dataset

• Mul6-stage search pipeline is more prac6cal for be<er
efficiency

• For a rela0vely small dataset
• Single-stage dense retrieval with integrated ranking may

be sufficient to address vocabulary mismatching queries
and documents

Documents

Sparse Vector
Representation

Dense Vector
Representation

Inverted
Index

Document
retrieval

Re-ranking

Online inference

Query

34

Sparse Vector Representations of Documents
• Original idea: Treat a document as a bag of words with BM25 weighting
• Pros/cons: Fast retrieval but relevant documents fail to match if query words do not

appear. E.g., movie vs. film.
• Techniques to address query-document vocabulary mismatch

• Document expansion
• Doc2Query [Lin et al.]: append relevant tokens to documents

• Use a learned contextual score from the neural model.
• DeepCT/HDCT [Dai&Callan, SIGIR20]:

• Use BERT to learn term weights, replacing term frequency.
• DeepImpact [Mallia et al., SIGIR21]: Use a transformer to learn a score.
• COIL/UniCOIL [Gao et al. ECIR21][Lin&Ma, arXiv21] after document expansion:

• Convert ColBERT to exact token matching, assign a vector or a scalar score to each token
• Generate new vocabularies with SpladeV2 [Formal et al., SIGIR21]:

• Transform token impact to a sparse vector of tokens
• Faster retrieval with a hybrid learned representation and BM25 index.

• Guided traversal [Mallia et al., SIGIR22] 35

● Documents are expanded using the DocT5Query algorithm. DocT5Query is a T5
model trained to generate queries highly relevant to a given document.

● Impact scores encoder is constructed with 2 multilayer perceptron neural layers to
compute a learned score for each term in a document

Sparse Retrieval DeepImpact [Mallia et al., NYU, SIGIR21]

BERT

2-layer neural net

Document

Learned scores

36

● Each document is represented by a sparse vector of size |V|. Compute a
neural score for each term by projecting BERT embeddings to this vector.
○ For each token in the doc, calculate its impact on other possible tokens in

the vocabulary set.

i is the token index in the doc, j is the token index in the vocabulary set.

○ Summarize the weight of each token across the whole doc by adding the
impacts from other tokens in the vocabulary set, specific for this document.

● A document vector has too many non-zeros? When training, add the
regularization loss to control sparsity in the cost function

Sparse Retrieval with Splade/SpladeV2 [Formal et al., SIGIR21]

Doc d = (0, 0, …, 0, 1, 0, …, 0, 1, 0, …, 0, 0, 0, …, 0)
Splade(d)= (0, 0, …, 0, 2, 0, …, 0, 5, 0, …, 0, 3, 0, …, 0)

film moviephoto

Average number of floating-point operations token j
Involved in all documents in a training batch of size N

Sparse Retrieval: A Comparison of Different Term Scoring Methods

Model Retrieval Time to
search index (ms)

Relevance
(MRR@10)

BM25 5.7 0.187

DeepCT N/A 0.24

TILDEv2 20.7 0.333

DeepImpact 19.5 0.326

UniCOIL 37.9 0.352

SpladeV2 219.9 0.369

Dataset: MS MARCO Passage Dev

● BM25 is fast with lower
relevance without semantic
matching support

● DocT5Query improves query-
doc matching by adding
more terms per document

● DeepImpact improves
relevance by addressing
vocabulary mismatching, but
slower than BM25

● SpladeV2 costs significantly
longer times with more
nonzeros in sparse vectors,
but the relevance is the
highest.

Stats of inverted index From Mallia et al., SIGIR’22.

Neural Models for Information Retrieval: Where are we?

Documents

Sparse Vector
Representation

Dense Vector
Representation

Inverted
Index

Document
retrieval

Re-ranking

Online inference

Sparse or Dense
RepresentationQuery Dense retrieval

39

Dense Retrieval: Basic Computation Flow and Techniques

of
fli

ne

● Time and efficiency optimization
a. Nearest Neighbor Search with Approximation

■ GPU implementation: FAISS [Facebook AI,
2017]

b. Vector Compression
■ Product quantization (PQ), RepCONC [Zhan

et al., WSDM22]

● Vector representations
a. Multi Vectors, e.g., ColBERT [Khattab et al.,

SIGIR20]
b. Single Vectors, e.g., TCT-ColBERT [Lin et al.,

arXiv20], DPR [Karpukhin et al., ACL20]

● Training methods
a. Negative doc selection, e.g., DPR [Karpukhin et

al., ACL20], ANCE [Microsoft, ICLR 21]
b. Distillation, e.g., TCT-ColBERT [Lin et al., arXiv20],

RocketQA [Qu et al., ACL21]
Queries and documents are encoded
into single vectors respectively.

40

● Given a query vector, return the list of document vectors
that have the highest dot product with this query vector.

● Two-level index of document vectors with quantization.
○ First level: centroid of each cluster;
○ second level: difference to centroid with residual

vectors

● Approximate nearest neighbor search: only go into the
clusters that are close to the query.

● FAISS provides fast implementation and GPU support.
[Facebook, 2017. IEEE Trans. Big Data 21]

Dense Retrieval: Approximate Nearest Neighbor Search

Why? Slow online dot
product computing with
many documents

41

Dense Passage Retrieval (DPR)
● Embedding vectors of the query and the

document are derived from the [CLS]
token.

● Each training epoch executes a set of
batches. Each batch contains training
instances of (question, answer) pairs

[Karpukhin et al., Facebook, EMNLP20]

Each instance is converted as as
(question, answer, N negatives)

Strategies to chose negative passages
● Randomly
● Use BM25 retrieval to select top non-answer results
● Gold: Use answers for other questions
● In-batch Gold: Use other questions from the same batch
● In-batch Gold + 1 BM25-selected negative

42

DPR: Evaluation with Question Answer Datasets

BM25, Top 20: 59.1 Top 100: 73.7

In batch
negative very
effective

Increase batch size improve
performance

A BM25 negative also
boosts performance.

Natural Question dataset with 59K training examples (Google queries, Wikipedia answers)

Batch size:8 to 128. 40 epochs (#passes to work through the entire training dataset)

Report mean recall@k: %queries that have an answer retrieve at top k.

Best performance: 127 in-batch negatives +1 BM25 hard negative

2 BM25 negatives
1 BM25 negative

2 BM25 negatives

Dense Retrieval TCT-ColBERT [Lin et al., UWaterloo,
2020]

ColBERT
TCT-ColBERT

● Simplifies ColBERT structure. The embeddings of query and
documents are average pooled.

● Requires knowledge distillation from the original ColBERT
model. Teacher: Colbert. Student: TCT-Colbert 44

Dense Retrieval RocketQA [Qu et al., Baidu, ACL21]

How to build positive/negative pairs
• Cross-batch negatives: Use more negatives

from different batches
• Denoising hard negatives: Use a cross-

encoder to remove low-confidence
negatives

• Data augmentation. Use a cross-encoder

to add unsupervised training examples

with high-confidence positive and negative

passages
45

More advanced training strategies

RocketQA: An Op.mized Training Approach to Dense Passage
Retrieval for Open-Domain Ques.on Answering (Qu et al., ACL’21)

● Chained training pipeline
1. Train the dual-encoder on the original dataset.
2. Train a cross-encoder on the original dataset. Had negatives are selected

randomly from the above dual encoder.
3. Tune the dual-encoder, using the cross-encoder de-noised hard negative

samplings.
4. Expand training data with unsupervised pseudo examples based on the

cross-encoder, and use it to further train the dual-encoder.

46

RocketQA Performance and Ablation Studies

Gain from
denoising

Cross batch

Training Optimization: Summary
- Op#mizing Training Sample Selec#on

How to get nega#ves more easily?
a. In batch nega9ves: DPR (Karpukhin et al., ACL’20)
b. Cross batch nega9ves and denoise: RocketQA (Qu et al., ACL’21)

How to get hard nega#ves that can guide the model be=er?
a. Asynchronous nega9ve sampling: ANCE (Xiong et al., ICLR’21)

- Cross Architecture Dis#lla#on
- marginMSE (HofstaTer et al., 2020)
- RocketQAv2 (Ren et al., EMNLP’21)
- TCT-ColBERT (Lin et al., ACL-Rep4nlp’21)
- TAS-B (Lin et al., SIGIR’21)

Index update which is expensive!

Pairwise distillation

Listwise distillation

Depending on negatives, distill from both cross-
encoder and dual encoder

Distill from Dual Encoder

48

Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation (Hofstatter et al., 2020)

Margin-MSE loss: Relevance difference between rank scores of positive and negative passages

Let the student learn the difference in the teacher’s model 49

T1 vs T2: ensemble
teacher leads to stronger
student

margin-MSE is effective
compared to other two
distillation losses.

50

Summary
● Time Efficiency Optimization for Faster BERT-based Neural Ranking

● Neural net simplification
● Dual-encoders with precomputed document embeddings
● CPU-friendly design with query embedding approximation

● Space Efficiency Optimization for BERT-based Ranking
○ Document representation compression with dimension reduction or encoding
○ Contextual embedding quantization

● Document Retrieval: Revisited
● Learned sparse representations

● Document expansion by adding more relevant terms to each document
● Use neural models to compute weights

● Dense representations
● Single or multi vector representation
● Approximation with nearest neighbor search
● Training optimization by knowledge distillation and adding more positive/negatives

51

