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Neural Models  for Information Retrieval 

Documents

Sparse Vector 
Representation

Dense Vector 
Representation

Inverted 
Index

Document 
retrieval

Re-ranking

Online inference

Sparse or Dense 
RepresentationQuery

Every document/query is a vector
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Relevance and Cost Tradeoffs

Cost

Relevance

Sparse retrieval
E.g. BM25

L2R tree ensembles
E.g. LambdaMART

Neural ranking with non-
contextual embeddings. 
E.g. ConvKNRM

Transformer based ranking

E.g. BERT
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Outline
● Part 1: Time Efficiency Optimization for Faster BERT-based Neural 

Ranking
● Part 2: Space Efficiency Optimization for BERT-based Ranking

○ Document representation compression
● Part 3:  Document Retrieval: Revisited

● Learned sparse representations
● Dense representations
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Part 1: Time Efficiency Optimization

Ranking

Late interaction of query 
and document tokens

Precomputed 
doc 
representations

Late interaction of query 
and document tokens

Precomputed 
doc 
representations

CPU friendly 
query 
encoding

query

Cross Encoder

1.Late Interaction

DPR (Karpukhin et al,. 
ACL’20), 
ColBERT (Khattab et al. 
SIGIR’20) 

2.CPU Friendly Ranking

TILDE (Zhang and Zuccon, 
SIGIR’21), 
BECR (Yang et al., WSDM’22)

3. Simplification of neural network
architectures 5



Efficiency Optimization: Architecture Simplification for Cross-Encoder
Key technique: Architecture simplifica<on (Hofsta?er et al., ECAI’20). Called TK, TKL, CK 

• Reduce the number of transformer layers 

• Knowledge dis<lla<on: train  a simpler student model based on a complex teacher model

Simpler transformer architecture KNRM-style interaction

Feed forward net for scoring

• Use the outcome of a teacher ranker to construct positive/negative 
document pairs

• Train the simpler student ranking model using these pairs
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Simplified Transformer Efficiency: TK 
Architecture 

Compared to Conv-KNRM: Around 2.5x inference time,  MRR 12% higher. 

Compared to BERT_base, 1/37 inference time, MRR 18% lower.
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Efficiency Optimization via Late Interaction between Query 

and Doc Embeddings: Dual-Encoder Architecture

Document representaAon can be pre-computed 

before online query processing

Late interaction of query and 
document tokens

Precomputed doc 
representations

query

- Single-Vector Dual Encoder (Dense 
Representation Models):

- Each document is a vector of 

elements

- DPR (Karpukhin et al,. ACL’20)

- Sentence BERT (Reimers, EMNLP’19)

- ANCE (Xiong et al., ICLR’21)

- Multi-vector dual encoder:
- Each doc is a vector of vectors

- ColBERT (Khattab et al. SIGIR’20) 

- PreTTR (MacAvaney et al. SIGIR’20)

- MVR (Zhang et al., ACL’22)
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Multi-vector dual encoder: ColBERT (Khattab et al. Stanford, 
SIGIR’20)

Key technique:  fine-grained contextual late interaction

• Each passage is encoded as a set of  token-level embeddings during offline

• At search time, it embeds every query into another set of token embeddings
• Rank score = maximum vector similarity between query  q and terms in 

document d based on dot products and max pooling

For each query 
token embeddings

Precomputed embedding space cost is high.

For each doc token 
embeddings
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ColBERT Performance on MS MARCOS Passages
Reranking

End-to-end

Similar 
relevance as 
BERT-base but 
much lower 
latency.
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CPU-friendly Ranker

Dual encoder designs speeds up document encoding in online 
processing. Some work further alleviate query encoding step for 
online.

1. Ranker Based on Exact Match
a. TILDE (Zhang and Zuccon, SIGIR’21)

2. Query Decomposition
a. BECR (Yang et al., WSDM’22)

Late interaction of query 
and document tokens

Precomputed 
doc 
representations

CPU friendly 
query 
encoding

Ranking scores
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TILDE: Term Independent Likelihood Model for Passage Re-
ranking (Zhang and Zuccon, SIGIR’21)

- No query encoder, so query 
latency is much lower

- TILDE assumes that query terms 
are independent. 

Can be precomputed for all tokens.

Models that learn token weights distribution for each document can use a 
sparse learned inverted index for retrieval efficiency. Examples include 
SPLADE (Formal et al., SIGIR’21) and DeepImpact (Mallia et al., SIGIR’21).
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Query Latency (ms) 
Query inference + rerank

TILDE Relevance and Latency

The query likelihood option (QL) 
achieve good latency by removing 
query encoding.

GPU

CPU

GPU
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BECR (BERT-based Composite Reranking) (Yang 
et al., WSDM’22) 

Late interaction of query 
and document tokens

Precomputed 
doc token 
embedding

Precomputed skip n-
gram  embeddings

Query
embedding 
composition

3 key optimization techniques for a trade-off 
triangle  

Time 
efficiency

Relevance

Compose query token 
representations with 
precomputed skip n-
gram embeddings

Offset approximation loss 
with non-neural signal 
composition

Compress 
embedding 
storage  with 
LSH +model 
simplification

Space
efficiency
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Runtime Embedding Composition for Query 
Tokens

Example query: neural ranking model

…

neural

ranking

model

(neural, ranking)

(neural, model)

(ranking, model)

Benefits: Drastically lower  time cost of query token embedding computation 

Pre-computed skip n-gram 
embeddings

Query token: neural  

Embedding lookup for related 
unigrams/word pairs

Fast embedding composition 
for query tokens
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Online Composite Re-Ranking

- Deep soft matching component
- similar to CEDR-KNRM architecture
- The deep score is a summation of all term subscores

- Lexical matching component
- Linear combination of BM25 features, word proximity features etc

- Other features
- [CLS] representation of documents
- pageRank

Strategy: Linear combination of deep and non-neural ranking signals
Benefits: Offset relevance loss due to query token embedding approximation
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Flow of Training, Indexing, and Online Inference
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Relevance Evaluation on ClueWeb09CatB, 
Robust04, MS MARCO Dev/DL19/DL20

Compared to BERT-base, beFer relevance for ClueWeb, Robust04, and a degradaIon 
on MS MARCO. 
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BECR: 15x less operation counts than 

ColBERT, 234Kx less than BERT

Tens of milliseconds without GPU

Operation counts (FLOP) and inference time
Re-rank 150   ClueWeb-Cat-B pages.   Query length n=3 or 5
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Outline
● Part 1: Time Efficiency Optimization for Faster BERT-based Neural 

Ranking
● Part 2: Space Efficiency Optimization for BERT-based Ranking

○ Document representation compression
● Part 3:  Document Retrieval: Revisited

● Learned sparse representations
● Dense representations
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Document Representa/on Compression: Why?

- Embedding footprint of the precomputed multi-
vector document representation is too large

- ColBERT
- 143GB (for MS MARCO 8.8M passages) 
- 1.6TB (for 3.2M documents)

- Large random I/O access latency and subject to 
high I/O contention
- Compression reduces storage and speeds up 

inference in industrial settings. 
- Challenges

- Unsupervised compression techniques such as 
product quantization achieves unsatisfactory 
performance.

How to efficiently 
store the 
document 
representations?

Online late interaction of query 
and document tokens

Precomputed doc 
representations

query

21



A Comparison with Related Embedding Compression 
Techniques

- Use an encoder to reduce the dimensionality. Slower ranking than ColBERT
- PreTTR (MacAvaney et al., 2020)

- SDR (Cohen et al., 2021)

- Compress embedding storage with Locality-Sensitive Hashing. Unsupervised
- BECR (Yang et al., 2022)

- Vector quantization with codebooks
- Product quantization (Jégou et al., 2011)

- Codebook (Shu and Nakayama, 2018)

- JPQ (Zhan et al., 2021) 
Ranking oriented with jointly learned compression
Doesn’t decompose contextual signals of tokens

Unsupervised, not optimized 
for ranking

Contextual Quantization (Yang et al., ACL’22)
● Contextual decomposition of token representations with better compressibility
● Jointly learned compression with fast ColBERT ranking  22



Example of context-aware token codes by CQ
M =4, K=4.

Different tokens in similar contexts have similar codes (different by 0-1 digit)

Same tokens in different contexts have different codes (3-4)

Each token is compressed as a vector of M codewords. Each codeword  has K possible values called codebook.

Each codeword is a vector of D/M values with product quantization. Uncompression yields a vector of D dimensions. 
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Example of quan.za.on and online decoding

24

• Writer =[4,4,3]
• M = 3 codebooks. Use log K bits for each code  

(e.g. 2 bits for K=4)
• Given a compressed code vector with 3 codes, 

what is the uncompressed embedding for 
“writer”?

• Find the codeword vectors stored for code  a4 in 
the first book, b4 in the second book etc.

• Product quantization: Embedding = concatenation 
of  a4 b4 c3

• Additive quantization: Embedding = sum of  a4 b4
c3

Binary 
codes  
stored 
for 
online 
use

4
4
3

Compression ratio for  embeddings:
Each embedding has D dimensions  

M codebooks and K codewords per codebook.
Log K bits space per code:  logK . 
Compressed space per  embedding: M logK bits
Space compression ratio:  32D/(M log K)
Example: D=128, M=16, K=256 à Ratio 32.



Traditional method to train vector quantization

s.t.

# of codebooks:
codewords per codebook:

Embedding y is approximated as q(y) which is decompressed  from the compressed code vector for y.

Decompression in product quantization concatenates M codeword 
subvectors for each token through codeword lookup. Training finds M 
coodbooks with K codewords per book, e.g. using K-means clustering

• The above cost function does not 
optimize relevance 

• Contextual Quantization: Jointly train 
quantization with ColBERT based  ranking 
to maximize the relevance 25



Compact Token Representations with Contextual Quantization for Efficient 
Document Re-ranking (Yang et al., ACL’22)
● Key techniques:

○ Decomposition of contextual token representations
○ Ranking oriented learning with distillation

[CLS] tok TOK tok tok …

Contextual Embedding = Doc-independent component + Doc-dependent component

The space of doc-independent 
embeddings is limited 

[CLS] TOK [SEP]

● Large space 
demand 
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End-to-end Encoding and Decoding for 
Contextual Quantization

Binary 
codes  
stored for 
online 
use

Offline contextual quantization:
• Input E(t) is the token output from the last 

BERT layer as contextual document 
embedding.

• is the last layer of BERT applied with 
[CLS] o t [SEP] as doc-independent 
embedding.

ENCODER DECODER

Online inference recovers ranking 
contribution via embedding composition:

: estimated doc-dependent component

: estimated contextual embedding 27



Training Loss for Learning Codebooks and Codes
- Reconstruction 

- General codebook learning loss
- Doesn’t optimize for ranking

- Pairwise cross-entropy
- Ranking oriented loss
- Same loss for training rankers

- Distillation loss
- Use the original ranking model as teacher
- Minimize score discrepancy between reconstructed and original 

embeddings 

- Codebook cold start    or warm start 
- Joint training ranker and codebook       vs

- Train ranker, freeze, then train codebook 28

Teacher difference Student difference

Probability of being correct



Offline Processing and Online Ranking Pipeline
What we store  

Ranking score

Contextual 
Quantization

29



MSMARCO Passage

Uncompressed baseline

Compression baseline

Gain from 
ranking 
oriented 
training

Gain from 
contextual 
decomposition

● CQ outperforms other quantization 
approaches in relevance effectiveness

● Small degradation of relevance compared to 
original ColBERT re-ranking.



Jointly Optimizing Query Encoder and Product Quantization to Improve 
Retrieval Performance (Zhan et al., CIKM’21)  

Key techniques:
• Ranking oriented PQ 

centroid optimization. 
• End-to-end dynamic 

negative sampling.

Warmup using traditional 
OPQ model to get the 
index assignment.

Update PQ centroid 
embeddings using training 
triplets and ranking loss.

Negatives are retrieved 
during training using the 
updated query embedding 
and PQ centroids.
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Outline
● Part 1: Time Efficiency Op6miza6on for Faster BERT-based Neural 

Ranking
● Part 2: Space Efficiency Op6miza6on for BERT-based Ranking

○ Document representa6on compression
● Part 3:  Document Retrieval: Revisited

● Learned sparse representa6ons
● Dense representa6ons
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Document Retrieval:  Sparse vs. Dense Representations
• For a web-scale large dataset

• Mul6-stage search pipeline is more prac6cal for be<er 
efficiency

• For a rela0vely small dataset
• Single-stage dense retrieval with integrated ranking may 

be sufficient to address vocabulary mismatching queries 
and documents

Documents

Sparse Vector 
Representation

Dense Vector 
Representation

Inverted 
Index

Document 
retrieval

Re-ranking

Online inference

Query
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Sparse Vector Representations of Documents
• Original idea: Treat a document as a bag of words with  BM25 weighting  
• Pros/cons: Fast retrieval but relevant documents fail to match if query words do not 

appear. E.g., movie vs. film.
• Techniques to address query-document vocabulary mismatch 

• Document expansion 
• Doc2Query [Lin et al.]:  append relevant tokens to documents

• Use a learned contextual score from the neural model.
• DeepCT/HDCT [Dai&Callan,  SIGIR20]:

• Use BERT to learn term weights, replacing term frequency.
• DeepImpact [Mallia et al., SIGIR21]: Use a transformer to  learn a score.
• COIL/UniCOIL [Gao et al. ECIR21][Lin&Ma, arXiv21] after document expansion:

• Convert ColBERT to exact token matching, assign a vector or a scalar score to each token  
• Generate new vocabularies with SpladeV2 [Formal et al., SIGIR21]:

• Transform token impact to a sparse vector of tokens
• Faster retrieval with a hybrid learned representation and BM25 index.

• Guided traversal [Mallia et al., SIGIR22] 35



● Documents are expanded using  the DocT5Query algorithm. DocT5Query is a T5 
model trained to generate queries  highly relevant to a given document.

● Impact scores encoder is constructed with 2 multilayer perceptron neural layers to 
compute a learned score for each term in a document

Sparse Retrieval    DeepImpact [Mallia et al., NYU, SIGIR21]

BERT

2-layer neural net

Document

Learned scores

36



● Each document is represented by a sparse vector of size |V|. Compute a 
neural score for each term by projecting BERT embeddings to this vector.
○ For each token in the doc, calculate its impact on other possible tokens in 

the vocabulary set.

i is the token index in the doc, j is the token index in the vocabulary set.

○ Summarize the weight of each token across the whole doc by adding the 
impacts from other tokens in the vocabulary set, specific for this document.

● A document vector has too many non-zeros?  When training, add the 
regularization loss  to control sparsity in the cost function

Sparse Retrieval  with   Splade/SpladeV2 [Formal et al., SIGIR21]

Doc d =    (0, 0, …, 0, 1, 0, …, 0, 1, 0, …, 0, 0, 0, …, 0)
Splade(d)= (0, 0, …, 0, 2, 0, …, 0, 5, 0, …, 0, 3, 0, …, 0)

film moviephoto

Average number of floating-point operations token j
Involved in all documents in a training batch of size N



Sparse Retrieval: A Comparison of Different Term Scoring Methods

Model Retrieval Time to 
search index (ms)

Relevance 
(MRR@10)

BM25 5.7 0.187

DeepCT N/A 0.24

TILDEv2 20.7 0.333

DeepImpact 19.5 0.326

UniCOIL 37.9 0.352

SpladeV2 219.9 0.369

Dataset: MS MARCO Passage Dev

● BM25 is fast with lower 
relevance without semantic 
matching support 

● DocT5Query improves query-
doc matching by adding 
more terms per document

● DeepImpact improves 
relevance by addressing 
vocabulary mismatching, but 
slower than BM25

● SpladeV2 costs significantly 
longer times with more 
nonzeros in sparse vectors, 
but the relevance is the  
highest. 

Stats of inverted index From Mallia et al., SIGIR’22.



Neural Models  for Information Retrieval: Where are we? 

Documents

Sparse Vector 
Representation

Dense Vector 
Representation

Inverted 
Index

Document 
retrieval

Re-ranking

Online inference

Sparse or Dense 
RepresentationQuery Dense retrieval
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Dense Retrieval: Basic Computation Flow and Techniques

of
fli

ne

● Time and efficiency optimization
a. Nearest Neighbor Search with Approximation

■ GPU implementation: FAISS [Facebook AI, 
2017]

b. Vector Compression
■ Product quantization (PQ), RepCONC [Zhan 

et al., WSDM22]

● Vector representations
a. Multi Vectors, e.g., ColBERT [Khattab et al., 

SIGIR20]
b. Single Vectors, e.g., TCT-ColBERT [Lin et al., 

arXiv20], DPR [Karpukhin et al., ACL20]

● Training methods
a. Negative doc selection, e.g., DPR [Karpukhin et 

al., ACL20], ANCE [Microsoft, ICLR 21]
b. Distillation, e.g., TCT-ColBERT [Lin et al., arXiv20], 

RocketQA [Qu et al., ACL21]
Queries and documents are encoded 
into single vectors respectively.
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● Given a query vector, return the list of document vectors 
that have the highest dot product with this query vector.

● Two-level index of document vectors with quantization. 
○ First level: centroid of each cluster; 
○ second level:  difference to centroid with residual 

vectors 

● Approximate nearest neighbor search: only go into the 
clusters that are close to the query.

● FAISS provides fast implementation and GPU support. 
[Facebook, 2017. IEEE Trans. Big Data 21]

Dense Retrieval:    Approximate Nearest Neighbor Search

Why? Slow online dot 
product computing with 
many documents
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Dense Passage Retrieval (DPR)
● Embedding vectors of the query and the 

document are derived from the [CLS] 
token.

● Each training epoch executes a set of 
batches. Each batch  contains training 
instances of (question, answer) pairs

[Karpukhin et al., Facebook, EMNLP20]

Each instance is converted as as  
(question, answer, N  negatives)

Strategies to chose negative passages
● Randomly
● Use BM25 retrieval to select top non-answer results
● Gold: Use answers for other questions  
● In-batch Gold: Use  other questions  from the same batch
● In-batch Gold + 1 BM25-selected negative

42



DPR: Evaluation with Question Answer Datasets  

BM25, Top 20: 59.1  Top 100: 73.7

In batch 
negative very 
effective

Increase batch size improve 
performance

A BM25 negative also 
boosts performance.

Natural Question dataset with 59K training examples (Google queries, Wikipedia answers)

Batch size:8 to 128.            40 epochs (#passes to work through the entire training dataset)

Report mean recall@k: %queries that have an answer retrieve  at top k.

Best performance: 127 in-batch negatives +1 BM25 hard negative

2 BM25 negatives
1 BM25 negative

2 BM25 negatives



Dense Retrieval    TCT-ColBERT [Lin et al., UWaterloo, 
2020]

ColBERT
TCT-ColBERT

● Simplifies ColBERT structure. The embeddings of query and 
documents are average pooled.

● Requires knowledge distillation from the original ColBERT
model. Teacher: Colbert. Student: TCT-Colbert 44



Dense Retrieval    RocketQA [Qu et al., Baidu, ACL21]

How to build positive/negative pairs
• Cross-batch negatives: Use more negatives 

from different batches
• Denoising hard negatives: Use a cross-

encoder to remove low-confidence 
negatives

• Data augmentation. Use a cross-encoder 

to add unsupervised training examples 

with high-confidence positive and negative 

passages
45

More advanced training strategies 



RocketQA: An Op.mized Training Approach to Dense Passage 
Retrieval for Open-Domain Ques.on Answering (Qu et al., ACL’21)

● Chained training pipeline  
1. Train the dual-encoder on the original dataset.
2. Train a cross-encoder on the original dataset. Had negatives are selected 

randomly  from the above dual encoder.
3. Tune the dual-encoder, using the cross-encoder de-noised hard negative 

samplings.
4. Expand training data with unsupervised pseudo examples based on  the 

cross-encoder, and use it to further train the dual-encoder.
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RocketQA Performance and Ablation Studies

Gain from 
denoising

Cross batch



Training Optimization: Summary
- Op#mizing Training Sample Selec#on

How to get nega#ves more easily?
a. In batch nega9ves: DPR (Karpukhin et al., ACL’20)
b. Cross batch nega9ves and denoise: RocketQA (Qu et al., ACL’21)

How to get hard nega#ves that can guide the model be=er? 
a. Asynchronous nega9ve sampling: ANCE (Xiong et al., ICLR’21)

- Cross Architecture Dis#lla#on
- marginMSE (HofstaTer et al., 2020)
- RocketQAv2 (Ren et al., EMNLP’21)
- TCT-ColBERT (Lin et al., ACL-Rep4nlp’21)
- TAS-B (Lin et al., SIGIR’21)

Index update which   is expensive!

Pairwise distillation

Listwise distillation

Depending on negatives, distill from both cross-
encoder and dual encoder 

Distill from Dual Encoder
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Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation (Hofstatter et al., 2020)

Margin-MSE loss: Relevance difference between rank scores of  positive and negative passages

Let the student learn the difference in the teacher’s model 49



T1 vs T2: ensemble 
teacher leads to stronger 
student

margin-MSE is effective 
compared to other two 
distillation losses.
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Summary
● Time Efficiency Optimization for Faster BERT-based Neural Ranking

● Neural net simplification
● Dual-encoders with precomputed document embeddings 
● CPU-friendly  design with query embedding approximation

● Space Efficiency Optimization for BERT-based Ranking
○ Document representation compression with dimension reduction or encoding
○ Contextual embedding quantization

● Document Retrieval: Revisited
● Learned sparse representations 

● Document expansion by adding more relevant terms to each document
● Use neural models to compute weights

● Dense representations
● Single or multi vector representation
● Approximation with nearest neighbor search
● Training optimization by knowledge distillation and  adding more positive/negatives
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