Recent Progress in Neural Information
Retrieval

CS293S. 2022. Tao Yang

Neural Models for In ation Retrieval

Every document/query is a ector

Sparse Vector | |Inverte
Representation Index
. Online inference
Documents |
Document || Re-ranking
\ retrieval
Dense Vector
Representation /

Sparse or Dense

Query — | Representation

Relevance and Cost Tradeoffs

Transformer based ranking

E.g. BERT

Relevance ;

Neural ranking y
contextual e

arse retrieval
E.g. BM25

Cost

Outline

« Part 1: Time Efficiency Optimization for Faster BERT-based Neural
Ranking
« Part 2: Space Efficiency Optimization for BERT-based Ranking
o Document representation compression
« Part 3: Document Retrieval: Revisited
« Learned sparse representations
« Dense representations

References:

“Pretrained Transformers for Text Ranking: BERT and Beyond” by Andrew Yates,
Rodrigo Nogueira, and Jimmy Lin, 2021

Recent papers

Part 1: Time Efficiency Optimization

Ranking

i
4

WA
{

= “’ F\’\\\

Query Document

Cross Encoder

Late interaction of query
and document tokens

Late interaction of query
and document tokens

ra NN

Precomputed »
doc

representations

CPU friendly Precomputed

query doc
encoding representations

1.Late Interaction

DPR (Karpukhin et al,.
ACL'20),

ColIBERT (Khattab et al.
SIGIR'20)

3. Simplification of neural network
architectures

2.CPU Friendly Ranking

TILDE (Zhang and Zuccon,
SIGIR'21),
BECR (Yang et al., WSDM'22)

Efficiency Optimization: Architecture Simplification for Cross-Encoder
Key technique: Architecture simplification (Hofstatter et al., ECAI’20). Called TK, TKL, CK

 Reduce the number of transformer layers

 Knowledge distillation: train a simpler student model based on a complex teacher model

» Use the outcome of a teacher ranker to construct positive/negative
document pairs

» Train the simpler student ranking model using these pairs

Simpler transformer architecture KNRM-style interaction
Query = =——- , _________________________ \ Query 2) Term x Term interaction
q1.9 TR o I 1 Feed forward net for scoring
| =1
T | d; d
Document =— '—l_‘ _ H7.|) @ ' } : \A_>ql \
di> ® L q> BRI
d[,d_?, ,dn d’ . M/ ’)“\ Document . . @ z_> FF
- 7 T @ } / o
d,-> | .‘ g
@ *d R N \ ’
S 4 > 'O -3 = FF
A_:\ _l b 4
Word embedding / Transformer / Weighted sum ‘ ’ ’ . . . /
L " I L | | | 6

@ Contextualized encoding @ Kernels (log & length normalized) @ Scoring

Slmpllfled Transformer Efficiency: TK

_ _0_°a _ _a
Model MSMARCO-Passage MSMARCO-Document
MRR Recall nDCG Depth MRR Recall nDCG Depth
BM25 0.194 0402 0.241 - 0252 0.500 0.311 -
LM 0.171 0.358 0.213 - 0202 0423 0254 -
RM3 0.169 0.388 0.219 - 0.156 0367 0.206 -
MatchPyramid 0.249 0476 0.301 71 0286 0.531 0.344 15
DUET 0.248 0468 0.299 42 0266 0.520 0.327 15
PACRR 0.259 0493 0313 619 0283 0536 0344 15
CO-PACRR 0.273 0.514 0.328 987 0.284 0543 0.345 19
KNRM 0.235 0465 0288 127 0261 0519 0.323 14
CONV-KNRM 0.277=, 0.519 0.332 967 0.283 0542 0.345 19
BERT-Base 0.376%.639 0.437 997 0352 0.623 0.417 58
BERT-Large 0.366 Y.627 0.426 997 0350 0.630 0.417 93 -w o
TK - 1 Layer 0.303,0.560 0.361 997 0.305 0.572 0.369 29 0-20 B GERTBase |
TK-2 Layer 0311570564 0369 997 0312 0577 0375 29 018, % BERT-Large

TK - 3 Layer 0.314 0.570 0.373 997 0.316 0.586 0.380 31 1 50 100 150 200 250 300

Time budget (ms)

Compared to Conv-KNRM: Around 2.5x inference time, MRR 12% higher.

Compared to BERT _base, 1/37 inference time, MRR 18% lower.

Efficiency Optimization via Late Interaction between Query
and Doc Embeddings: Dual-Encoder Architecture

Document representation can be pre-computed

before online query processing
Single-Vector Dual Encoder (Dense

Representation Models):

Late interaction of query and .- Each document is a vector of

document tokens elements

\ - DPR (Karpukhin et al,. ACL’20)
- Sentence BERT (Reimers, EMNLP’19)
Precompuied doc | .—— _ ANCE (Xiong et al., ICLR’21)

representations

query - Multl vector dual encoder:
Each doc is a vector of vectors
ColBERT (Khattab et al. SIGIR’20)
PreTTR (MacAvaney et al. SIGIR’20)
MVR (Zhang et al., ACL’22)

Multi-vector dual encoder: ColBERT (Khattab et al. Stanford,
SIGIR’20)

Key technique: fine-grained contextual late interaction

Rank score = maximum vector similarity between query q and terms in
document d based on dot products and max pooling

Sq.4 = max El.-ET.
i =, jellEall %

/iE[IEqI] /

For each doc token

For each’query embeddings
token embeddings

Query Encoder, f,, Document Encoder, f),

Offline Indexing

Query Document

Precomputed embedding space cost is’high.

ColBERT Performance on MS MARCOS Passages

Reranking

Method MRR@10 (Dev) MRR@10 (Eval) Re-ranking Latency (ms) FLOPs/query
BM25 (official) 16.7 16.5 - -

KNRM 19.8 19.8 3 592M (0.085%)
Duet 24.3 24.5 22 159B (23X%)
fastText+ConvkKNRM 29.0 27.7 28 78B (11X)
BERT}. [25] 34.7 - 10,700 97T (13,900x)
BERT},se (our training) 36.0 - 10,700 97T (13,900%)
BER T}y [25] 36.5 35.9 32,900 340T (48,600X)
ColBERT (over BERT},..) 34.9 34.9 61 7B (1X)
End-to-end
Method MRR@10 (Dev) MRR@10 (Local Eval) Latency (ms) Recall@50 Recall@200 Recall@1000
BM25 (official) 16.7 - - - - 81.4
BM25 (Anserini) 18.7 19.5 62 59.2 73.8 85.7
doc2query 21.5 22.8 85 64.4 77.9 89.1
DeepCT 24.3 - 62 (est.) 69 [2] 82 [2] 91 [2]
docTTTTTquery 27.7 28.4 87 75.6 86.9 94.7
ColBERT , (re-rank) 34.8 36.4 - 75.3 80.5 81.4
ColBERT]; (end-to-end) 36.0 36.7 458 82.9 92.3 96.8

Similar
relevance as
BERT-bbase but
much lower
latency.

10

CPU-friendly Ranker

Dual encoder designs speeds up document encoding in online
processing. Some work further alleviate query encoding step for

online. < Ranking scores

.. Ranker Based on Exact Match

Late interaction of query
and document tokens

a. TILDE (Zhang and Zuccon, SIGIR’21) %\

2. Query Decomposition .
.. BECR (Yang et al., WSDM’22) gﬁgr;”e”d'y
encoding

Precomputed

doc
representations

TILDE: Term Independent Likelihood Model for Passage Re-
ranking (Zhang and Zuccon, SIGIR’21)

. __K"m_"_ - - No query encoder, so query
=S latency is much lower
] — - TI L?_Lasmlmf;_tlﬁat query terms
C) -) arelindependent.
BERT Tokenizer ;) \)
el e - q|
S TILDE-QL(gld") =), log(Po(qild"))
<q> <d> i

Can be precomputed for all tokens.

Models that learn token weights distribution for each document can use @
sparse learned inverted index for retrieval efficiency. Examples include
SPLADE (Formal et al., SIGIR'21) and Deeplmpact (Mallia et al., SIGIR'21).

12

TILDE Relevance and Latency

| MS MARCO | DL2019 | DL2020
Method | MRR@10 Latency | nDCG@10 MAP | nDCG@10 MAP
BM25 | 0.187 130 | 0.506 0377 | 0.480 0.286
Query Latency (ms)
(i) Representation based .
BM25 + EPIC 0270 356 + 108 0.609 0.411 0.576 0.349 Query inference + rerank
docTquery-T5 + EPIC 0.302 279 + 20 0.686 0.473 0.624 0.405
(ii) Modified document text
docTquery-T5 0.277 143 0.641 0.462 0.619 0.40
(iii) Direct deep language model GPU
BM25 + BERT-base* 0.347 2,970 0.703 — 0.668 0.431
BM25 + BERT-large* 0.365 3, 500 0.738 0.506 — —
(iv) Deep query likelihood GPU
BM25 + QLM-BERT**
QL 0.281 4,500 0.391
DQL 0.290 9,000 0.401
BM25 + QLM-T5**
QL 0.294 5,000 0.426
DQL 0.301 10, 000 . 0.435
TILDE (ours) CF,U// The query likelihood option (QL)
BM25 + TILDE . .
(TmwDE-OL 0269 05+ 29 0.579 __ 0.406 | _ 0.620 ___ 0.406) achieve good latency by removing
TILDE-QDL with BiQDL 0.280 290 + 64 0.609 0.420 0.621 0.412 :
docTquery-T5 + TILDE query en codi ng.
TILDE-QL 0.285 0.5+0.9 0.650 0.467 0.624 0.417

TILDE-QDL with BiQDL 0.295 290 + 3.1 0.654 0.468 0.622 0.413 13

BECR (BERT-based Composite Reranking) (Yang
et al., WSDM’22)

Late inferaction of query -
and document tokens SN EDIMENE (B3
with non-neural signal

/%\ composition

3 key optimization techniques for a frade-off
trangle

gram embeddings

Query Precomputed Relevance
embedding doc token
composition embedding , \
j Compose query token _ Compress
representations with Time Space embedding
Precomputed skip n- precomputed skip n- efficiency efficiency storage with
gram embeddings LSH +model

simplification

14

Runtime Embedding Composition for Query
Tokens

Benefits: Drastically lower time cost of query token embedding computation

Pre-computed skip n-gram Example query: neural ranking model
embeddings

Query token: neural

neural

Embedding lookup for related
ranking > unigrams/word ;Lairs
model VI\/L

Fast embedding composition
(neural, ranking) for query tokens

(neural, model) . o - 1 -
el €(n€u7‘alneum")—{— o e(neura’lneum ,Tan .ng)+ = e(neuralneum-,mm e))

E(neural) =

(ranking, model) 1,1,1
4 1 1 + 2

Online Composite Re-Ranking

Strategy: Linear combination of deep and non-neural ranking signals
Benefits: Offset relevance loss due to query token embedding approximation

5= Sdeep + Slexi + Sothers

Deep soft matching component

similar to CEDR-KNRM architecture

The deep score is a summation of all term subscores
Lexical matching component

Linear combination of BM25 features, word proximity features etc
Other features

[CLS] representation of documents
pageRank

Flow of Training, Indexing, and Online Inference

(a) Training

: Loss ‘\
t

So.0; Se.,

% 1

‘ | |

: S

d;ep Slexi Sother
10 = P
i1 | l l =]

| H N

| |

| ol Rt e P o

i Bert Bert ‘ Bert
i B t

| lewsio| icws) Dy | [icLs) D, }

' | |

N Y,

Model
parameter

update

Document

key-value
store

[CLS] D,
[CLS] D,

(b) Indexing
Composite
token
embedding
store
Vg
neural :]
ranking |:]
model []
______ SR
Bert
f

N\
neural ranking |:| :]
ranking model |:| |:|
neural model I:I :]

I[CLS] neurall l[CLS] neural ranking|

[CLS] ranking I[CLS] ranking modell
[CLS] model I[CLS] neural modell

Doc encoding

Token encoding

ST U

(¢) Online Inference

et Sdeep e

Figure 1: Training, Offline Processing and Online Inference in BECR

__| Embedding | E(qy) .
composition E(q,)
!
E
Composite 4n) |, [Deep soft
token matching
embedding
tore e(d))
iT i e(dz) s
Document e(d,)
store
> Lexicgl i Slm
» |[matching
: Other > Sother
» | features

17

Relevance Evaluation on ClueWeb09CatB,
Robust04, MS MARCO Dev/DL19/DL20

Model ClueWeb09-Cat-B Robust04 MSMARCO DL19 DL20
NDCG@5 | NDCG@20 | P@20 NDCG@5 | NDCG@20 | P@20 MRR@10 Dev | NDCG@10 | NDCG@10

BM25 || 0.2351 0.2294 0.3310 0.4594 0.4151 0.3548 0.167 0.488 0.480

ColBERT (Ours) || 0.2408 0.2400 0.2067 0.3809 0.3498 0.3074 0.355 0.701 0.674
ColBERT (from [5, 25]) || 0.2273 [5] | 0.2365[5] | 0.2507 [5] || 0.4031[5] | 0.3754[5] | 0.3254[5] || 0.349 [25] - -
CONV-KNRM || 0.2869% 0.27358 0.3698" 0.47428 0.4501% 0.33498 - - -

BERT-base || 0.2853% 0.2612% 0.3764% 0.5160%% | 0.45143 0.3983% 0.349 0.686 0.672

CEDR-KNRM (Ours) || 0.3030*% | 0.2693% 0.39618 0.5563**% | 0.46373 0.42493 0.344 0.702 0.686

CEDR-KNRM (from [3, 34]) || - - - - 0.5381 [34] | 0.4667 [34] || - 0.682 [3] 0.675 [3]
BECR™ || 0.35881*% | 0.30661*% | 0.4016" 0.5366**% | 0.4635" 0.4045% 0.323 0.682 0.655
BECR || 0363275 | 0.30750°% | 0.3987° 0.5349%*% | 0.4656° 0.4005% 0.319 0.658 0.647

Compared to BERT-base, better relevance for ClueWeb, Robust04, and a degradation

on MS MARCO.

18

Operation counts (FLOP) and inference time
Re-rank 150 ClueWeb-Cat-B pages. Query length n=3 or 5

BECR: 15x less operation counts than
ColBERT, 234Kx less than BERT

Tens of milliseconds without GPU

Model Specs. || n | FLOPs (ratio) Time (ms) (ratio)
GPU CPU
KNRM || 3 148M (5x) 1.3 (1x) | 123.5 (5%)
5 246M(5X) 1.6(0.5x) | 312.8 (8x)
ColBERT || 3 480M (15x) 13.7 (9%) -
5 779M (15x) 13.7 (4x) -
BERT || 3 | 12.2T (234kx) | 4359 (2900x) -
5 | 12.2T (580kx) | 4431 (1300 X) -

CEDR-KNRM || 3 | 12.2T(234kx) | 5577 (3700x)

5 | 12.2T (580kx) | 5601 (1700x) -
BECR,L=13,LSH || 3 81M (2.6X) 2.9 (2x) | 65.3(3%)
5 136M (2.6%) 5.7 (2x) | 117.7 (3X)
BECR,L=5,LSH || 3 31M (1x) 1.5(1x) | 25.4(1x)
5 52M (1x) 3.3(1X) | 40.7 (1)

]

19

Outline

« Part 1: Time Efficiency Optimization for Faster BERT-based Neural
Ranking
« Part 2: Space Efficiency Optimization for BERT-based Ranking _
o Document representation compression
« Part 3: Document Retrieval: Revisited
« Learned sparse representations
« Dense representations

Document Representation Compression: Why?

Online late interaction of query
and document tokens

Precomputed doc
representations

query How to efficiently
store the
document
representations?

Embedding footprint of the precomputed multi-
vector document representation is too large
ColBERT
143GB (for MS MARCO 8.8M passages)
1.6TB (for 3.2M documents)
Large random 1/O access latency and subject to
high I/0O contention
Compression reduces storage and speeds up
inference in industrial settings.
Challenges
Unsupervised compression techniques such as
product quantization achieves unsatisfactory
performance.

A Comparison with Related Embedding Compression
Techniques

Use an encoder to reduce the dimensionality. Slower ranking than ColBERT

PreTTR (MacAvaney et al., 2020)
SDR (Cohen et al., 2021)

Compress embedding storage with Locality-Sensitive Hashing. Unsupervised
BECR (Yang et al., 2022)

Vector quantization with codebooks
Product quantization (Jégou et al., 2011)

Codebook (Shu and Nakayama, 2018)
JPQ (Zhan et al., 2021)

Unsupervised, not optimized
for ranking

Ranking oriented with jointly learned compression
Doesn’'t decompose contextual signals of tokens

Contextual Quantization (Yang et al., ACL'22)
o Contextual decomposition of token representations with better compressibility
o Jointly learned compression with fast ColBERT ranking 22

Example of context-aware token codes by CQ

Each token is compressed as a vector of M codewords. Each codeword has K possible values called codebook.

Context Token codes M =4, K=4.
William Shakespeare was widely regarded as the world’s greatest writer actor poet

actor, poet, writer and dramatist. [4,4,3,1] [4,4,3,1] [1,4,3,1]

I would like to have either a cup of coffee or a good fiction coffee fiction _

to kill time.

[3.3.3.4] [3.1.3.4]

She sat on the river bank across from a series of wide,
large steps leading up a hill to the bank of America building.

15t bank 2™¢ bank
[3,1.4,2] [4,1,3,1]

Some language techniques can recognize word senses in phrases
such as a river bank and a bank building.

15t bank 2™¢ bank
[4,3,2,2] [3,1,1,4]

If you get a cold, you should drink a lot of water and get some rest.

15t get 27% get
2.2.42] [2.1.24]

’ F F = F F F

Different tokens in similar contexts have similar codes (different by 0-1 digit)

Same tokens in different contexts have different codes (3-4)

23

Each codeword is a vector of D/M values with product quantization. Uncompression yields a vector of D dimensions.

Example of quantization and online decoding

- Writer =[4,4,3]

- M =3 codebooks. Use log K bits for each code
(e.g. 2 bits for K=4)

- Given a compressed code vector with 3 codes,
what is the uncompressed embedding for
“writer”?

- Find the codeword vectors stored for code a, in
the first book, b, in the second book etc.

- Product quantization: Embedding = concatenation
of a, b; ¢

- Additive quantization: Embedding = sum of a, b,
C3

lookup

w
|

M x K x hd C,

Binary
codes
stored
for
online
use

Compression ratio for embeddings:

Each embedding has D dimensions

M codebooks and K codewords per codebook.
Log K bits space per code: logk .

Compressed space per embedding: M logK bits
Space compression ratio: 32D/(M log K)
Example: D=128, M=16, K=256 - Ratio 32.

24

Traditional method to train vector quantization

Embedding y is approximated as q(y) which is decompressed from the compressed code vector for y.

Decompression in product quantization concatenates M codeword
subvectors for each token through codeword lookup. Training finds M
coodbooks with K codewords per book, e.g. using K-means clustering

. 2
ming ov 3y 1Y —)l

ot ge Clx...xCcM

of codebooks: M
codewords per codebook: K

 The above cost function does not
optimize relevance

« Contextual Quantization: Jointly train
quantization with ColBERT based ranking
to maximize the relevance

25

Compact Token Representations with Contextual Quantization for Efficient
Document Re-ranking (Yang et al., ACL’22)

o Key techniques:
o Decomposition of contextual token representations
o Ranking oriented learning with distillation

Contextual Embedding = Doc-independent component + Doc-dependent component

e Large space
demand

[CLS] tok TOK fok tok ... (CLS] TOK [SEP!

The space of doc-independent
embeddings is limited 26

End-to-end Encoding and Decoding for
Contextual Quantization

tanh(woE(d;) + by) E(dl)
softplus(wi h; + by) Gumbel-softmax argmax lookup D/>
EF_'__]F tanh(wsyg; + bs)
— s —p —_— —_— — — . . EB —»:—»
h; Sm
M x K x hd Cnm B(d))
E(d;) & E(d:) Amk Pk
g;
| | |
ENCODER DECODER
. L i nline inference recovers rankin
Offline contextual quantization: Binary Online inferen . 9
codes contribution via embedding composition:

* Input E(t) is the token output from the last
BERT layer as contextual document

embedding.

« E(t) is the last layer of BERT applied with
[CLS] o t [SEP] as doc-independent
embedding.

stored for -
online

use

A

E (t) = tanh(w ,(E (t*) cE (£)) +b)

E(t?) : estimated doc-dependent component

E(t;) : estimated contextual embedding *’

Training Loss for Learning Codebooks and Codes

Reconstruction Luse =Y |[E(t) — E(t)[3
General codebook learning loss
Doesn’t optimize for ranking Probability of being correct
Pairwise cross-entropy (-*) LpPairwisecE = Y _(— Y. ;—q+ a- Fjlog Pj)
Ranking oriented loss |
- Same loss for training rankers Teacher difference ~ Student difference
Distillation loss LarginmSE = Y ((fgar — fqa-) — (fq,d+ _ fq’d_))2
Use the original ranking model as teacher
Minimize score discrepancy between reconstructed and original
embeddings

Codebook cold start®or warm start
Joint training ranker and codebook VS
Train ranker, freeze, then train codebook

Offline Processing and Online Ranking Pipeline

What we store
OFFLINE 4) ONLINE

fqa Ranking score

~ f
Quantization ’ﬂ 0y8 JCCOde andj / Quantization | :
[Encoder 4 | Codebooks || > Decodor Token Interaction Module
At e 1«:(t‘1),...,E(t‘n)\A : :
Ay . A
E(tl)a . aE(tn) % T — \ E(tl)7 sE(tn)
Doc-independent | \)v
Doc Ercod ! embeddings) Yi Composition
oc Encoder A Query Encoder
[Doc E jcoder \ / !
di,: "y ql
tl Y T T tn
Document d ocabulary Query
Contextual

Quantization
29

MSMARCO Passage

Model Specs. Dev. TRECDL19 TRECDL20
MRR@10 NDCG@10 NDCG@10
Retrieval choices
BM25 0.172 0.425 0.453
docTS5query 0.259 0.590 0.597
DeepCT* 0.243 0.572 -
TCT-ColBERT(v2) 0.358 - -
JPQ* 0.341 0.677 -
DeepImpact 0.328 0.695 0.628
uniCOIL 0.347 0.703 0.675
Re-ranking baselines (+BM2S5 retrieval)
BERT-base 0.349 0.682 0.655
BECR 0.323 0.682 0.655
TILDEv2* 0.333 0.676 0.686
Y o A ColBERT 0.355 0.701 0.723
N Quantization (+BM25 retrieval)
ColBERT-PQ | 0.290 (-18.3%) 0.684 (-2.3%) 0.714 (-1.2%)
ColBERT-OPQ | 0.324 (-8.7%) 0.691 (-1.4%) 0.688 (-4.8%)
ColBERT-RQ - 0.675(-3.7%) 0.696 (-3.7%)
ColBERT-LSQ - 0.664 (-5.3%) 0.656 (-9.3%)
& ColBERT-CQ | 0.352(-08%) 0.704 (+0.4%) 0.716 (-1.0%)
(+uniCOIL retrieval)
@' A ColBERT 0.369 0.692 0.701
ColBERT-CQ | 0.360 (-2.4%) 0.696 (+0.6%) 0.720 (+2.7%)

A

Uncompressed baseline

Compression baseline

Doc task Passage task
Model Space | Space Disk /O Latency MRR@10
BECR | 791G | 89.9G - 8ms 0.323
PreTTR* ~| 26T >182ms >1000ms 0.358
TILDEv2* ~| 52G - - 0.326 .
COBERT | 16T | 143G >I8ms léms 0355 =Qinfrom
ColBERT-small* | 297G | 26G - -~ 033% ranking
ColBERT-OPQ 112G | 102G - 56ms 0.3241 oriented
ColBERT-CQ training
undecomposed 112G | 10.2G - 17ms 0.339°
K=256 112G | 102G - 17ms 0.352
K=16 62G | 5.6G - 17ms 0339" Gain from
K=4 37G | 34G - 17ms 03260 contextual

decomposition

o CQ outperforms other quantization
approaches in relevance effectiveness

o Small degradation of relevance compared to
original ColBERT re-ranking.

Jointly Optimizing Query Encoder and Product Quantization to Improve
Retrieval Performance (Zhan et al., CIKM’21)

Update PQ centroid
embeddings using training

triplets and ranking loss. Key techniques:
Quey " palcier " Embedding — . Ranking oriented PQ
Runking-orientad centroid optimization.
"0 Cetkbld g h — koss - End-to-end dynamic
Y Neoatves (ISR — negative sampling.
e

Negatives are retrieved

_ N during training using the
Warmup using traditional updated query embedding
OPQ model to get the and PQ centroids.

iIndex assignment.

31

Outline

« Part 1: Time Efficiency Optimization for Faster BERT-based Neural
Ranking
« Part 2: Space Efficiency Optimization for BERT-based Ranking
o Document representation compression

o Part 3: Document Retrieval: Revisited _
« Learned sparse representations
« Dense representations

Document Retrieval: Sparse vs. Dense Representations

For a web-scale large dataset

Multi-stage search pipeline is more practical for better

efficiency

Documents

Query

For a relatively small dataset

/
N

Sparse Vector
Representation

L, | Inverted
Index

AN

Dense Vector
Representation

-

Single-stage dense retrieval with integrated ranking may
be sufficient to address vocabulary mismatching queries

and documents

Online inference

Document
retrieval

Re-ranking

Sparse Vector Representations of Documents

« Original idea: Treat a document as a bag of words with BM25 weighting

« Pros/cons: Fast retrieval but relevant documents fail to match if query words do not
appear. E.g., movie vs. film.

« Techniques to address query-document vocabulary mismatch
Document expansion
Doc2Query [Lin et al.]: append relevant tokens to documents

« Use alearned contextual score from the neural model.
DeepCT/HDCT [Dai&Callan, SIGIR20]:
Use BERT to learn term weights, replacing term frequency.
Deeplmpact [Mallia et al., SIGIR21]: Use a transformer to learn a score.
COIL/UniCOIL [Gao et al. ECIR21][Lin&Ma, arXiv21] after document expansion:

Convert ColBERT to exact token matching, assign a vector or a scalar score to each token

« Generate new vocabularies with SpladeV2 [Formal et al., SIGIR21]:
Transform token impact to a sparse vector of tokens

« Faster retrieval with a hybrid learned representation and BM25 index.
Guided traversal [Mallia et al., SIGIR22]

Sparse Retrieval Deeplmpact [Mallia et al., NYU, SIGIR21]

e Documents are expanded using the DocT5Query algorithm. DocT5Query is a TS
model trained to generate queries highly relevant to a given document.

e Impact scores encoder is constructed with 2 multilayer perceptron neural layers to
compute alearned score for each term in a document

fLearned SCOreS Impact Scores

S; S5 S3 Sy S5
.t 1 Pt
Impact Scores Encoder 2-layer neural net
1 1 T 1 1
T f ¥ 't T
Contextualized Language Model Encoder BERT
® OO ® O O O
Document terms Expansion terms

f Document

36

Sparse Retrieval with Splade/SpladeV2 [Formal et al., SIGIR21]

photo film movie
Doc d = (0, 0O, .. e, 0, 0, 0, .., 0)

splade(d)= (0, O, .., 0, 2, O, .., O, 5, 0, .., O, 3, 0, .., 0)

e FEach document is represented by a sparse vector of size |V|. Compute a
neural score for each term by projecting BERT embeddings to this vector.
o For each token in the doc, calculate its imoact on other possible tokens in

fhe vocabulary sef. wij = transform(hi)TEj +bj je{1,..|V[}

I is the token index in the doc, j is the token index in the vocabulary set.

o Summarize the weight of each token across the whole doc by adding the
impacts from other tokens in the vocabulary set, specific for this document.

wj = Z log (1 + ReLU(wjj))
i€t
e A document vector has too many non-zerose When training, add the
regularization loss to control sparsity in the cost function

N 2
1 .

_ -2 _ 1 (di)

Average number of floating-point operations tokenj . _ 1 yN w ') trLops = Z aj = Z (N ZW')

Involved in all documents in a training batch of size N N “i=1"j Jev Jjev

Sparse Retrieval: A Comparison of Different Term Scoring Methods

Dataset: MS MARCO Passage Dev __ Stats ofinverted index From Mallia ef al., SIGIR'22,
. . Model Terms Postings Avg. Query Length
o BM25 is fast with lower
. . BM25 2,660,824 266,247,718 4.5
relevance without semantic DeepCT 989.873 128.969.826 45
matching support DocT5Query 3,929,111 452,197,951 4.5
° DOCTSQU@W Improves query_ uniCOIL 27,678 587,435,995 686.3
d ! h b dd TILDEv2 27,437 809,658,361 4.9
OC maric Ing y d Iﬂg SPLADEv2 28,131 2,028,512,653 2037.8
more ferms per document ~ Deeplmpact 3,514,102 628,412,657 42
« Deeplmpact improves Model Retrieval Time to Relevance
relevance by addressing search index (ms) | (MRR@10)
vocabulary mismatching, but BM25 5.7 0.187
slower than BM25 DeepCT N/A 0.24
. Splode\{z cos’r; significantly 1L DEv) 0.7 0333
longer tfimes with more
. Deeplmpact 19.5 0.326
nonzeros Iin sparse vectors,
but the relevance is the uniColL 377 0-352
highest. SpladeV2 219.9 0.369

Neural Models for Information Retrieval: Where are we?

N\

Sparse Vector

Inverted
Index

ﬁ\ line inference

X
Document || Re-ranking
retrieval
Dense Vector
Representation / \

d

Documents 1

Sparse or Dense

Query Representation Dense retrieval

39

Dense Retrieval: Basic Computation Flow and Techniques

[Dot Product Similarity J
‘ Dense Question Vector ‘ Dense Passage Vector
A\ 4 A
: O
Question Encoder Passage Encoder -
i
G
O
' Who was the inventor of ’ | (¢
§ the compiler? Grace Hopper was
bornin...
’y

Queries and documents are encoded

into single vectors respectively.

e Time and efficiency optimization

a. Nearest Neighbor Search with Approximation
m GPU implementation: FAISS [Facebook Al,
2017]
b. Vector Compression
m Product quantization (PQ), RepCONC [Zhan
et al., WSDM22]

e Vector representations
a. Multi Vectors, e.g., ColBERT [Khattab et al.,
SIGIR20]
b. Single Vectors, e.g., TCT-CoIBERT [Lin et al.,
arXiv20], DPR [Karpukhin et al., ACL20]

e Training methods
a. Negative doc selection, e.g., DPR [Karpukhin et
al., ACL20], ANCE [Microsoft, ICLR 21]
b. Distillation, e.g., TCT-CoIBERT [Lin et al., arXiv20],
RocketQA [Qu et al., ACL21]

Dense Retrieval: Approximate Nearest Neighbor Search

e Given a query vector, return the list of document vectors

Why? Slow online dot that have the highest dot product with this query vector.
product computing with . . o
many documents e Two-level index of document vectors with quantization.

o First level: centroid of each cluster;
o second level: difference to centroid with residual

born in...

Dot Product Similarity VeCTO I'S
' — y~qy) =ay) + el -al)
Dense Question Vector { Dense Passage Vector . . .
: : e Approximate nearest neighbor search: only go into the
p > 2 clusters that are close to the query.
search scope
Question Encoder Passage Encoder
N Y ©
| 1 . r
/ Who was the inventor of | | p Y
the compiler? Lu Grace Hopper was]

e FAISS provides fast implementation and GPU support.
[Facebook, 2017. IEEE Trans. Big Data 21] 41

Dense Passage Retrieval (DPR) iarpukhin et al., Facebook, EMNLP20]

e Embedding vectors of the query and the Sim(Pa Q) = Eg (Q)TEP (P)
document are derived from the [CLS]
token.

e Each training epoch executes a set of
batches. Each batch contains fraining
instances of (question, answer) pairs

Each instance is converted as as
(question, answer, N negatives)

q1 m P12 *** M8 Strategies to chose negative passages
| — e Randomly
q12 pir P2+ pim e Use BM25 retrieval to select top non-answer results
e e Gold: Use answers for other questions
- e In-batch Gold: Use other questions from the same batch
— e In-batch Gold + 1 BM25-selected negative

dis Pn P12 *** B

42

DPR: Evaluation with Question Answer Datasets

Natural Question dataset with 59K training examples (Google queries, Wikipedia answers)
Batch size:8 to 128. 40 epochs (#passes to work through the entire training dataset)
Report mean recall@k: %queries that have an answer retrieve at top k.

Best performance: 127 in-batch negatives +1 BM25 hard negative
BM25, Top 20: 59.1 Top 100: 73.7

Type #N IB Top-5 Top-20 Top-100

Random 7 X 470 64.3 77.8
In batch BM25 7 X 500 63.3 74.8
negative very Gold 7 X 426 63.1 78.3
effective Gold 7 /511 69.1 30.8
Gold 31 v 521 70.8 82.1
Gold 127 v 558 73.0 83.1
G4+BM25(DN 31432 v/ 650 773 84.4 1 BM25 negative
G4+BM25® 31464 v 645 764 84.0 2 BM25 negatives
1
G.+BM25") 127+128 v 658 780 84.9 2 BM25 negatives
Increase batch size improve A BM25 negative also

performance boosts performance.

Dense Retrieval TCT-ColBERT [Lin et al., UWaterloo,
2020}

S(q.d) =E, - E,

\

oo i axSi axSi
AvgPool AvgPool
o
S
s =)
Query Encoder, f,, Document Encoder, f;, IS §
£]
§ Query Encoder, fQ Document Encoder, £}, E
LN Ql
Query Document §
Query Document
CoIBERT

TCT-CoIBERT

o Simplifies ColBERT structure. The embeddings of query and
documents are average pooled.

o Requires knowledge distillation from the original ColBERT
model. Teacher: Colbert. Student: TCT-Colbert

44

Dense Retrieval

More advanced training strategies

How to build positive/negative pairs
Cross-batch negatives: Use more negatives_ / il)|

from different batches In-baich
q12

Denoising hard negatives: Use a cross- —

encoder to remove low-confidence

negatives QaB M Cross-batch /m;; qn P12 | ==
. qi2 Pu || P12

Data augmentation. Use a cross-encoder \ :

to add unsupervised training examples CGRUL> || s | P P2

with high-confidence positive and negative

passages

qal

qa2

R

-l -

- ---

<GPU, >
" A

PAlL

p‘az -

PAl

PA1L

PA1L

PAl

PA2 |***

PA2 |

pu L]

45

RocketQA [Qu et al., Baidu, ACL21]

PAB

PaB

RocketQA: An Optimized Training Approach to Dense Passage
Retrieval for Open-Domain Question Answering (Qu et al., ACL'21)

o Chained training pipeline

1.
2.

Train the dual-encoder on the original dataset.

Train a cross-encoder on the original dataset. Had negatives are selected
randomly from the above dual encoder.

Tune the dual-encoder, using the cross-encoder de-noised hard negative
samplings.

Expand training data with unsupervised pseudo examples based on the
cross-encoder, and use it to further train the dual-encoder.

DL ‘ DL, ‘ DL, ‘ Dp+Dy |

[Dual-Encoder Mp(?/] Cross-Encoder M I Dual-Encoder Mp("/] [Dual-Encoder Mp(? J
1. Train a dual-encoder with 2. Train a cross-encoder 3. Train a dual-encoder by sampling 4. Train a dual-encoder with
cross-batch sampling optimized for the output hard negatives from the output data augmentation

distribution of Mp(?/ of Mp(?”) and denosied by M by Mp(?) and M,

RocketQA Performance and Ablation Studies

MSMARCO Dev Natural Questions Test
Methods PLMs MRR@10 R@50 R@1000 R@5 R@20 R@100
BM25 (anserini) (Yang et al., 2017) - 18.7 59.2 85.7 - 59.1 73.7
doc2query (Nogueira et al., 2019c¢) - 21.5 64.4 89.1 - - -
DeepCT (Dai and Callan, 2019) - 24.3 69.0 91.0 - - -
docTTTTTquery (Nogueira et al., 2019a) - 27.7 75.6 94.7 - - -
GAR (Mao et al., 2020) - - - - - 74.4 85.3
DPR (single) (Karpukhin et al., 2020) BERT} - - - - 78.4 85.4
ANCE (single) (Xiong et al., 2020) RoBERTapase 33.0 - 05.9 - 81.9 87.5
ME-BERT (Luan et al., 2020) BERT e 33.8 - - - - -
RocketQA ERNIEbase 37.0 85.5 97.9 74.0 82.7 88.5
38 —
Strategy MRR@10 o
In-batch negatives 32.39 Cross batch
Cross-batch negatives (i.e. STEP 1) 33.32 J %
Hard negatives w/o denoising 26.03 §32 |
Hard negatives w/ denoising (i.e. STEP 3) 36.38 N
Data augmentation (i.e. STEP 4) 37.02 20
28 —— i
Gain from —— XZﬁ%Q?JdnSSSﬁSZiS
denoising 26 | l | | | T T |

128 256 512 ,
The number of random negatives

1024 2048 4096 8192 16384

Training Optimization: Summary
Optimizing Training Sample Selection
How to get negatives more easily?
a. 1IN b'a't'c' h'negatives: DPR ('K'a'l"i:')'l]'k'h'i'h' etal., ACL'20) .
». Cross batch negatives and denoise: RocketQA (Qu et al., ACL'21) |
How to get hard negatives that can guide the model better?

a. Asynchronous negative sampling: ANCE (Xiong et al., ICLR’21)
Index update which is expensivel

Cross Architecture Distillation

marginMSE (Hofstatter et al., 2020) Pairwise distillation
RocketQAv2 (Ren et al., EMNLP’21) Listwise distillation
TCT-ColBERT (Lin et al., ACL-Rep4nlp’21) Distill from Dual Encoder

TAS-B (Lin et al., SIGIR’21)

Depending on negatives, distill from both cross-
encoder and dual encoder

48

Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation (Hofstatter et al., 2020)

Query Passage+ Passage - — <q, p+> <q, p>
° [

BERTcar | - BERTcar BERTcar | | BERTcar Student | | Student
I [Vot
& o I o O:
T~ k)y AT M OO
Ranknet __— Margin-MSE
€@ Teacher Training @ Teacher Inference T € student Training

Margin-MSE loss: Relevance difference between rank scores of positive and negative passages

L£(Q,P*,P7) = MSE(Ms(Q. P*) — M¢(Q, P7)| M;(Q, P*) - Mi(Q, P"))

. 7

Let the student learn the difference in the teacher’'s model 19

TREC DL Passages 2019 MSMARCO DEV .

Model Teacher
nDCG@10 MRR@10 MAP@1000 nDCG@10 MRR@10 MAP@1000 Model KD Loss nDCG@10 MRR@10 MAP@100
Baselines
BM25 - 501 689 295 241 194 202 T 417 357 361
TREC Best Re-rank [45] . 738 882 457 = = - ColBERT Weighted RankNet 417 356 360
BERTcat (6-Layer Distilled Best) [14] - 719 - - - 356 - Pointwise MSE 428 365 369
BERT-BasepoT ANCE [44] - 677 - - - 330 - Margin-MSE 431 .370 374
Teacher Models - 373 316 321
T1 BERT-Basecart - 730 .866 .455 .437 376 381 BERT Weighted RankNet 384 326 332
ALBERT-LargecaT - 738 .903 477 446 385 388 Margin-MSE 388 330 335
T2 Top-3 Ensemble - 743 889 495 .460 .399 402
Student Models - 384 326 331
_ 723 851 454 431 372 375 TK Weighted RankNet 387 328 333
DistilBERT AT T1 739 889 473 440 380 383 Pointwise MSE 394 335 340
T2 747 .891 .480 451 .391 .394 Margin-MSE .398 339 344
- 717 862 438 418 358 362
PreTT T1 748 .890 475 439 378 382]
T2 737 859 472 447 .386 .389 T1 vs T2: ensemble
- 722 874 445 417 357 361 Tegcher |eOdS '|'O STronger
ColBERT T1 738 862 472 431 370 374
T2 744 .878 478 436 .375 .379 S 1' U d en 1'
- 675 825 396 376 320 325
BERT-Basepor T1 677 809 427 378 321 327 . . .
T2 724 876 448 390 333 338 margin- MSE is effective
- 670 841 406 373 316 321
DistilBERTpoT T1 704 821 441 388 330 335 compa red TO OTher TWO
T2 712 .862 453 .391 .332 .337 dISTI| | CITiOI’] |OS ses
- 652 751 403 384 326 331
TK T1 .669 .813 414 398 339 344 o N _
T2 666 797 415 399 341 345 L(Q,P", P7) = RankNet(M;s(Q, P) — Ms(Q, P7)) *

1M (Q, P*) — M (Q,)|

50

Summary

« Time Efficiency Optimization for Faster BERT-based Neural Ranking
« Neural net simplification
« Dual-encoders with precomputed document embeddings
« CPU-friendly design with query embedding approximation
« Space Efficiency Optimization for BERT-based Ranking
o Document representation compression with dimension reduction or encoding
o Contextual embedding quantization
« Document Retrieval: Revisited

« Learned sparse representations
e Document expansion by adding more relevant terms to each document
e Use neural models to compute weights

o Dense representations
e Single or multi vector representation

e Approximation with nearest neighbor search
o Training optimization by knowledge distillation and adding more positive/negatives

