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Abstract

We introduce and analyze circuits that are the quantum mechanical generalization of classical
algebraic circuits. Using the algebraic operations of addition and multiplication, as well as the
quantum Fourier transform, such circuits are well-defined for rings Z/mZ and finite fields Fq. The
acceptance probabilities of such algebraic quantum circuits can be expressed as exponential sums
∑x exp(2πi f (x)/m) where the multivariate polynomial f is determined by the circuit, while it is
independent of the ring or field over which we interpret the circuit. Dawson et al. [Quantum Infor-
mation & Computation, 5(2), pp. 102–112 (2004)] introduced this “sum over paths” description as a
discrete version of the path integral approach of standard quantum mechanics. From this perspective,
the polynomial f should be interpreted as the “action” of a specific (classical) computational path
between the input and output of the circuit.

In this article we prove several properties of algebraic quantum circuits. Using the theory of
exponential sums, we show that in the limit of large m or q, the acceptance probabilities of a circuit
converge to zero or to one. Circuits that do not involve the multiplication operation are the algebraic
generalization of Clifford circuits and we show how their acceptance probabilities can be calculated
exactly in a classical efficient manner. For algebraic circuits that are defined over rings Z/prZ we
derive a “least action principle” that shows how the behaviour of such circuits is determined by those
computational paths whose action polynomials are extremal.

1 Introduction

Algebraic circuits are a way of modelling computation with as elementary gates the algebraic operations
of addition and multiplication, instead of the Boolean operations (AND, OR, NOT) of Boolean circuits.
The wires of such algebraic circuits are allowed to carry elements of an arbitrary ring or field and a single
circuit (just as polynomial equations like x2 = y3 +1), can thus be interpreted over different domains such
as Z/mZ, Fq or C. One of the goals of studying algebraic circuits is to determine which properties are
inherent to the circuit and independent of the specific ring or field.

Here we introduce the notion of algebraic quantum circuits that are defined over all finite rings Z/mZ
and finite fields Fq. Just as in the Boolean setting, the classical case is contained in the quantum definition.
Our definition is inspired by the analysis of Dawson et al. [5].
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2 Algebraic Quantum Circuits

2.1 Defining Algebraic Quantum Circuits

The set of algebraic gates that we will use for our model are: three phase changing gates Z(·) and the
Fourier transform F . For a ring Z/mZ the Z gates are defined by

Z1 :|x〉 7→ exp(2πix/m)|x〉, Z2 :|x,y〉 7→ exp(2πixy/m)|x,y〉, Z3 :|x,y,z〉 7→ exp(2πixyz/m)|x,y,z〉

for all x,y,z ∈ Z/mZ, while the Fourier transform of course obeys

F : |x〉 7→ 1√
m ∑

y∈Z/mZ
exp(2πixy/m)|y〉.

If, instead of the ring Z/mZ, the algebraic circuit is viewed as acting on a finite field Fpr the terms
exp(2πi(·)/m) in the above definitions are replaced by the phases exp(2πiTr(·)/p), which uses the stan-
dard trace operation Tr : Fpr → Fp with Tr : x 7→ x+ xp + xp2

+ · · ·+ xpr−1
.

With these gates it is not hard to construct circuits that implement the classical algebraic operations
of addition and multiplication. Specifically, with F and Z1 one can implement the addition-by-a-constant
operation |x〉 7→ |x+1〉; with F and Z2 one can implement general additions |x,y〉 7→ |x,x+ y〉; and with
F and Z3 general multiplication |x,y,z〉 7→ |x,y,z + xy〉 can be implemented. For this reason we call the
algebraic quantum circuits that do not use the multiplicative operation Z3 linear quantum circuits, which
are closely related to the generalized Clifford circuits of [3].

2.2 Sum-over-Paths Approach

As the following example shows, the acceptance amplitudes of an algebraic quantum circuit can be
expressed as an exponential sum over the computational paths between the input and output of the circuit.
This path-summation-approach to calculating the acceptance probabilities of quantum circuits can be
viewed as a discrete version of the path integral method of standard (continuous) quantum mechanics.

Example 1 (A Simple Case of the Path Summation Approach). Consider the following quantum circuit
of 2 wires over the ring Z/mZ with as input the zero values x = (x1,x2) = (0,0):

x1 = 0 F y1
Z2

F† z1

x2 = 0 F y2 F† z2

We want to know the amplitude of the output z = (z1,z2) ∈ (Z/mZ)2 in this setup. By multiplying the
transition amplitudes of the individual gates and by summing over all possible intermediate y = (y1,y2)∈
(Z/mZ)2 states, we see that these values can be expressed as the exponential sum

〈(z1,z2)|U |(0,0)〉= 1
p2 ∑

y∈(Z/mZ)2

exp(2πi f (y,z)/m)

with the polynomial f = y1y2−y1z1−y2z2. For this small example it is straightforward to check that the
acceptance probability is given by |〈(z1,z2)|U |(0,0)〉|2 = 1/m2 for each possible output z.
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It is not hard to see that every algebraic quantum circuit has a unique multivariate polynomial f
associated with it that captures the behaviour of the circuit. In general f will be a cubic polynomial but
for linear circuits f is only quadratic.

Definition 1 (Action Polynomial of an Algebraic Quantum Circuit). Let C be an algebraic quantum
circuit with w wires, and k Fourier transforms, assume without loss of generality that each wire caries at
least one Fourier transform and define n := k−w. The action polynomial f ∈Z[X1, . . . ,Xn] of this circuit
is the polynomial such that the acceptance amplitude AC(Z/mZ) = 〈0, . . . ,0|UC|0, . . . ,0〉 of the circuit
over the ring Z/mZ, as well as the amplitude AC(Fpr) = 〈0, . . . ,0|UC|0, . . . ,0〉 of the same circuit over
Fpr can be expressed by the normalized exponential sums

AC(Z/mZ) =
1

mk/2 ∑
x∈(Z/mZ)n

exp(2πi f (x)/m) and AC(Fpr) =
1

prk/2 ∑
x∈Fn

pr

exp(2πiTr( f (x)/p)). (1)

where the multivariate polynomial determined by the algebraic circuit C, while it is independent of m.

With the prime power factorization m = pr1
1 · · · prs

s one has the multiplicative relation |AC(Z/mZ)|=
|AC(Z/pr1

1 Z)| · · · |AC(Z/prs
s Z)| for the norm of the amplitude. As we are ultimately interested in the

acceptance probability |A|2, it will be sufficient to focus on the amplitudes of circuits defined over rings
Z/prZ.

2.3 Basic Properties of Algebraic Quantum Circuits

2.3.1 Singularity of Action Polynomials

By the fact that the algebraic circuits are unitary it follows that the action polynomials f must be such
that |AC| ≤ 1 for all rings Z/mZ and finite fields Fpr . From the work of Deligne et al. on exponential sums
we know that if f is non-singular, then we have the general bound |A(Fpr)| ≤ (deg( f )− 1)n pr(n−k)/2 =
(deg( f )−1)n p−rw. For a fixed circuit (hence with deg( f ), n = k−w and w > 0) this Weil-Deligne bound
suggests acceptance amplitudes that will always converge to 0 as pr grows, contradicting what is possible
with algebraic quantum circuits. The conclusion therefore is that, in general, the action polynomial f of
a circuit can not be assumed to be non-singular. Here is an example of this crucial singularity of f .

Example 2 (A Singular Action Polynomial). Consider a single wire with an even number k ≥ 2 of
Fourier transformations such that n = k− 1. For all Z/mZ and Fpr , the acceptance amplitude AC has
unit norm in this case and the action polynomial is the quadratic expression f (x1, . . . ,xk−1) = x1x2 +
x2x3 + · · ·+ xk−2xk−1. The relevant exponential sum for this circuit is given by (for finite fields)

∑
x∈Fk−1

pr

exp(2πiTr( f (x))/p) =±
√

prk,

whereas a Weil-like bound would give an upper bound of prn/2 =
√

prk/
√

pr on the norm.
The singular points of f are given by the equations ∂ f /∂x1 = · · ·∂ f /∂xk−1 = 0, which gives the set of

solutions x2 = x1 + x3 = x2 + x4 = cdots = xk−3 + xk−1 = xk−2 = 0. In other words these singular points
form the straight line x2 = x4 = · · · = xk−2 = 0 and x1 = −x3 = x5 = · · · = ±xk−1 (where the ± sign is
determined by whether or not k is divisible by 4).
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There is a good reason why the singular points of f deserve our attention. As the name suggests,
in many ways the polynomial f can be viewed as expressing the action of the circuit taking the path x
from the input |0, . . . ,0〉 to the output |0, . . . ,0〉. The least action principle from physics thus suggests
that the evolution of the circuit is dominated by the paths x that correspond to the singularities of f with
∂ f
∂X1

= · · · = ∂ f
∂Xn

= 0. We show that this does indeed seem to be the case, although, given the discrete
nature of Z/prZ, this does not make any obvious sense.

For linear quantum circuits the set S = {x : ∂ f /∂X1(x) = · · ·= ∂ f /∂Xn(x) = 0} of singular points of
f is determined by n linear equations in X1, . . . ,Xn. Using standard techniques from algebraic geometry
[4] and the theory of Gauss sums [1] we show in Section 4 that the magnitude |A| is determined exactly
by the dimension of S.

For general circuits defined over Z/prZ with r > 1 we show in Section 5, using more advanced
techniques such as those of [9], that the amplitude A is again almost completely determined by the
singular points of the action polynomial f , while the non-singular points are less and less significant as
the size of the rings grows.

First we start by proving the basic property that the acceptance probability of an algebraic quantum
circuit over a finite field Fq converges to a “zero or one probability” in the limit of large q.

3 Algebraic Quantum Circuits in the Limit of Large Fields Fpr

Consider an algebraic quantum circuit with action polynomial over a finite field Fpr . We want to know
what we can say about the acceptance amplitude AC in the limit of large pr. If we fix the base field Fp

and let r grow, we know through the work of Deligne that there exists finite sets {αi ∈ C : 1 ≤ i ≤ mα}
and {βi ∈ C : 1≤ i≤ mβ} of complex roots such that for all r ∈ {0,1,2, . . .} we have

√
prk ·AC(Fpr) = ∑

xFn
pr

exp(2πiTr( f (x))) =
mα

∑
i=1

α
r
i −

mβ

∑
i=1

β
r
i . (2)

Furthermore we also know that these roots have integer weights vi,wi ∈ N such that |αi| = pvi/2 and
|βi| = pwi/2 for all i. If two roots αi,β j are equal they will always cancel each other in the above sum,
making them “ineffective”. For the moment we will only deal with the effective sets of roots, i.e. αi 6= β j

for all i, j. Using the unitarity of quantum circuits we can prove the following upper bound on the
weights.

Lemma 1. Let C be an algebraic quantum circuit with k Fourier transforms. For a fixed prime p,
define the complex roots αi,βi as expressed in Equation 2 for the acceptance amplitudes of the circuit
over the finite fields Fpr . By the unitarity of C it follows that the weights vi := 2log |αi|/ log p and
wi := 2log |βi|/ log p are upper bounded by vi,wi ≤ k. More specifically, there is either one root with
weight k, or all roots have weight less than or equal to k−1.

Proof. In the limit r→ ∞, the sum 2 will be dominated by the roots with the largest weights, which we
will denoted by wmax. As pointed out in the proof of Theorem 3 in [2], if there are m such weights, then
for arbitrary small ε > 0, there will be an r such that |∑i αr

i −∑i βr
i |> (

√
m−ε)prwmax/2. By the unitarity

of C it follows that at the same time this norm cannot be bigger than prk/2 for any r, hence we have either
m = 1 and wmax = k or wmax ≤ k−1.
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The two cases described in the previous lemma completely determine the relevant behaviour of the
amplitude AC in the limit of large r. Moreover, the case can be decided using a polynomial size quantum
circuit. This is our main theorem regarding algebraic quantum circuits over finite fields Fpr .

Theorem 1. Let C be an algebraic circuit. For a fixed prime p, the limr→∞ |AC(Fpr)|2 equals either 0 or
1. There exists a probabilistic quantum algorithm that decides which is the case in time poly(|C|, log p).

Proof. By Lemma 1 it follows that there is either one root with weight k, or all roots have weight no
more than k− 1. We have deg f ≤ 3 and Bombieri showed [2] that, in this setting, the total number of
roots is upper bounded by mα +mβ ≤ 17n. For the two cases we thus have

|AC(Fpr)|=

{
≥ 1−17n p−r/2 if limr→∞ |AC(Fpr)|= 1
≤ 17n p−r//2 if limr→∞ |AC(Fpr)|= 0.

(3)

Hence for log(pr) = Θ(n) we have a constant gap between the two probability amplitudes for the two
cases. By implementing the algebraic quantum circuit over a field Fpr with log(pr) = O(n) sufficiently
big, the decision between the two cases can be made with success rate at least 2/3.

3.1 Algebraic quantum circuits in the limit of large base fields

The previous results shows that for fixed p, the probability |A2
C| converges to either 0 or 1 as r→ ∞, but

what can we say about the limit p→ ∞? Using a result by Katz [8] the following result is immediate.

Corollary 1. For every algebraic quantum circuit C there exists a unique limit b = 0 or b = 1 such that
for all r we have limp→∞ |A2

C(Fpr)|= b.

Proof. Let f be the action polynomial of the circuit C with k Fourier transforms. In [8, Corollaire 3, p.
95] it is shown that for sufficiently large primes p, the multiset (v1, . . . ,w1, . . .) of the weights of the roots
in Equation 2 is independent of p. If the maximum of the multiset equals k, then limq→∞ |A2

C(Fq)| = 1,
while if all weights are k− 1 or less, then this limit equals 0. (The cited result allows the multiset to
contain roots that cancel each other, but as there can only be one root with weight k this does not effect
the proof here.)

Unlike the result in Theorem 1 with its bound “log(pr) = Θ(n)”, we do not know of any similar
bound on p: it is likely a hard open problem to give an explicit expression for what makes p “sufficiently
large”.

4 Linear Algebraic Quantum Circuits

If the algebraic quantum circuit C does not use the fan 3 gate |x,y,z〉 7→ exp(2πixyz/m)|x,y,z〉, the cor-
responding action polynomial f will be a quadratic function, making it much easier to analyze the ex-
ponential sum of AC. This reduction in the complexity of the circuit corresponds to the fact that such
generalized Clifford circuits can be simulated efficiently on a classical computer. [3]

Theorem 2. Let C be a linear algebraic quantum circuit, i.e. a circuit that does not use the Z3 gate. The
acceptance amplitude AC(Fpr) can be calculated exactly and classically in time poly(log(pr), |C|)
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Proof. (Sketch.) The action polynomial f ∈ Z[X1, . . . ,Xn] of this circuit will be quadratic polynomial.
The relevant exponential sum is invariant under Fp-linear transformations of x∈Fn

pr , hence after a suitable
sequence of operations, we have

AC(Fpr) =
1

prk/2 ∑
y∈Fn

pr

exp(2πiTr(g(y))/p) (4)

with g(Y1, . . . ,Yn) = ∑
n
i=1 aiY 2

i +biYi. As a result, the exponential sum can be calculated using the product

AC(Fpr) =
1

prk/2

n

∏
i=1

∑
yi∈Fpr

exp(2πiTr(aiy2
i +biyi)/p). (5)

For each i, the summation over yi can be calculated exactly and efficiently: If ai 6= 0, the sum is a
quadratic Gauss sum with norm

√
pr and a phase ∈ {1,−1, i,−i} that follows directly from (pr,ai,bi); if

ai = 0 and bi 6= 0 then the sum equals 0; and if both ai = 0 and bi = 0, then the sum equals pr. The total
exponential sum is simply the product of these terms.

Note that the acceptance probability |A2
C(Fpr)| is especially easy to compute. If g has a non-zero

linear term (an i with ai = 0 and bi 6= 0), then |A2
C(Fpr) = 0; otherwise we have |A2

C(Fpr)| = p−re where
the exponent e equals k + q− 2n with q the number of quadratic terms in g. This exponent can also be
expressed as a function of the dimension of the linear space of the singular points of g. Defining the set
of singular points of g by S = {y ∈ Fn

pr : ∂g/∂Y1(y) = · · ·= ∂g/∂Yn(y) = 0}, we have that S = ∅ if g has
a non-zero linear term, and otherwise S is a linear space of dimension n− q. As the dimension of S is
invariant under linear transformations, the same result holds for the singular space of the original action
polynomial f .

Corollary 2. Let C be a linear algebraic quantum circuit with w wires and with quadratic action poly-
nomial f ∈ Z[X1, . . . ,Xn]. We have for the acceptance probability |A2

C(Fpr)|= p−re with e = w−dim(S),
where S is the space {x ∈ Fn

pr : ∂ f /∂X1(x) = · · ·= ∂ f /∂Xn(x) = 0} of singular points of f and we define
dim(∅) :=−∞.

The earlier Example 2 is an instance with w = 1 and dim(S) = 1, such that e = 0 and hence indeed
|A2

C(Fpr)|= 1. We conjecture that a similar result holds in the limit of large fields or all algebraic quantum
circuits, not just the linear ones.

Conjecture 1. Let C be an algebraic quantum circuit with w wires and action polynomial f ∈Z[X1, . . . ,Xn].
With dim(Sing( f )) the dimension of the variety of the singular points of f , we conjecture the following
convergence of the acceptance probability in the limit of large fields:

lim
q→∞
|A2

C(Fq)|=

{
1 if dim(Sing( f )) = w
0 otherwise.

(6)

5 Principle of Least Action for Algebraic Quantum Circuits over Z/prZ

If we want to consider algebraic quantum circuits over rings, we have deal with exponential sums over
Z/prZ, which are less well understood than those over finite fields. The following result shows however
that the role of the singular points of f does again play an important role.
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Lemma 2. Let C be an algebraic quantum circuit with k Fourier transforms and action polynomial
f ∈ Z[X1, . . . ,Xn]. For a fixed prime p and r ≥ 2 and integer 1≤ j ≤ r/2 we have the equality

AC(Z/prZ) =
1

prk/2 ∑
x∈(Z/prZ)n

exp(2πi f (x)/pr) =
1

prk/2 ∑
x∈S(r, j)( f )

exp(2πi f (x)/pr) (7)

where S(r, j)( f ) is the set of “approximate singular points” in (Z/prZ)n:

S(r, j)( f ) := {x ∈ (Z/prZ)n : ∂ f /∂X1(x) = · · ·= ∂ f /∂Xn(x) = 0 mod p j}. (8)

Proof. This proof uses a standard technique, which we learned from [11]. Define E = pr− j such that
E2 = 0 modulo pr. It is not hard to see that for all x,y ∈ (Z/prZ)n the following linear expansion in E
holds:

f (x+ yE) = f (x)+E(∇ f )x · y (9)

with (∇ f )x is the n-dimensional function (∂ f /∂X1, . . . ,∂ f /∂Xn) at the point x. Hence for the exponential
sum we have

∑
x∈(Z/prZ)n

exp(2πi f (x)/pr) =
1
pr ∑

x,y∈(Z/prZ)n

exp(2πi f (x+Ey)/pr) (10)

=
1
pr ∑

x∈(Z/prZ)n

exp(2πi f (x)/pr) ∑
y∈(Z/prZ)n

exp(2πi((∇ f )x · y)/p j) (11)

The summation over y will be zero, unless x is such that we have E(∇ f )x = (0, . . . ,0) mod p j in which
case ∑y() = pr, which proves the lemma.

The above result is somewhat unsatisfactory as it involves the “approximate singular points”, which
in turn depend on the integer j. It is tempting to expect that in the limit r→ ∞ the right-hand side of
above lemma converges into a summation over the singular points of f defined over the p-adic points
x ∈ Zn

p. Such a result does indeed hold provided that we can apply Hensel’s Lemma (see for example
[7]) to the solutions of the equations ∇ f = 0. We conjecture that for a given circuit C this Lemma does
indeed apply except for a finite number of exceptional primes p.
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