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“ ... Many errors have been made in the world which today, it seems,
even a child would not have made. How many crooked, outesftly,
narrow, impassable, and devious paths has humanity chogée attempt
to attain eternal truth, while before it the straight roadylapen, like the
road leading to a magnificent building destined to becomeyalrpalace.
It is wider and more resplendent than all the other paths)dyas it does
in the full glare of the sun and lit up by many lights at nighit men have
streamed past it in blind darkness. And how many times even gtided
by understanding that has descended upon them from heasea,they
still managed to swerve away from it and go astray, have meaagthe
broad light of day to get into the impassable out-of-the-wkaces again,
have managed again to throw a blinding mist over each othsyrés and,
running after will-o’-the-wisps, have managed to reach bmmk of the
precipice only to ask themselves afterwards with horrorh&té is the way
out? Where is the road?’ The present generation sees evegyttearly,
it is amazed at the errors and laughs at the folly of its anmestunaware
that this chronicle is shot through with heavenly fires, teegry letter in
it cries out aloud to them, that from everywhere, from evergction an
accusing finger is pointed at it, at the present generatiast;the present
generation laughs and proudly and self-confidently entera series of
fresh errors at which their descendants will laugh agaireladn”

from “Dead Souls” by Nikolai Gogol
(translated by David Magarshack)
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Chapter 1

Theory of Quantum Mechanics

This chapter contains a standard introduction to quantum information theory.

Topics that will be discussed are: the Hilbert space formabBm for quantum states,
unitary transformations and the probability rules for measurement outcomes.
Also the theory of mixed states, density matrices and comptely positive oper-
ators is discussed.

1.1 Modeling Information

The term ‘bit’ stands for ‘binary digit’, which reflects thadt that it can be described
and implemented by a two-level system. Conventionallyséttevo levels are indicated
by the labels “zero” and “one”, or0” and “1”. If we want to capture more than two
possibilities, more bits are needed: witlbits we have* different labels.

The abstraction fronk two-level systems to the sb, 1}* of size2* takes us away
from the physical details of the implementation of a piecengimory in a computer,
and instead focuses on a more mathematical descriptioriayfmation. This ‘physics
independent’ approach to standard information theory lees lextremely successful
in the past decades: it enables a general understandingnpfutational and commu-
nicational processes that is applicable to all the diffevesys of implementing these
processes. It is for this reason that the Turing machine hadad®mputation gives an
accurate description of both the mechanical computer sigddoy Charles Babbage
and the latest Silicon based Pentium IV processors, degiteobvious physical dif-
ferences. This does not mean that Turing’s model ignoreghigsical reality of build-
ing a computer, on the contrary. The observation that it el unphysical to assume
an infinite or unbounded precision in the components of a caenps expressed by
Turing’s rule that per time-step only a fixed, finite amountomputational work can
be done.[99] The proper analysis of algorithms in the thedrgomputational com-
plexity relies critically on the exclusion of computatidmaodels that are not realistic.
Such models often give the wrong impression that certainptioated tasks are easy.
(A good example of this is the result that the factorizatibmetegers can be done in

1



2 Chapter 1. Theory of Quantum Mechanics

polynomial time if we assume that addition, multiplicatiand division of arbitrary

big numbers can be done in constant time. (See Chapter £%etcise 40 in [63]

and [88].) There is, however, also a danger with this axiaaton of the physical

assumptions in information theory: believing that the agstions are true. This is
what happened with the traditional view on information;giaiten were the implicit

classical assumptions that ignore the possibilities ohtjua mechanics. The real-
ization that quantum physics describes a world where indtion behaves differently
than in classical theory led to the blossoming of severaldielquantum information,
guantum computing, quantum communication, et cetera. itnttiesis we will focus

on the differences in query complexity between classicdlaguantum computation
(Chapters 3-5), the possibility of ‘self-testing’ a quantaomputer (Chapter 6) and
a definition of quantum Kolmogorov complexity (Chapter 7)ef@&e doing so, it is

necessary to define what we mean by quantum information anguation.

1.2 Quantum Information

At the heart of quantum mechanical information theory lresstuperposition principle.
Where a classical bit is either in the state “zero” or “onefjuantum bit is allowed to
be in a superposition of the two states. A qubit with the Iagbisltherefore described
in Dirac’s bra-ket notation by the linear combination:

“zero”) + 3

l9) = «a “one”),

where for the complex valued amplitudas § € C, the normalization restriction
la|? + |3]* = 1 applies. Heréa| denotes th@ormof a: if a = a + bi, then|a| :=
Va? + b%. Alternatively we can writéa| := v/aa*, wherea* is thecomplex conjugate

a — bi of the complex valuer = a + bi. In this formalism, the state space of a single
qubit is built up by the unit vectors in the two-dimensionalbdrt spacet,. Fork
qubits, there aré* basis states and hence the corresponding superpositidmeaa
combination of alR* possible strings of bits:

i aqw) = Z o).

i€{0,1}*

Againitis required that the amplitudesobey the normalization conditiof:, |«;|* =

1. (In Section 1.4 we will see the reason behind this stipoita}i The state space of
k qubits is thek-fold tensor product of the state space of a single qubits $pace is
identical with a singl@*-dimensional Hilbert space:

g1 qr) € Ho® @ Ho= Hon.

For our purposes we will only use finite sets of quantum bisthere is no need to
look at infinite-dimensional Hilbert spaces.
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1.3 Time Evolution of Quantum Bits

Quantum mechanics only allows transformations of statasate linear and respect
the normalization restriction. When acting onaaimensional Hilbert space, these
are then x n complex valued rotation matrices that are norm presending:unitary
matrices ofU(n). It is easy to show that this corresponds exactly to the reqment
that the inverse ol is the conjugate transposg of the matrix.

The effect of a unitary transformatidih on a stater is exactly described by the
corresponding rotation of the vector) in the appropriate Hilbert space. For this
reason, U” stands both for the quantum mechanical transformationelkas for the
unitary rotation:

U(z)) = Ulz) = U (Zam’)) = ZaiUﬁ) = ZaiZUjiU),

whereU;; denotes the matrix element 6f positioned at thg-th row and thei-th
column. It follows from the associativity of matrix multipation that the effect of two
consecutive transformatidn andW is the same as the single transformatioin- U).
Just as matrix multiplication does not commute, so does termf a sequence of
unitary transformations matter: in genebal # UW. We can restate this in a more
intuitive way by saying that it makes a difference if we firstld and thenlV, or the
other way around. A typical example of this phenomenon ismiyy the matrices

W:<(1]_01> and U:<(1)(1)), (1.2)

with clearlyWU # UW.

1.4 Measurements

When measuring the stafe) = > . «;|i), the probability of observing the outcome
“i" equals|c;|?. This explains the normalization restriction on the anuolés: the
different probabilities have to add up to one. But what dyasta ‘measurement’ and
an ‘observation’, and how do we describe this mathemagiealhese are thorny issues
that this thesis will leave untouched. Here we will only givieormal description of the
measurement process and a short explanation of why thislsssproblematic part of
guantum mechanics.

The possible outcomesg™of z correspond to a set of orthogonal vectfjrs,;) } of
the measuring device. This device can be our own eye or somaeckimachine, but
the crucial point is that ‘measuring implies ‘interacting withx’. The effect onz of
such a measurement is that the stai#apsesaccording to the outcoment;” of our
observation. This is described by the transformation:

;i — 7). 1.2
ZZ.: [ outcomem; g (1.2)
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The above described collapse is a non-unitary transfoomaihis is typical when we
try to describe the behavior of as it interacts with a system that lies outside of the
state. (We say that is an ‘open system’.) When we viewand the measurement de-
vicetogetherduring the observation, the evolution becomes unitaryragaur current
example is then described by the transformation:

> " aili) ® [measurement devige — » _ ay]i)|outcomen;).

) 1

The problem with this last description is that it no longegdfies the specific outcome
“+” that we seem to observe. It is here where the debate om#zsurement problem
starts and our discussion ends.

For the purposes of this thesis it is more convenient to useeitminology of the
collapsing quantum state. We will therefore describe thecebf a measurement as in
Equation 1.2 for practical reasons. (This does not imply the author really thinks
that there is such a collapse, but these issues are outsidedpe of this text. They
concern the interpretation of quantum mechanics, whictregevant for the purposes
of this thesis.)

We just described the traditional ‘Von Neumann measuremdmtre we observe
the stater in a canonical basis spanned by the basis vectoSther, more subtle,
measurement procedures are also possible by choosing anamer-complete basis.
We will postpone the description of these two options to thiefpwhen we discuss the
density matrix formalism, which is more suitable for the gexi theory of interacting
guantum mechanical systems.

1.5 Limitations of Dirac’s Notation

The braket notation that we discussed above is tailor-mad@é description of closed
guantum mechanical systems. By this we mean the evolutistabés that do not
interact with an exterior environment. When we also wantaiestder the behavior of
open systems, the ket-notation becomes less suitable wBSiglready obvious in the
discussion of the measurement procedure where we had toexpea set of unitary

operations with a probabilistic procedure that ‘collapses quantum state to one of
the basis states. One cannot help but feel uncomfortablet s sudden change of
rules: is it not possible to deal with open and closed quargystems in the same
way? Luckily, we find in the formalism of density matrices aspwe answer to this

guestion.

1.6 Density Matrices

An n-dimensional pure state can be expressed as a normalized ve¢tdrin the
Hilbert spacet,,. The complex conjugate)* of this vector is the bréz|, which is an
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element of the adjoint spa@é¢’. By taking the direct product between the ket and
the bra(z|, we thus obtain am x n complex valued, Hermitian matrix: ttaensity
matrix of z.

As an example, for the state) = . «;|i), the density matrix is:

2)(a] = (Zam) (Za;<j|> = Y aallil

In the case of a single qubit with the ket descriptign= «/|0) + 5|1), this leads to the
2 x 2 matrix in the standard basis

_ |l ap
|Q><q| - [ Oé*ﬁ |5|2 :| .

From now on, the density matrix of the statevill be denoted by the same symbol
x, and the fact that a matrix is a density matrix will be indezhby its square brackets.

The great advantage of this formalism is that it also allomesdescription of an
ensemblef pure quantum states. If we have such a spat@hich is a probabilistic
mixture of the pure statds;) with probabilitiesp;, then the matrix is the weighted
linear combination of the corresponding pure states nesyic

P = Zpt'|$t><33t|,
t

with p, > 0 and) , p, = 1.

Every density matrix that can be written as such a convex auatibn of pure
states is a legal, or ‘allowed’, state, where allowed medaowed by the laws of
guantum physics”. It follows from linear algebra that théstriction coincides with
the requirement that the matrix is a Hermitian, positive igierfimite matrix with unit
trace.

The spectral decompositionf a proper density matriyx is done in terms of its
eigenvalues\; and eigenvectorsy,), by the equality

This shows that we can interprets the mixturg (A, |w;))}:, where the states, are
pure and mutually orthogonal.

The above decomposition gives a convenient way of assigaingxture to a
given density matrix. It is important to realize, howevératta density matrix cor-
responds to a whole family of possible mixtures. Take, faregle, the ensembles
{(3,10)), (3, [1))} and{(, Z5(]0) + 1)), (3, %5([0) — [1)))}, which have the same
density matrix:

Ifro] 1700] _
210 0] 2[00 1] ~

N —
= O
| +
B | DD [ =

1
2
0

N [N | —
+
N [N | —
_
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We shall see that this implies that these two mixtures aristimguishable from each
other; it is therefore more accurate and less confusing gider them as equivalent
mixtures.

The density matrix of gubit p in the standard basis is always of the form

pp,a) = {p o }

a 1—p

with the probabilityp betweer) and1 and the ‘off-diagonal termla|? < p(1 — p). If
la|> = p(1 —p) thenp is a pure state wittp) = ,/p|0) + %H) (or|p) = 1) if p = 0);
otherwise the qubip corresponds to a mixture.

1.7 Separated Systems

We need the formalism of density matrices to be able to desche evolution of
an open system. By ‘open’ we mean that there is a possibleastten between the
guantum mechanical state and its environment. An exampseidi a situation was
already mentioned when we saw how a qubit changed into a pildte mixture
after it interacted with a measurement device outside tlé gystem. An important
operation in this context is the ‘tracing out’ operationttti@scribes how we can ignore
a part of a quantum system.

Definition 1 (Partial trace) Let H.p be the combination of the two Hilbert spaces
M4 andH g, with the respective basd$a;)} and{|b;)}. The partial tracetry of a
Statep in H 45 is defined by

trp(p) = Z(bj|PAB|bj>a

J

where(z|p|ly) expresses the inner product of the row vectdr the matrixp and the
column vectoty).

When we are dealing with a general stat@nd we want to describe its content for
the subsysterft 4, we indicate this by the notatiop*” Hence in terms of the above
definition we would writep? := trz(pA?). Conversely, we also hayé := tr,(p?).

1.8 Von Neumann Entropy and Fidelity

The eigenvalues; of a density matrix are always nonnegative and sum up to éme |
decompose a mixture into a linear combination of orthogpoaé states, then thés
will correspond to the probabilities of the respective eigetors. (See Equation 1.3.)
Although the eigenvectors of a density matrix are not alwaysjue, its eigenvalues
are. This allows us to unambiguously define Yo Neumann entropy(p) of a state,
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which reflects how ‘mixed’ or random is. As a result, pure states will have zero
entropy.

Definition 2 (Von Neumann entropy) The Von Neumann entropy of a mixed state
is defined as

S(p) = 8 (sz|¢z><¢z|) = —Zpilogpi,

where) . p;|¢;){¢:| is a spectral decomposition piin its eigenvectors.

If we understand the logarithm of the matpxto be the standard Taylor expansion:
(p—1)—3(p—1)*+ 3(p— I)* — - - -, then the above definition can also be written
asS(p) := —tr(plog, p). It should be clear that the Von Neumann entropy equals the
Shannon entropy of the eigenvalues of the density matrix

A source€ = {(p;,p;)} has an associated Von Neumann entrsipy) of the av-
erage state = > . p;p;. Schumacher’s noiseless coding theorem [83] shows how to
obtain an encoding with average letter-lengttp) for a source of pure states, where
the fidelity of the encoding goes tas the number of letters emitted by the source goes
to infinity. (A survey can be found in Preskill’'s lecture n®{&8, page 190], Nielsen’s
thesis [73, Chapter 7], or the standard book by Nielsen anch@in[74].)

How close two mixed states and o are, can be expressed by the fidelity be-
tween the two density matrices. This notion generalizesrther product between
two Hilbert space vectors for pure states. The mairnepresents a pure state if and
only if p> = p, in which case we can also sgyp = p. In general, thsquare rootf a
mixed state is defined by

Vo = D miledal = 3 Vmloan sl

We will use this root in the following definition.

Definition 3 (Fidelity) The fidelityF(,b)etween two density matricesando is de-
fined by

F(p,0) = tr( \/ﬁ-a-\/ﬁ>. (1.4)

For pure state$ andy), the above definition coincides again with the familigry)|
(although some authors use the square of this valu&) gfc) = 1, thenp = o, and
vice versa.
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1.9 Operations on Mixed States

A unitary transformatior/ maps the pure stafe) to the new pure stat€|z). The
latter can be written as the density matlixe) (z|U*. In the language of density matri-
ces, the corresponding transformationis therefore calculated by ‘sandwiching’ the
matrix x between/ and its conjugaté’*:

U (|z)(x]) = Ulz){|U".

If we have a mixed state thenU acts linearly on the eigenvectorsofThe following
equation shows us that this calculation can be done withaunhh to decomposg,
and that our sandwich expression therefore also holds feedrstates:

U(p = U (Z )\t|wt)<wt|)
= D N U (lwiwil)
= > Ul U

= U <Z A - |wt><wt|> U*

= U-p-U".

It is clear that the positive eigenvaluas of p remain unchanged, and th&t only
rotates the eigenvectofs;) to the new eigenstatésw;).

Unitary operations are an example of completely-positrage preserving maps:
every positive semidefinite matrix is mapped to (anothesjtp@ semidefinite matrix,
and the trace of the matrix remains unaltered. Completéios in combination
with the preservation of the trace, assures us that theti@saltransformation will be
a proper state if we started with a proper one.

Besides the unitary functions, there are other transfaomathat are possible in
guantum mechanics. Just as mixed states are composed ctaie® so can a positive
map be a linear combination of matrix multiplications senilo the ones we discussed
above. An example of such a non-unitary mapping is the mappincorresponding
to a measurement of a qubit in the standard bsi$}. This function consists of two
‘projectors’ Py, = |0)(0| and P, = |1)(1] that transform a qubit into a probabilistic
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mixture of the state8 and1. Explicitly:

o) = 2([707,))
- m([o )00 )
SRS
B [8 12?]'

We see that the eigenvalues of the new density matriy ared1 — p with the corre-
sponding eigenvectoi§) (0| and|1)(1|. In general, the eigenvalues pfwill change
under this transformation and hence there is no unitaryadjperthat can establish the
above mapping. In the next section we will give a formal digsiom of all transforma-
tions, such as the abov®, that are allowed by quantum physics.

1.10 Operator Sum Representation

The following requirements for an operatbrare necessary and sufficient fBrto be
a proper quantum mechanical transformation:

1. The mappingE can be written as a set of matricgg, }; with which it maps a
statep to the linear combinatiod . E; - p - E.

2. The set of operator§E; } has to obey the identity restriction, E; - E; = 1.
(Note the change of order @& and E* in the multiplication.)

These two requirements exactly describe the sebaofpletely-positive, trace preserv-
ing maps. Complete-positivity means that we require bdthas well its trivial ex-
tensionsE ® I to higher dimensions to be positive. This is a stronger daydihan
positivity. An example of a positive but not completely-fivge map is the partial
transposé’, which is defined by'(p) = p’.

We have properly extended the set of unitary transformama measurements by
the above ‘operator sum’ formalism. An example of this isiegpping that erases a
gubit and replaces it with the value zero. This non-unitaryction is the combination

of two operators
10 0 1
2= {(o0)(00))
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and has the same effect on every qubmamely

o = a((2 1)
= (o) 10
(00) (8% ](8

; Li08]+[10p8]

We previously argued that a measurement has a non-unit@st e a state be-
cause we ignored its interaction with an outside systenm(gg@surement device). This
lesson holds for all allowed transformations:

Every completely-positive, trace preserving transfoioraE of a system
‘H 4 can be viewed as a part of unitary mappibf: on a bigger system
Ha® Hp. ThatE by itself appears to be non-unitary is due to the fact
that we ignore the spact p.

It can be shown that for the extension of the system it is seffido assume that the
dimension of the appended spa&gg is twice as large as that @f 4, and that its initial
state is|0 - - - 0). Hence, for every allowed quantum mechanical transfolondi that
acts on am-dimensional system, there exists a unitary matfixe U(n?) such that

E(x) = trp |[Up(z @107 ---07)(0"---07))U}]

for all z. This is, in more general terms, the difference that we entayad between
the Equations 1.2 and 1.3. The non-unitary ‘collapse’ aased with an observation,
or any other kind of interaction, is again a unitary transfation when we incorporate
the measurement device into the description of the event.

The converse of the earlier statement also holds: every mgpipat can be writ-
ten as a traced-out, unitary transformation on a largerdtilbpace is a completely-
positive, trace preserving mapping.

In the literature on quantum information theory the lineandtions on density
matrices are sometimes called ‘super operators’. We thuestha following definition.

Definition 4 (Completely positive super operator/CPSO)A transformationE is a
completely positive super operatar, CPSO,if only if E is linear, trace-preserving,
and completely positive.

The reader is referred to the standard book by Asher Pelesifie article by Ben-
jamin Schumacher[84] for a more extended and rigorousnreat of this ‘operator
sum representation’.



Chapter 2
Quantum Information and Computation

In the previous chapter we described the foundations of quatum information and
the quantum mechanical transformations that are possible wh it. The central
idea of computational complexity theory is to assign diffeent ‘costs’ to different
operations. Typically, a fixed set of elementary operationss used to construct
all other transformations. The computational cost is then &pressed as the min-
imal number of elementary operations that is necessary to ésblish the desired
transformation.

2.1 Some Elementary Operations

In quantum computing and communication we look at the pdggab of transforming
information as is allowed by the laws of quantum mechanics.udually decompose
such quantum algorithms in a series of small elementarysstegi consist of one and
two qubit operations. The following elementary unitaryegaill be used throughout
the rest of the thesis.

Definition 5 (Some elementary quantum gates) The Not gateThis is the gate that
we know in classical computation with the additional ch&gstic that it re-
spects the superposition of a qubit:

Not(al0) + 1)) = pl0) +all).
Phase Flip: TheFlip gate changes the phase of a qubit conditional on its value:
Flip(a|0) + 5[1)) = a[0) = 5]1).

Phase Rotation: A more general phase rotation is provided by Hiase operation,
which has a free parametérthat determines the angle of the phase change:

Phasey(a|0) + 8]1)) = «l0) + e“j|1).
(Note:Flip = Phase,.)

11
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Hadamard transform: This transformatiol maps the zero and one state to the fol-
lowing superpositions of the two basis states:

HI0) = #(0)+[1)) and HI1) = _5(|0)—[1)).
The Hadamard is its own inversg= 1).

General Rotation: The general rotatioR. with angles, 6, ¢ is the unitary one qubit

transformation with eigenvectos) = cos(£)|0) + €?sin(4)[1) and|y*) =
sin(4)]0) — e cos(£)|1). The corresponding eigenvalues are indicated by the

equalities

Ra,9,¢|w> = |¢> and Ra,9,¢|1/)L> — eioz|1/)L>7
and are therefore ande'®.

Controlled-Not: The controlled-not is a two-qubit operation that appliesNht gate
to the target bit if the control bit equald”; otherwise it leaves the target un-
changed:

CNotlz,y) = |z,y@ ),
forall z,y € {0,1}.

Controlled-Flip: The controlled-flip is, like th&Not, a two-qubit operation. It ap-
plies theFlip gate if both bits equals ®; otherwise it leaves the state unchanged:

CFlip|z,y) = (=1)"|z,vy),

forall z,y € {0,1}.

2.2 Fault Tolerant and Universal Quantum Gates

It has been shown that there exists finite sets of quantuns gadéare universal in the
following sense. Consider the networks that can be cortstiiuicom a countable set
of gates{G,, G, ... }. Each network will implement a unitary transformation, avel
want to consider if any finite-dimensional unitary transfiation can be implemented
in such a way. Clearly, because the set of networks is colatal® cannot hope
that we can construct every elementldfn) exactly. Hence, we will have to aim
for the approximation (within an arbitrary small error) ofeey such element. It has
been proven that there are indeed universal sets of quardtes gith which this can
be achieved, and these sets can be remarkable simple. Towifg collection was
described in [26] and has the additional useful featurettieagates are ‘fault-tolerant’
[74].
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Fact 1 (Universal, Fault Tolerant Sets of Quantum Gates [2§] With the Hadamard
gateH, the controlled-no€Not and the’ phase gat® .0, any other unitary trans-
formation can be approximated within an arbitrary smalbefwith respect to some
distance measure on the set of operators). Also, theseghtee can be implemented
in a fault-tolerant way.

2.3 Quantum versus Classical Query Complexity

The theory of quantum computation investigates if, and,ih®ov, we can use quantum
mechanical effects to solve computational problems mdiaeitly than we can do by
classical means. So far, the strongest indication thaethiatybe such a difference in
computational power between quantum and classical comgpigiprovided by Peter
Shor’s factoring algorithm[91]. Unfortunately, the retsioy Shor does not prove that
there is a superpolynomial separation between the two rmadelomputation. This
is because the classical time complexity of factoring arstréte logarithms is still
unknown, despite more than two thousand years of effortjrsgawith Eratosthenes’s
sieve in 300 B.C.

A complexity measure for which we do have rigorous resulavided by the the
black-box, or oracle, model of computation. The algorittohBeutsch [38], Deutsch
& Jozsa [39], Berthiaume & Brassard [23], Bernstein & Vaairf22], Simon [92],
Grover [48], and Buhrman & van Dam [28] give examples of peof$ for which we
have a quantum reduction in the query complexity of a problehereas the lower
bounds of Jozsa [59], Bennettal. [19], and Bealst al. [10] show that there are also
limits to the advantage that quantum computation can givé& s general picture that
has emerged from these results is that we can only expectgmlpnomial difference
between classical and quantum computation if we can use#wfE structure of the
problem that we try to solve. The promise on the function ai@i’s problem is a typ-
ical example of such a structure that establishes an expiahgnantum improvement
over the classical complexity.[92] To find more structuredigpems that allow such a
gain is one of the quests for researchers in quantum contyléeory.

Consider a problem that is defined in terms:finknown) valueg (1), ..., f(n).
The (probabilistic) query complexitgpf such a problem is the minimum number of
times that an algorithm has to ‘consult’ the strifd), . .., f(n) to solve the problem
(with high probability). A typical example of this setting/the calculation of th®Rof
n bitvalues: the question whether there is an indekh f (i) = 1. The classical query
complexity of this task is, whereas in the quantum setting we only né¥d/n)calls
to f to solve the problem. We therefore say that we have a ‘quatssparation
between the classical and the quantum query complexity efoR function. The
guestion is which tasks allow a quantum reduction in theyjaemplexity, and if so,
how much.

The reason why quantum algorithms sometimes require lessegustarts with the
superposition principleof quantum mechanics. A single call’*to the function f
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establishes the evolutiom)|b) — |i)|f(i) & b) (where® denotes addition modulo
two), which in classical computation is the best we can exfsem an f-query. But
by the rules of quantum mechanics, we can also corfsuitsuperposition. Hence,
with a single call we can create a state that depends on $eaérasf (i):

§j| ® (ail0) + B;[1)) I > iy @ (cul £ () + Bil £ (i) @ 1))

one f-query

i

It is this ‘parallelism’ in combination with the quantum niemical phenomenon of
interferencethat allows us to solve some problems more efficiently thgpoissible
with classical protocols.

2.4 Earlier Results in Quantum Computing

This thesis uses, and builds on, a combination of earliedtes quantum computa-
tion. We are especially concerned with the query complefifyrocedures that prepare
a state that depends on a black-box function. For example,dften do we have to
read out the bit valueg(i) if we want to create the stale, (—1)/®a;]i)? The fol-
lowing fact shows us that this can be done with the minimumshgle query.

Fact 2 (Phase-kick-back trick [31]) If we can query the functiori in quantum me-
chanical fashion as follows:

[Helh) — [Helbe f(i)

with f(i),b € {0, 1}, then the phase changing transition
doailiy — Y (-

can be established with only one call to the unknown bit \v&bfef .

Proof: First, we append to the superposition®fstates the qub%(m) —|1)). Then,
in superposition, we add (modulo two) the function vafi# to this bit. For a specific
value ofi, this yields the evolution

i) @ J5(10) = 1)) — m@éam@ﬂm_u@f@» o1
_ +|Z> ® %(m) — |1>) if f(Z) _
- { =12) ®%(I0> — 1)) if f(i) = (2.2)

Hence, by the superposition principle, this gives the @esavolution with only one
guery to the functiory. O
Using this fact, we can easily prove the following core resul
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Fact 3 (Single Query Parity Trick[31, 38]) Let f : {0,1} — {0,1}. There exists a
deterministic quantum algorithm that computes the parityff0) & f(1) with one
query to the functiorf. This algorithm works in constant time.

Proof: Construct the following initial state:
Initial) = £(]0) + [1)) ® (]0) — [1)). (2.3)

Next, we add (modulo two) the bit valuggi) to the rightmost bit, where the index
i € {0,1} is described by the first bit of the initial state. Note thattbg superposi-
tion of this rightmost bit, both valueg(0) and f(1) are also queried in superposition.
Applying f in such a way establishes the following evolution on the twbits:

[Helb) — [ elbe f(i)),

for b € {0,1}. This results in the following outcome when applied to thidahstate
mentioned in the beginning of the proof:

310)+ 1) @ (10) = 1) if f(0)=f(1)=0
5(10) = 1)) @ (j0) — [1)) if f(0)=0,f(1)=1
—3(10) = 1) @ (|0) — [1)) if f(0)=1,f(1)=0
=310+ 1)@ (10) = 1) if f(0)=f(1) =

Hence, if we apply a Hadamard transformation to the firststegiwe obtain

[Final) = (=1)/“@1(0) @ f(1)) ® (|0) — |1)).

Observing the first bit of this final state yields the corretdweerf(0) & f(1) without
error. O

2.5 More Classic Quantum Results

In 1993 Bernstein & Vazirani gave the following example oaanfly of functions that
are more easily distinguished with quantum queries thal @l@ssical ones.

Fact 4 (Bernstein & Vazirani's inner-product problem [22, 31]) Let the black-box
functiong, : {0,1}" — {0,1} be defined by

9s(x) = (x,5) = zn:s:c mod 2, (2.4)

wheres = s; ... s, € {0,1}" is an unknowm-bit mask. A quantum computer can de-
termine the value with one call to the functiog,, whereas any probabilistic, classical
algorithm needs at leastqueries tqy, to perform the same task.
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Proof: (See [22] for the original proof, and [31] for the single gue&ersion of it.)
First, initialize the(n + 1)-qubit register

start) = —= > |2) @ F5(10) - 1))
z€{0,1}

By XORing the rightmost bit with the function valug(x) (cf. Fact 2), we obtain the
state

A > ()" e J5(0) - (1), (2.5)

z€{0,1}"

with only oneg,-call. The bit strings is then easily obtained with arfold Hadamard
transform on the first bits:

& > D) ), (2.6)
ze{0,1}n H

which concludes the quantum algorithm.

For the classical lower bound we observe that every traditiquery will only give
(maximally) one bit of information about thebits of s. O
The above result uses the unitarityldf” and its connection with the inner-product
function. In Chapter 5 we will derive a similar result for dfdrent family of unitary
matrices and the Legendre function that it uses.

Because the Hadamard is its own inverse we have, in fact, alh@ving ‘bi-
directional statement’ about this transform

= >

z€{0,1}"

x) — H®" — |sys9---s,). (2.7)

The above leads to the observation that if we want to know tifv@gss - - - s,,, it
is sufficient to have a superposition with phase values ofdha (—1)**), for every
x € {0,1}". This is a well-known result in quantum computation and hesnbused
several times to underline the differences between quaathtlassical information
processing.[22, 31, 49, 97]

Another key result in quantum computation is the squaré-speed-up that one
can obtain when querying a database for a specific element.

Fact 5 (Grover's search algorithm [48]) Letf(1),..., f(n) be a string ofi—1 zeros
and one entryf(s) = 1. With a quantum computer the unknown value€an be
determined exactly with onlj/g \/ﬁ} queries to the functioffi.

Proof: See the original article by Lov Grover[48], or better yet @xcellent analysis
of it by Boyeret al[25] O
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2.6 Notation

We usez, y, ... to denote finite, classical Boolean strings. When we write we
mean the quantum state vector in the standard basis thaspornds to the classical
stringz. In general we us@, v, ... to denote pure quantum states. Mixed states
are represented by the lettgrss et cetera. We also use uppercase letféry’, . ..
for (mixed) quantum states that are strings of qubits. Thaseguantum state, qubit
string, and quantum register are used interchangeablyetsmies to emphasize the
purpose of the quantum state at hand). Lower-case l€ttgns, [, m, n denote integer
indices or string lengths.

For classical strings over the alphakét1}, /(=) denotes the length of the string.
For finite sets4, |A| denotes the cardinality of the set. Concatenation gfis written
as the juxtapositiomy, and then-fold concatenation af is writtenz™.

For Hilbert spaces, we writg/, for the d-dimensional Hilbert space ard™ for
them-fold tensor product spack ® - - - ® #H. A pure quantum state represented as
a vector in such a Hilbert space is denoted by the&et

We slightly abuse notation by sometimes letting the stateb&}s ¢, p,... also
stand for the corresponding density matrices. Hence, agtatep as a Hilbert space
vector is denoted bjy), whereas its density matri») (4| can also be indicated hy.

An ensemblef is a specific distributiopy, p,, ... over a set of (mixed) states
p1s P2, - - .. We denote this by = {(p;, p;) }. The average state of such an enseréble
is p =Y. pipi- An average state corresponds to several different enssmilhen an
ensemble is used to produce a sequence of stascording to the probabilities,
we speak of &ourcef.

The length of a quantum state is denoted’pY ), by which we mean the smallest
¢ for which X sits in the2-dimensional Hilbert space (in the standard basis).

A transformationS on the space of density matrices is allowed by the laws of
guantum mechanics if and if only it is a completely positivace preserving mapping.

Throughout this thesis, results that were already knowinalieated as ‘facts’.






Chapter 3

Quantum Oracle Interrogation

In this chapter we discuss the quantum query complexity of te ‘oracle inter-
rogation’ problem: For a black-box function z : {1,...,n} — {0,1}, how
many queries are necessary to recover (with high probabilit) the n unknown
bits z, - - - z,,? First, we will describe aquantum interrogation algorithm that —
with high probability— obtains the n bits using only 2 + 4/n black box queries.
Next, an ‘approximating version’ of interrogation is discussed. It is shown how
with k black box queries one can produce an approximation ot that gets 7 +

v/ k(n — k) bits (expected) ofz; - - - 2z, correct.

3.1 Introduction

Consider a quantum computer in combination with a black-famction 2 that de-
scribes am bit string z; - - - 2,,. We will show how? + /n calls to the oracle are
sufficient to guess the whole content of the oracle (being lam string) with probabil-
ity greater thar95%. This contrasts the power of classical computers, whichireq
calls to achieve the same task. From this result it folloves &my function with the:
bits of z as input, can be calculated usifig- /n queries to: provided that we allow a
small probability of error. It is also shown that an errorlpability ¢ can be established
by 2 + O(log(%))\/n oracle queries.

In the second part of the chapter, ‘approximate interrogats discussed. This is
when only a certain fraction of thebits of z are requested. Also for this scenario does
the quantum algorithm outperform the classical protocaisexample is given where
a quantum procedure witl}, queries returns a string of which 80% of the bits are
correct. Any classical protocol would ne%@j gueries to establish such a correctness
ratio.

19
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3.2 Known Quantum Query Complexity Bounds

Various articles [10, 42, 72] have determined several |[dveends on the capability of
guantum computers to outperform classical computers ibldek-box setting. These
bounds refer to the required amount of queries to a blackeboxacle (with a domain
sizen) in order to decide some general property of this black-tkmt.example, if we
want to know (with bounded error) the parity of thevalues, then it is still necessary
for a quantum computer to call the black-bbximes[10, 72]. It has also been shown
that for theexactcalculation of certain functions (the bitwige for example) alln
calls are required[10].

Here, we present ampper boundn the number of black-box queries that is suffi-
cient to compute any function over theits provided that we allow a small probability
of error. More specifically, it will be shown that for everykmmown black-box, there is
a potential speed-up of almost a factor of two if we want tovkmwerything there is
to know about the oracle function. By this the following isané If the domain of the
oracle has size, a classical computer will have to applycalls in order to know alh
bits describing the oracle. Below, it will be proven that agwm computer can per-
form the same task with high probability using ofiy- /» queries. From this result it
immediately follows thagnyfunction ' on the domai{0, 1}" can be calculated with
a small two-sided error using onfy+ /n calls.

The factor-of-two gain can be increased by going to apprakimg interrogation
procedures. If we do not longer require to knallvof then bits but are instead already
satisfied with a certain percentage of correct bits, themliffierence between classical
and quantum computation becomes bigger. An example of daigre when we want
to guess the string such that we can ex@®ét of the bits to be correct. A quantum
computer can do this with one-sixth of the queries that asatatcomputer requires:
15 quantum calls versu%jr classical calls. This also illustrates that the procedeare d
scribed here is not a ‘superdense coding-in-disguise’clwhiould allow a reduction
by only a factor of two[21].

3.3 Definition of the Interrogation Problem

The setting for this chapter is as follows. We try to investegthe potential differences
between a quantum and a classical computer when both casesrdronted with an
oraclez. The only thing known in advance about thiss that it is a binary-valued
function with a domain of size. We will view this oraclez : {1,...,n} — {0,1}

as then-bit string it defines:z = z;---z, € {0,1}". The goal for both computers
is to obtain the complete string with high probability with as few oracle calls to
z as possible. The phrase “with high probability” means tlwatdvery possible:
the final answer of the algorithm should bractly = with probability at least5%.
(The probability is thus taken over the runs of the algoritfinve would repeat the
protocol for a specifiz.) Note that we are primarily concerned with the complexity
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of the algorithm in terms of oracle calls, both the time andcgprequirements of the
algorithms are not considered when analyzing the compleiterences. The model
of an oracle as it used here goes also under the name of bteglebdatabase-query
model.

Definition 6 (Interrogation Task) Consider an unknown black-box containimdpits
z = z1 - -+ z,. Theinterrogation tasks to recover the whole string(with high proba-
bility).

We call this problem interrogating black-box because afeds, every possible ques-
tion aboutz can be answered correctly (with high probability).

3.4 The Quantum Algorithm

The algorithm that we will present here is an approximatiérihe procedure de-
scribed in the Equation 2.6. Instead of calculating the phasues(—1)@) for all

x € {0,1}™, we will do this only for the strings; - - - z,, that do not have a Hamming
weight||z||, (the number of ones in a bit string) above a certain threshoBly doing
so, we can reduce the number of necessary oracle calls wdeang an outcome that
still has a high fidelity with the ‘perfect state’ of Equati@r6. The drawback is this
procedure is not exact anymore: with a small probability Ww&am a string different
from z.

As stated in Fact 4, the valye, z) corresponds to the parity of a subset of bits
where this set is determined by the ones in the string - z,,. To calculate the parity
we can perform a sequence of additions modulof the relevantz; values, where
eachz; has to be (and can be) obtained by one oracle call. Therdf@diamming
weight||z||, equals the ‘oracle call complexity’ of the procedure (foraahitrary bit
be {0,1}):

) e e () (32)
Since the number of-queries will be limited by a threshold numbkr this implies
that we can only compute the parity val(e 2) if the Hamming weight ofr is less
than or equal td. The algorithm that performs this conditional parity cddtion is
denoted byA, and its behavior is thus defined by:

e @) i fall, <&,
Alo)le) = {|x>|b> it |zl > . 3:2)

which can be done with at most oracle calls for every:; - - - x,,. BecauseA, is
reversible and does not induce any undesired phase charigksws from the super-
position principle that we can apply;, also to a superposition of differemtstrings.
This will allow us to prove the following theorem.
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Theorem 1 (Quantum Interrogation) Consider an unknown-bit black boxz =
21+ -2, € {0,1}". There exist a quantum algorithm with query compleXjty- \/n
that recovers the whole stringwith 95% probability of success.

Proof: We exhibit the algorithm in detail. Prepare the stéite which is an equally
weighted superposition of bit strings of sizevith Hamming weight|z||, less than or
equal tok, and an additional qubit in the stagg(|O> — |1)) attached to it:

llzll, <k
[T) ® 55(10) = [1)) == & Yo w0 -11),  (33)
v M
k z€{0,1}"

with M, the appropriate normalization factor calculated by the Ipeinofz strings that
have Hamming weight less than or equakto

M, = i@ (3.4)

1=0

Applying the above-described protoca) (Equation 3.2) to this state yields (re-
quiring k£ oracle calls):

[|ll, <k
AT @ 5(10) = 1)) = . > =1)"z) | @ 5(10) - 1))3.5)
v M
ko \zefo,3m

Here we see how the phases of the sthipl,) contain a part of the desired informa-
tion aboutz, - - - 2z, similar to Equation 2.6.

If we setk to its maximumk = n, then applying am-fold Hadamard to the first
n qubits of A, | W) would give us exactly the state; - - - z,). The minimum value
k = 0 leads to a state that does not reveal anything aboEbr all the other possible
values of0 < k£ < n there we have the situation that applyiH§™ to the z-register
of A;|W;) gives a state that is close tg - - - z,,), but not exactly. For a given, this
fidelity (statistical correspondence) between the acquired stdte depends ork: as
k gets bigger, the fidelity increases.

Then qubits that should give, - - - z,, after theH®” transformation, is described
by (see Equation 3.5):

llzll, <k

! _ L N (:v,z)x
W) = o > ()", 36)

k z€{0,1}"

The probability that this state gives the correct string-biits equals the square of its
fidelity with the perfect statel! ):

Prob(A, outputsz) = [(WL|0")[ (3.7)
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The signs of the amplitudes p¥}) and|¥/,) will be the same for all registerswith
||lz||, < k, whereas for the other strings with||, > % the amplitudes of¥}) are zero.
The fidelity between the two states can therefore be cakmlilet a straightforward
way, yielding for the correctness probability (using Edqom.4):

k
M 1
Prob(Ay outputsz) = 2—’“ = o <n> (3.8)
n n )
=0

This equality shows the reason why the algorithm also wooks/élues ofk around

% + +/n. For largen the binomial distribution approaches the Gaussian digioh.
The requirement that the correctness probability has sahe significantly greater
than%, translates into the requirement thahas to be bigger than the averagédy
some multiple of the standard deviatién/ﬁ of the Hamming weights over the set of
bit strings{0, 1}". Because less thatit of the binomial distribution is concentrated
in the right tail that is at least two standard deviationsyafwam the middle, it can be
shown that

Prob(AL%+\/m outputsz) > 0.95 (3.9)
for every value of.

This proves that the following algorithm will give us the tesgted: oracle values
21 -+ - 2, With an error-rate of less thai¥o, using only| 3 + \/n] queries to the oracle.

1. Initial state preparation: Prepare a register ef+ 1 qubits in the state
Ui, o ® 75(10) = 1)
as in Equation 3.3.

2. Oracle calls: Apply the A;, procedure of Equation 3.2, far= | 3 +/n| oracle
gueries.

3. Hadamard transformation: Performn Hadamard transforms to the first
qubits on the register (the stat®, ) in Equation 3.6).

4. Final observation: Observe the same firatqubits in the standard basi¥, |1).
The outcome of this observation is our guess for the oradergsionz; - - - z,,.
This estimation ot will be correct for alln bits with error probability less than
5%.
0
An expected error-rate of significantly less th#i can easily be obtained if we
increase the thresholdwith a multiple of the standard deviatidn/n. With the use
of the Chernoff bound, we can thus show that

2 .-
Proberor(k = 2 + A\/n) < e 3.

2
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Hence we conclude that an error rate @t less can be established with
o< 2 310g(1) | v
Y + 5 Og(g) n

queries to the oracle

3.5 Comparison with Classical Algorithms

Consider now a classical computsy, that is allowed to query the oracletimes.
This implies that after the procedure— £ bits of z are still unknown. Under the
uniform distributionProb(z) = 2™, we thus have a probability @ " of guessing
the remaining: — & bit correctly. Hence, the probability of recovering thit string
21 - - zp by a classical algorithm is:

Prob(By, outputsz) <

= (3.10)

This establishes the following lemma.

Lemma 1 (Classical Interrogation) For an error probability of less thalj) the clas-
sical, probabilistic, query complexity of the interrogatiproblem isa.

The space complexity of the quantum and the classical &hgosi is in both cases
linear inn.

3.6 Approximate Interrogation

In this section we ask ourself what happens if we want to knoly a certainfraction

of then unknown bits. In other words: Given a thresholdkodracle-queries, what is
the maximum expected number of correct bitsat we can obtain via an ‘approximate
interrogation’ procedure if we assume the uniform distiittuProb(z) = 2~ over the
stringsz € {0,1}?

3.7 Classical Approximate Interrogation

In the classical setting the analysis is again straightéodw If we queryk out of n
bits, then we know bits with certainty and we have to randomly guess the athek
bits of which we can expect 50% to be correct. The total nunobeprrect bits will
therefore be

k
- 3.11
a3 (3.11)

n
Cilas = — 4
2

which shows a linear relation betweérandc.
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3.8 Quantum Approximate Interrogation

The quantum procedure for approximate interrogation vélthe same algorithm that
we used in the first part of this chapter, but with a differential state¥,. We now
allow the amplitudes; of ¥, to depend on the Hamming weight of the bit strings

k
T = Y ¢
=0

with the normalization restrictioh; [aZ| = 1.

After the preparation of this stafie,, the algorithm is continued with an application
of the k query procedurel,, in the same way as described in Section 3.4. i lvés
outcome of this protocol will correspond to a certain deguél the interrogated bit
stringz; - - - z,. This degree depends érand the amplitudes;.

llz|],=3

> ), (3.12)

i/ zefo,1}n

3.9 The Expected Number of Correct Bits

In this section we will calculate how many bits we can expecbé correct for the
guantum interrogation procedure with the initial stdtg of Equation 3.12. We do
this by assuming that the unknown bit string consists ofzerdy: z = 0---0. The
expected number of correct bits for the algorithm equalsefioee the expected number
of zeros of the observed output stripg Because we can make the assumption
0---0 without loss of generality, we then conclude that this numiaé the expected
number of correct bits for any € {0, 1}".

The inner-product betweenandz will be zero for everyr, hence applyingi; to
¥, will not change the initial state:

Nzl =7

1

ze€{0,1}"

After this A, we perform the: Hadamard transforms on allqubits, yielding a new
state:

Iz, =
> Hz) (3.14)

\/@xé{ﬂ,l}"
[|z]|,=3
= 5 2 Z \m S (") (3.15)

ye{o 1}n j=0 z€{0,1}™

k
HO" A Uy) = )
=0

Because the above state is invariant under permutatiomrdiebility of observing a
certain stringy depends only on its Hamming weighy||,. In the Appendix of this
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thesis it is shown that this gives us the following equaldy the expected number of
Zeros:

E[#zerogH " Ay |U))] = > ¢ (’Z) (0" [HE™ A |W,) |
t=0
B ()] R |
= — . J (_1) Utlnft,m
2 t=0 ¢ j=0 (?) ze{0,1}"
. 2
e (E R ()
o t = (?) — ? J—t
n k—1
= 5t ZRe(aja;fH)\/j +1y/n —j.
j=0

We can therefore conclude that the expected numpef correctly guessed bits for
the quantum protocol will be (for givehanda;):

k—1

uan n % - -
caant §+2Re(ajaj+1)\/]+1\/n—]. (3.16)

§=0

This equation allows us to optimize tlag amplitudes such thai, will be as big as
possible. (Note that for such an optimal solution we can gévassumey; € R
without loss of generality.) Two examples of such optimmas will be given below,
both of them showing an improvement over the classical dlgor

3.10 Interrogation with One Quantum Query

If we allow the quantum computer to ask only one quéry= 1) to the oracle, then
Equation 3.16 is maximized by choosing = a; = % thus giving for the expected
number of correct bits

quant

cmant g T 4 (3.17)

When we compare this with Equation 3.11, we see that a chssligorithm would
requirek = \/n queries to match the power of a single quantum query.
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3.11 Interrogation with Many Queries

Let us assume thdtis a square with) < % < =. We can then define the amplitudes

a; € R according to

1
2

0 if0<j<k—vk
;= N 3.18
@ {%\/Elfl{i—\/E<j§k (3.18)
Using Equation 3.16, this gives for the expectatio of correct bits
Cquant 1 1 k—1
k = c4+—= > Vitlyn—j (3.19)
J=k—Vk+1
1 k k
= = —1—-=]-0(L). 3.20
s+ (1-5) - o) (320

From this analysis it follows that for big enoughand all valueg < %, we can ignore
theO(ﬁ) term in the above equation. Férbigger than?, we can always adopt the
same interrogation scheme that we used to reach the peoieetmess rate, , ~ n.
This gives us the following theorem.

Theorem 2 For big enough andk queries, the above described algorithm has an
expected correctness rate of

(3.21)
n

{ Jei(-8) fosk<y
Lemma 2 (Classical Approximate Interrogation) In the same setting as the previ-
ous section, the classical fraction of correct bits is

cSlas 1k

= —+—. 3.22
n 2 + 2n ( )
This result is summarized in Figure 3.1 and gives a clear pi@wf a quantum

reduction in the query complexity of the approximate irdgation problem. This
improvement is especially significant for small valuesgofFor example, if we allot
the quantum protocal; queries, then we can expett); of the bits to be correct. Any
classical algorithm would need six times as mukh= 3?") gueries to obtain such a
ratio.

3.12 Conclusions

The model of quantum computation does not permit a geneagaifsiant speed-up of
the existing classical algorithms.[10] Instead, we havievestigate for each different
kind of problem whether there is a possible gain by using tyraralgorithms or not.



28 Chapter 3. Quantum Oracle Interrogation

Approximate Interrogation for Big N:

1
% ¢/N
fraction
of classical interrogation: — — -
correct | :
bits 0 : I guantum interrogations———
1

0 k/N 1
fraction of queries—

Figure 3.1: Comparison of the interrogation effectiveriestsveen classical and quan-
tum computers.

Here it has been shown that for every binary functian{0, 1} — {0,1} we can
obtain the full description of the function with high prohigly while querying z only
5 ++/n times. A classical computer always requiresalls to determine; - - - z, with
the same kind of success probability.

The lower bounds oRARITY (with bounded error) andRr (with no allowed error)
for black-boxes[10, 42] show us that any quantum algorithustuse at least calls to
obtainz with bounded error, and that the fullqueries are necessary to determine the
string without error, respectively. Furthermore, it hastehown by Farhet al[40]
that the? + /n of this chapter cannot be reduced any further: it is a tighintiofor
the interrogation task (up to a constant in front of {/ie term).

The term ‘approximate interrogation’ was used for the saenahere we are in-
terested in obtaining a certain fraction of thenknown bits. Again we could see how
a quantum procedure outperforms the possible classiaaditdms (Figure 3.1).



Chapter 4

Quantum Bounded Queries

It is known that that a super-polynomial quantum improvement can only be ob-
tained if we consider problems that are more structured thanthose in the black-
box model of computation.[10] In this chapter we look at the qiery complexity
of problems that can be computed in polynomial time with the telp of, for exam-
ple, an oracle for the SAT problem. It is shown how in this setfihg a quantum
computer requires less queries than a classical computerygvided that standard
complexity assumptions likeP #£ NP are true.

4.1 Introduction

We combine the classical notions and techniques for bouqdery classes with those
developed in quantum computing. We give strong evidendagtieentum queries to an
oracle in the clasBlP does indeed reduce the query complexity of decision problem
Under traditional complexity assumptions, we obtain aroegmtial speed-up between
the quantum and the classical query complexity of functiasses.

For decision problems and function classes we obtain th@iolg results (see the
appendix of this thesis for a brief overview of these comiyesiasses):

° Plll\IP[Qk} C EQPII‘\IP[I@}

o PNP[2k+1,2} g EQPNPW

. FP‘II\IP[2k+1,2} g FEQPNP[%]
° FP‘ll\IP g FEQPNP[O(IOgn)]

For setsA that are many-one complete fBSPACE or EXP we show that-P*
FEQP4!!. SetsA that are many-one complete fBP have the property thatP-
FEQP!!. In general we prove that for any sétthere is a sef{ such thatFP*
FEQPX!Y, establishing that no set is superterse in the quantunmgetti

N 1NN

29
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The query complexity of a function is the minimum number oéges (to some
oracle) that are needed to compute one value of this funchith boundedquery
complexity we look at the set of functions that can be catedlaf we put an upper
bound on the number of queries that we allow the computerkdresoracle. This
notion has been extensively studied both in the resourcadsslisetting [2, 4, 5, 13,
12,11, 17, 60, 75, 104] and in the recursive setting[15, This notion and its variants
has lead to a series of techniques and tools that are usedjttoot complexity theory.

In this chapter we combine some of the bounded query notighsywantum com-
putation. The main goal is to further—as was done by FortnoevRogers [43]—the
incorporation of quantum computation complexity classés standard classical com-
plexity theory. We feel that the synthesis of quantum comajon and classical com-
plexity theory serves two purposes. First, it is importarkriow the limits of feasible
guantum computation and these can be clarified by exprefseng in the framework
of classical computation. Second, the insights of quantomputation can be useful
for classical complexity theory in turn.

We start out with the class of sets (or decision problems)aha computable in
polynomial time with bounded queries to a sefNR. We consider the setting where
the queries are adaptive (i.e., a query may depend on theeamswprevious ones), as
well as where they are non-adaptive. Classically, it is kmtvat any decision problem
that can be solved in polynomial time withadaptive queries to a set NP (the class

PNPIE)) can also be solved witht — 1 non-adaptive queries (the cla@¥" ' ! where
“II” indicates the parallel or non-adaptive queries), and-vieesa [13]. In other words:

pNPlEl — pNPR'1 Moreover, there is strong evidence that this trade-offpignoal
in the sense that every non-adaptive c|a§§[’“1 is different for different values of

k. For example ifPl"“Pm C PNPI then the polynomial hierarchy collapses [60] (see
also [27, 52)).

We will see that if we allow the query machine to make use ohtwa mechan-
ical effects such as superposition and interference that&in changes. In the non-
adaptive case we will show that classical queries can be simulated with ohly
non-adaptive ones on a quantum computer and in the adaptseevee show how to
simulate2*+! — 2 classical queries with onliy quantum queries. The natural quantum
analog ofP is the clas€£QP, which stands foexact quantum polynomial tim&his
is the class of sets or decision problems that is computalgelynomial time with a
guantum computer that makes no errors (i.e., is exact). ,herresults are that

2k+1_2

pNP2Kl = EQPNPH ang NP | c EQPNPI,

In particular it follows from this result thaEt,'l“P[21 C EQP"PI! (see also [36]).

In order to prove these results we combine the classical4tiashge technique [13]
with the one query version (see [31]) of the first quantumiatiyo developed by David
Deutsch [38].

Next, we turn our attention ttunctionsthat are computable with bounded queries
to a set iNNP. Compared to the decision problems there is probably notracke-off



4.2. Classical Complexity Theory 31

between adaptive and non-adaptive queries for functionis. i¥ because the following
is known [17]: for anyk the inclusionFP""*) ¢ FPNP=1 implies thatP = NP.
Moreover, ifFPNP € FPNPIOUen)] then the polynomial time hierarchy collapses [12,
87, 91].

When the adaptive query machine is a quantum computer,slaregdifferent and
we seem to get a trade-off between adaptiveness and queplexdty. We show the
following:

FPII‘\IP[2k+172} C FEQPNP[Qk} and FPII‘\IP C FEQPNP[O(logn)}‘
HereFEQPNP*! is the class of functions that is computable by an exact quafuring
machine that runs in polynomial time and is allowed to makgieries to a set iNP.

The proofs of these results use our previous results onidagsoblems and a quantum
algorithm developed by Deutsch-Jozsa [39] and Bernstauirghi [22].

Using the same ideas we are able to show that for anyl sbere exists a seX
such thafP* C FEQP*!!, establishing that no set is ‘superterse’. Also because the
complexity of X is not much harder than that df (the problemX is Turing reducible
to A), we get quite general theorems for complete sets of coriplelasses.

For a complexity clas€ that is closed under Turing reductions, and a problem
A e C that is many-one complete for the cla@sthe inclusionFP¢ C FEQPA[! is
proven. This holds in particular for the sgF of thetrue quantified Boolean formulae
which is aPSPACE complete problem, and the complete sets for the &x$5 If C is
a class that is closed under truth-table reductions, theolits thatFP¢ € FEQPAM,

The Theta levels of the polynomial hierarchy &l are examples of such classes.

The ingredients for all our results are standard quantuwrigigns combined with
well known techniques from complexity theory. Nevertheleg feel that this com-
bination gives a new point of view on the nature of boundedyjgtasses and the
structure of complete sets in general.

4.2 Classical Complexity Theory

We assume the reader to be familiar with basic notions of ¢exitg theory such as the
various complexity classes and types of reducibility ashmfound in many textbooks
in the area [6, 7, 46, 58]. The essentials for this chaptemanationed below.

For a set (decision problem) we will identify A with its characteristic function.
Hence for a string: we haveA(z) € {0,1}, andA(z) = 1ifand only ifz € A. A
classC consists of a set of decision problems. A probléns many-one poly-time, or
<P -complete for a class§ if for any problemB € C, there exists a polynomial-time
computable function or “Karp-reduction”such thatc € B if and only if 7(z) € A.
The typical example of such a complete probleraas (the set of satisfiable Boolean
formulae) which is<? -complete for the clasiP. The clas<P indicates the set of
functionsthat can be calculated on a polynomial time, deterministiieriy machine.
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An oracle Turing machine ison-adaptiveif it can produce a list of all of the
oracle queries it is going to make before it makes the firstyguor any set4, the
elements of the clag®l*! (FP“I¥)) are the languages (functions) that are computable
by polynomial time Turing machines that accesses the oraekemostt times on each
input. The clas®** andFP* allow only non-adaptive access tb The notation
PNPla()] is used to indicate algorithms that might requj@) calls to anNP oracle,
whereg is a function of the input size.

The clasd\P can be generalized by defining tpelynomial time hierarchy We
start with the definitiona\] = P andX} = NP, and then for the higher levels continue
in an inductive fashion according t?,, = P27 and¥?,, = NP* fori = 2,3, ...
Many complexity theorists conjecture that this polynontiade hierarchy is infinite,
i.e., X7, # XF foralli.

A classC of languages is closed under Turing (truth-table) reduacticany de-
cision problem that can be solved with a polynomial time fignmachine and (non-
adaptive) queries to a set is itself also an element &. Examples of such classes

are PSPACE, EXP, and the Delta levels\?,,. The classe®P and©?,, = P?'bp
(Theta levels of the polynomial hierarchy) are for examptesed under this truth-
table-reduction.

4.3 Quantum Complexity Classes

The clas€QP is the collection of those sets that can be computed by a goeRtiring
machine that runs in polynomial time and accepts everygsjriwith probability 1 or

0. Likewise, we define the class of functioREQP as the class of functions that can
be computed exactly by some quantum Turing machine thatinupglynomial time.
The output of the Turing machine is the function value (rathan a single decision
bit).

We model oracle computation as follows (see also [19]). Aatler Turing machine
has a special query tape, and during the computation thedarachine may enter a
special pre-query state to make a query to the oraclels€duppose the query tape
contains the statg)|b) (: represents the query ahds a bit meant to receive the answer
to the query). The result of this operation is that after thietbe machine will go into
a special state called the post-query state and that the ¢aee has changed into
li)|A(i) @ b), whered is theEXCLUSIVE OR. We will denote this unitary operation
by U,. Note thatU, only changes the contents of the special query answey aitd
leaves all the other registers unchanged.

As with classical oracle computation, we make the distorcbhetween adaptive
and non-adaptive quantum oracle machines. We call a quamtache machine non-
adaptive if on every computation path a list of all the orapleries (on this path) is
generated before the first query is made.

The classEQP*! are the sets recognized by an exact quantum Turing machine
that runs in polynomial time and makes at mésidaptive queries to the oracle for
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A. Likewise, we define classes liEQP"™! FEQP1™! andFEQP: ™! for non-
adaptive decision, adaptive function, and non-adaptivetfan classes respectively
(with ¢(n) a function that gives an upper bound on the number of querids:ahe
size of the input string).

4.4 Decision Problems

In this section we will investigate the extra power that aypolmial time, exact quan-
tum computer yields compared to classical deterministamatation when querying
a set in the clashP. In the case of deterministic computation the following &gy
between adaptive and non-adaptive queridsRas well known.

Fact6 [13, 29, 104]
1. Forallk > 0 we haveP""?"~!/ = pNPIK]

2. For any polynomiaj(n) > 1 the equalityP""?™! = pNPO(og(a(m))] holds.

Proof: Both items are proved in a similar way which has two parts. fits¢ part

shows that computing a function RI'"2* Y can be reduced to computing therity

of 2¥ — 1 other queries t&lP. The second part then proceeds by showing that using
binary search one can compute the parit@’of 1 NP-queries withk adaptivequeries

to SAT. On the other hand, it is trivial to see that any computatiath W adaptive
queries can be simulated exhaustively vath— 1 non-adaptive oracle calls. 0

There is also strong evidence that the above trade-offlis (gge [14, 60]). It fol-
lows for example that iPI'?'P[Q} = PNPI then the polynomial hierarchy collapses [60].
(See [27] for the latest developments with respect to thestian.)

Perhaps surprisingly the situation changes when the quachime is quantum
mechanical. Using the one-call-parity trick of Fact 3, wdl sihow that a quantum
Turing machine can compute decision problems with half tnaler of non-adaptive
queries.

Theorem 3 For allk > 0 we have the inclusioﬁl"\”jw - EQP,'}'PW,

Proof: Without loss of generality we will assume that the queriesraade tsAT, and
that the predicate that is computable withqueries tasAT is f (). Letyy, vo, . .., 1o
be the queries that the computationfdfr) makes. We will use the proof technique
of Fact 6 (also called mind-change technique) which enalde® computef(x) by
calculating the single bBAT(¢,) @ - - - @ SAT (o). Here the new formulag,, . . . , do
can be computed in polynomial time from, . . ., ¥, f, andzx, but without having to
CONSUItSAT.

Next, we use Fact 3 to compute the pardyT(¢;) & SAT(¢; 1) for oddi (1 <
1 < 2k) with k£ non-adaptive queries ®AT. Finally we compute the parity of these
answers, thus obtaining the necessary information foutatiog f (). O
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Lemma 3 PP ¢ EQPNPIY (see [36]).

We do not know whether this is tight. It would be interestingeither improve this
result toPNP2 ¢ EQPNPIY or to show as a consequence of this that the polynomial
time hierarchy collapses.

Fact 6 relates adaptive query classes to non-adaptive thregsby establishing an
exponential gain in the number of querié$ { 1 versusk queries). We will now show
how to use the Deutsch trick to improve this result slightlyhie quantum case.

Theorem 4 PNP" 2  EQPYPE for all k > 0.

Proof: The proof is by induction ork. For £ = 1 we return to the situation of
Lemma 3. Let the predicatgx) be computable with**! — 2 non-adaptive queries to
SAT. As in the proof of Theorem 3 we reduce tfe! — 2 queries); that f (=) makes,
to the calculation of the parity-b8AT(¢1) @ - - - & SAT(¢9r+1_5). Next, we construct
2k+1 _ 2 new formulaeyy, . . ., xox+1_, according to:

X; is satisfiable <= |{¢1,..., dor+1_5} N SAT| > i.

The construction of each sugl) can be done in polynomial time. Consider the non-
deterministic polynomial time Turing maching that on input(i, ¢y, ..., ¢or+1_s),
accepts if and only if it can find for of the formulae a satisfying assignment. Cook
and Levin [34, 66] —proving thasAT is <P -complete forNP— showed that any
polynomial time non-deterministic Turing machine compiota A/ () in polynomial
time can be transformed into a formula that is satisfiablend anly if A/(z) has an
accepting computation. Let be the result of this Cook-Levin reduction.

Note the following two properties of those formulgge

1. The paritySAT(¢1) @ - - - @ SAT(¢or11_5) iS the same as the pariBAT(x;) &
ttt @ SAT(X2k+172).

2. For everyi we havesAT(x;) > SAT(X;1)-

Now we are ready to make the first query. We compute the pafity,0: and
Xak-149k_1. ThiS can be done in one query using Fact 3. By doing this we laav
the cost of one query reduced the question of computing ttigyd 2+ — 2 formu-
lae to computing the parity @ — 2. These we can solve usiig- 1 queries using the
induction hypothesis. To see this observe the following.démvenience set = 2+~!
andb = 2F=1 4 2% — 1,

Suppose the parity of, andy, is odd, witha < b. From the second property
above, it follows that, = 1 andy, = 0, and hence that, ..., x, are all satisfiable
and x, - .., xor+1_9 are all unsatisfiable. Also note thatis even, so the parity of
X1,-- -, Xok+1_o IS the same as the parity af,.1,..., x,_1 (these are* — 2 many
formulae).

On the other hand assume that the paritywofindy, is even. This means (again
using property 2 above) that,, ..., x, are all either satisfiable or unsatisfiable and
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hence have even parity. So again the question reduces taitlg @f the remaining
formulae: x1,...,Xa 1 @nd X411, -, Xar11-0- Which happen to beF — 2 many
formulae. 0

In essence the above technique seems to boil down to seguicham ordered list
X1, - -+, Xok+1_9. IN [56] it has been shown that this can not be done with lear th
;ﬁ%g”e — O(1) queries. On the other hand, results by Faithal.[41] and [56] indicate
that the query complexity of the ordered search problempgupounded b% logn+

O(1), with « at leastl .88.. ... Using these results it is likely that we can strengthen the
o(1)

above theorem t8"P2"" """ ¢ EQPNPIK

4.5 Functions computable with queries to NP Oracles

Now we turn our attention to function classes where the #lgorcan output bistrings
rather than single bits. We will see that in this scenariaifference between classical
and quantum computation becomes more pronounced.

We start out by looking at functions that are computable githries to a complete
set for the classlP. Classically the situation is not as well understood as thgscof
decision problems. There is strong evidence that the armdlBgct 6 is not true.

Fact 7 The following holds for the classical, exact computatiorfuofctions:
1. If for somek > 0 we haverP""¥+1 € FPNPIEL thenP = NP [17].

2. If for all polynomialsq(n) (with n the size of the input string)EP""1“™! ¢
FPNPIOsm)] " thenNP = R (and the polynomial hierarchy collapses) [12, 87,
98],

When we allow the adaptive query machine to be quantum mesidhe picture be-
comes agaln qur[e different. We will show for example thatitrclusionFP™F 14! €
FEQPNP2les(d(»)] holds (and this does not impP = R as far as we know) In order
to do so we will use Fact 4.

Let us turn back now to our setting of bounded query classegid.the quantum
tricks of Sections 2.4 and 2.5 we can establish the followasilt.

Theorem 5 For exact function calculation with the use of an oracldhit holds that
1. FPNPEY A € FEQPYPIY for anyk > 0,
2. FPNP ¢ FEQPNPIOUoen)],

SAT[2k+1 2]

Proof: Fix £ > 0, the inputz of lengthm and Ietg be the function irFP;
Suppose thay(z) = (a;---a,) = a with n = m* for somec dependlng ory. The
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goal is to obtain the state:

Outpupy = > (=)=, (4.1)

1
V2" ze{0,1}n
since with this state one applicationd®” will give usa = ¢(z) (cf. 2.6). Clearly, we
can obtain this state if we have access to a funcfienth the property

n

f.(z) = Zaixi mod 2, 4.2

i=1

for everyz € {0,1}".

The goal thus is to transform the function Wwaveaccess to-SAT in our case—
into one that resembles the one in Equation 4.2. The way thidos to make use of
a quantum subroutine. Observe the following: the binarcfiom f,(z) = (z,a) is
in PS2"" 4 pecause we can first compugé:) = a with 2¢+! — 2 queries tosAT
and then determinér, ). By Theorem 4 this function is computable BQP S,
Hence, when we use this adaptk@QP algorithm in superposition we have the desired
function f. There is however one problem with this approach. The dlgorithat
comes out of Theorem 4 |leaves several of the registers essf@pending on the input
x andsAT. For example the algorithm that computes the parity of twafion calls
in one generates a phase(efl) depending on the value of the first function call (see
Equation 2.4). These changes in registers and phase ghéfiiziot our base quantum
machine and as a consequence the sum computed in Equatidoek ot work out
the way we wanti(e., the interference pattern is different and terms do not elamat
as nice as before.)

The solution to this kind of ‘garbage’ problem is as follows:

1. Computef,(z) with k queries tesAT.

2. Copy the outcome onto an extra auxiliary qubit (by settivegauxiliary bitb to
theEXCLUSIVE ORof b and the outcome).

3. Reverse the computation ff(x) making anothek queries tesAT.

Observe that when we compufgx) in this way, all the phase changes and registers
are reset and are in the same state as before compytaxgept for the auxiliary qubit
that contains the answer. Since the subroutine was ekagctif EQP) the answer
bit is a classical bit and will not interfere with the rest betcomputation. Note that
this corresponds exactly to one oracle callftoThus we simulated call to f with
2k queries tosAT and hence have established a way of producing the desiredosta
Equation 4.1.

The second part of the theorem is proved in a similar way nawgugart 2 of
Fact 6. O
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4.6 Terseness, and other Complexity Classes

The quantum techniques described above are quite generabarbe applied to sets
outside ofNP. Classically the following question has been studied (42¢for more
information). For any setl define the functionF (1, ..., z,) = (A(z1) - -+ A(wy,))
which is ann bit vector telling which of ther;’s is in A and which ones are not. A
basic question now is: how many queries4alo we need to compute*? Sets for
which F#* can not be computed with less thamueries toA (i.e., F* ¢ FpAln—1l
are calledP-terse.We call the decision problem P-superterséf F! ¢ FPXI=1 for
any setX. The next theorem shows that this last notion is not usefthénquantum
setting.

Theorem 6 Let A be a subset oN and let the functiorF : N* — A" be defined
by FA(xy,. .. 1) == (A(x1),..., A(x,)), whereA(z) = 0 if z ¢ A andA(z) = 1
if x € A. For any setA there exists a set C N such that for alh we haveF? ¢
FEQP*I.

Proof. Let X be the following set:

X = {<zl---zn,:c1---xn>|(F7f‘(zl,...,zn),x1---xn) =1}.

Using the same approach as the proof of Theorem 5 it is nottbaeke thaf’* can be
computed relativeX’ with only a single query. O

Using the same idea we can prove the following general timeat@out oracles for
complexity classes other th&iP.

Theorem 7 LetC be a complexity class and the se&k? -complete forC.
1. If C is closed under? -reductions thefP¢ = FP* C FEQPA!" = FEQP!Y,
2. If C is closed undex?”,-reductions theffiP¢ = FP* C FEQPA!Y = FEQP*I",

Proof. Let f be the function we want to compute relative4oWithout loss of gener-
ality we assume that( f(z)) = ¢(z)° for somec depending only orf. As before we
construct the following set:

X = {G&ul(f(z),y) =1,andi(y) = £(z)° = £(f(2))}.

As in Theorem 6 it follows thaff (z) is computable with one quantum query o
SinceC is closed undek?.-reductions and{ <. A, it follows that X € C. Further-
more, sinceA is <P -complete forC it also follows thatX <? A. Thus the quantum
guery can be made td itself instead ofX'. The proof of the second part of the theorem
is analogous to the first. O

This last theorem gives us immediately the following two heas about quantum
computation with oracles for some known complexity classes
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Lemma4
FPPSPACE g FEQPPSPACE[H
FPEXP g FEQPEXP[H
FPAT C FEQPAM

for the Delta levels\? in the polynomial time hierarchy.
Lemma 5

FPP C FEQPP"!
P C FEQPOIM

M

. »P
with©? , =P,

The first lemma holds in particular fot = QBF (the set of true quantified Boolean
formulae) which iPSPACE-complete. Observe also that the situation is quite differe
in the classical setting, since fBXP-complete sets the above is simply not true.

4.7 Conclusions and Open Problems

We have combined techniques from complexity theory withsofithe known quan-
tum algorithms. In doing so we showed that a quantum compmatercompute cer-
tain functions with fewer queries than classical deterstioicomputers. Many ques-
tion however remain. Is it possible to get trade-off reshtsveen the adaptive class

EQP"P* and the non-adaptiieQP""*2* Y for quantum machines? Are the results we
present here optimal? (Especially the recent results oct eearching in an ordered
list{41] and [56] deserve further analysis as they seem ¢mast a reduction of the
guantum query complexity of Theorems 4 and 5 by a factor of)two

What can one deduce from the assumption A&t C EQP"PU? |s it true that for
any set4 we haveP* C EQP“™ or are there sets where this is not true? A random set
would be a good candidate where more than one quantum quegegessary.



Chapter 5
Quantum Algorithms and Combinatorics

In this chapter we investigate how we can employ the structu of combinatorial
objects like Hadamard matrices and weighing matrices to dege new quantum
algorithms. We show how the properties of a weighing matrix an be used to con-
struct a problem for which the quantum query complexity is significantly lower
than the classical one. It is pointed out that this scheme capres both Bernstein
& Vazirani’s inner-product protocol, as well as Grover’s search algorithm.

In the second part we consider Paley’s construction of Hadalrd matrices to
design a more specific problem that uses the Legendre symbgl(which indicates
if an element of a finite fieldF,» is a quadratic residue or not). It is shown how
for a shifted Legendre function f;(x) = x(x + s), the unknown s € F,. can
be obtained exactly with only two quantum calls tofs. This is in sharp contrast
with the observation that any classical, probabilistic pracedure requires at least
k log p queries to solve the same problem.

5.1 Combinatorics, Hadamard and Weighing Matrices

The matrixH associated with the Hadamard transform is—in the conteguahtum
computation—called the ‘Hadamard matrix’. This termirgjas perhaps unfortunate
because the same term has already been used in combintdaas®r a much broader
concept. (See the 1893 article by Jacques Hadamard[50jdartgin of this term.)

Definition 7 (Hadamard matrix in combinatorics) A matrix M € {—1,+1}"*" is
called aHadamard matrixf and only if M - M" = n - 1,, where T” denotes the
transpose of a matrix.

Obviously, when)/ is a Hadamard matrix, the% € U(n) is a unitary matrix . The
following two standard results are easy to verify.

e If M is a Hadamard matrix, then the dimensionéfwill be 1, 2 or divisible by
4.

39
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e If M; and M, are Hadamard matrices, then their tensor proddctr M, is a
Hadamard matrix as well.

It is a famous open problem whether or not there exists a Hadhmatrix for every
dimensiondk.

The H®" matrices, which we encountered before, form only a smalssubf all
the Hadamard matrices that we know in combinatorics. ldstb@ matrices/2" - HE"
should perhaps be called “Hadamard matrices of the Sylvkstd” after the author
who first discussed this specific family of matrices.[96]

The properties of Hadamard matrices (especially the abeveionedik-question)
is an intensively studied topic in combinatorics, and its\ptexity is impressive given
the simple definition.[33, 51, 85, 86, 93] In 1933, RaymontePproved the exis-
tence of two families of Hadamard matrices that are veryediffit from Sylvester’s
2"-construction.

Fact 8 (Paley construction | and Il) I: For every primep with p = 3 mod 4 and ev-
ery integerk, there exists a Hadamard matrix of dimensiph+ 1) x (p* +1). Il: For
every primep with p = 1 mod 4 and every integek, there exists a Hadamard matrix
of dimension2p* + 2) x (2p* + 2).

Proof: See the original article [76]. 0
For here it suffices to say that Paley’s construction useth#wy of quadratic residues
over finite fieldsF,. We will discuss this topic in Section 5.3 in order to acqukre
necessary tools for the construction of the quantum algoraf Theorem 9.

One can extend the notion of Hadamard matrices by allowiregthossible matrix
elementg —1,+1, 0}, while still requiring thel/ - M™ T, restriction. We thus reach
the following definition.

Definition 8 (Weighing matrix [33, 85]) A matrix M € {—1,0,+1}"*" is called a
weighing matrixif and only if M - M" = k -1,, for some0 < k < n. The set of such
matrices is denoted by (n, k).

By looking at a row of a matrix/ € {—1,0,+1}"*", we see thad/ - MT = k- I,, im-
plies that this row has has- k zeros, and entries “+1” or “ —1". As aresultW(n, n)
are the Hadamard matrices again, whei&&s, n — 1) are callecconference matrices.
The identity matrixI,, is an example of &V(n, 1) matrix. If M; € W(n4, k) and
M, € W(ns, ko), then their tensor produdt/; ® M, is an element oV (nyns, k1ks).
This implies that for every weighing matrix/ € W(n, k) we have in fact a whole
family of matricesM®* € W(n', k'), indexed byt € N.

Example 1

41 41 +1 0\®

+1 -1 0 +1
+1 0 -1 -1
0 +1 -1 +1

is aW (4!, 3") weighing matrix.
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The observation that for eveiy/ € W(n, k) the matrixﬁ - M € U(n) is a unitary
matrix makes the connection between combinatorics andgoecomputation that we
explore in this chapter. In the next section we will see hoswttutually orthogonal ba-
sis of such a matrix can be used for a query efficient quantgoriéhm. The classical
lower bound for the same problem is proven using standaaiside tree arguments.

5.2 Quantum Algorithms for Weighing Matrices

In this section we will describe a general weighing-mapigblem and its quantum
solution. But before doing so, we first mention the followstgte-construction lemma
which follows directly from earlier results on Grover’s sgfaalgorithm.

Lemma 6 (State construction lemma)Letf : {1,...,n} — {—1,0,+1} be a black-
box function. If we know that: of the function values are+1” or “—1”, and the
remainingn — k entries are(t”, then the preparation of the state

I &<,
f) = ﬁ;m)m

requires no more thaft. , /| + 1 quantum evaluations of the black-box functipn
Whenk = n, a single query is sufficient.

Proof: First, we use the amplitude amplification process of Grevaearch algorithm
[48] to creategxactly,the state

1 ~— .
ﬁ;m

f()#0

with < [g\/ﬁ queries tof. (See the article by Boyesat al. [25] for a derivation of
this upper bound. Obviously, no queries are requirédf n.) After that, following
Fact 2, one additiongf-call is sufficient to insert the proper amplitudes, yielglthe
desired statéf). 0

We will now define the central problem of this chapter, whisbuanes the existence
of a weighing matrix.

Definition 9 (Weighing matrix problem) Let M be aW(n, k) weighing matrix. De-
fine a set ofy functionsfM : {1,...,n} — {—1,0,+1} for everys € {1,...,n}
by

f6) = M.

Given a functionf™ in the form of a black-box, we want to calculate the parameter
The (probabilistic) query complexity of the weighing matproblem is the minimum
number of calls to the functiofi that is necessary to determine the valy&vith high
probability).
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With the quantum protocol of Lemma 6 we can solve this probteastraightforward
way.

Theorem 8 (Quantum algorithm for the weighing matrix problem) Given a matrix
M € W(n, k) with the corresponding query problem of Definition 9, thexésts a
quantum algorithm that exactly determinewith [% /%] + 1 queries tof . (When
n = k, the problem can be solved with one query to the function.)
Proof: First, prepare the staf¢,’) = - >, fM(i)]i) with [,/%] + 1 queries to
the functionf. Then, measure the state in the basis spanned by the vegtors f11),
..My, BecauseM is a weighing matrix, this basis is orthogonal and hence the
outcome of the measurement gives us the val(séa the outcome ) without error.

0
For every possible weighing matrix, this result estabksheseparation between the
guantum and the classical query complexity of the problenis ahown by the follow-
ing classical lower bound.

Lemma 7 (Classical lower bounds for the weighing matrix protbem) Consider the
problem of Definition 9 for a weighing matrixI € W(n, k). Letd be the number
of queries used by a classical algorithm that recovexsth an error probability of.
Then, this query complexity is bounded from below by

d = logg(1l —e) +loggn,
d Z (1 - 6)% - %a
d > log((l—en+n—k)—log(n—k+1).

(For the case wheile= n, this lower bound equals> log(1 — ¢) + logn.)

Proof: We will prove these bounds by considering the decision tilegisdescribe the
possible classical protocols. The procedure starts atoibieof the tree and this node
contains the first indexthat the protocol queries to the functign Depending on the
outcomef (i) € {—1,0,+1}, the protocol follows one of the (three) outgoing edges to
a new noder, which contains the next query indéx This routine is repeated until
the procedure reaches one of the leaves of the tree. At tivett flue protocol guesses
which function it has been querying. With this representatithe depth of such a
tree reflects the number of queries that the protocol useie wie number of leaves
(nodes without outgoing edges) indicates how many diffiefmctions the procedure
can distinguish.

For a probabilistic algorithm with error probability we need to have decision
trees with at leastl — ¢)n leaves. Because the number of outgoing edges cannot be
bigger tharB, a tree with deptld has maximally3¢ leaves. This proves the first lower
bound via3? > (1 — &)n.

For the second and third bound we have to analyze the maxinzerofshe optimal
decision tree as it depends on the valbesdn. We know that for every indei,, there
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are onlyk different functions withf (i, ) # 0. This implies that at every nodethe joint
number of leaves of the two subtrees (associated with threomesf(i,) = —1 and
+1) cannot be bigger thah. Hence, by considering the path (starting from the root)
along the edges that correspond to the answigry = 0, we see that a decision tree
with d queries, can distinguish no more th&n-+ 1 functions. (Consider for example
the case wheré = 1.) Similarly, we can use the observation that there are gxact
n — k functions withf(i,) = 0 for every noder. This tells us that a tree with depth
has a maximum number of leaves2§f+ (2¢ — 1)(n — k). O
The above bounds simplify significantly when we express thsnfunctions of (big
enough)n. This gives us the following table (note that the quantum glexity holds
for the exact solution with = 0):

k  quantum upper bound classical lower bound

o(n) [TV/E]+1 (1-¢)7 —0(1)
O(n) O(1) log, n + logs(1 — ¢)
n 1 logn + log(1 — ¢)

Note that the:-dimensional identity matrix is ¥/(n, 1) weighing matrix, and that
for thisI,, the previous theorem and lemma are just a rephrasing {with1) of the
results on Grover’s search algorithm for exactly one maighantry. The algorithm
of Bernstein & Vazirani is also captured by the above as tlse e@herek has the
maximum valuek = n (with the weighing matrice$y/2 - H)®* € W(2%,2)). Hence
we can think of those two algorithms as the extreme instantéise more general
weighing matrix problem.

As we phrased it, a weighing matri¥ € W(n, k) gives only a input-size specific
problem for which there is a classical/quantum separatiahnot a problem that is
defined for every input sizé/, as is more customary. We know, however, that for
every such matrix\/, the tensor products/®* are alsol (n', k') weighing matrices
(for all t € N). We therefore have the following direct consequence ofesults.

Lemma 8 Every weighing matrix(f € W(n, k) leads—via the set of matricé$®' ¢
W(nt, k')—to a weighing matrix problem foN = n' and K = k' = N'°&.k By
definingy = 1 — log, k we have, for every suitabl®’, a quantum algorithm with
query complexityz /N7 for which there is a classical, probabilistic lower bound of
(1—¢)-N7.

Example 2 Using theW (4, 3") weighing matrices of Example 1, we haye= 1 —
+log3 ~ 0.21, and hence a quantum algorithm with query complekiy’-'°--. The
corresponding classical probabilistic, lower bound o§ tioblem i1 — &) - N%2!-,

A legitimate objection against the weighing-matrix-prerolis that it does not seem
to be very useful (besides the known boundary cdses 1 andk = n). In order
to obtain more natural problems one can try to look into thecd structure that
constitutes the weighing matrix or matrices. An exampleuaihsan approach will be
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given in the next two sections via Paley’s construction ofltraard matrices. We will
see how this leads to the definition of a problem about quiadeidues of finite fields
with a quantum solution that is more efficient than any ctadgrotocol.

5.3 Quadratic Residues of Finite Fields

This section describes some standard results about gitadesidues and Legendre
symbols over finite fields. Readers familiar with this topancsafely skip the next

paragraphs and continue with Section 5.6. For more backgrmformation one can

look up references like [32] or [57].

5.4 Finite Field Factoids

From now onp denotes an odd prime. It is known that there always existsargéor

¢ for the multiplicative grou”,. = I, \{0}. [32, 57] This means that the sequence
¢,¢% 3, ... will generate all non-zero elementsBf. . As this is a set of sizg* — 1,

it follows that¢?" = ¢,and henc«f(i’k*” = 1. Hence we have the equality

¢('=¢ ifandonlyif i=jmod (p* 1) (5.1)

for every integet and;.
We now turn our attention to the definition of teneralized Legendre sym{8R]

Definition 10 (Legendre symbol over finite fields) For every finite fieldF,, with p
an odd prime, the Legendre symbol-functipn F,. — {—1,0,+1} indicates if a
number is a quadratic residue or not, and is thus defined by

0 ifz=0
x(x) = +1 ifIyA0:9*=2x
-1 ifVy:y? # .
By Equation 5.1, the quadratic expressiagh)? = ¢ = (' is correct if and only if
27 = i mod p* — 1. Asp is odd,p* — 1 will be even, and hence there can only exists
aj with (¢/)? = ¢ wheni is even. Obviously, if is even, ther? with j = % gives a
solution to our quadratic equation. This proves th#t of the elements om‘;k are a

quadratic residue witly(x) = +1, while the other half hag(z) = —1. In particular,
x(¢") = (=1)*, and hence for the total sum of the function valugs; x () = 0.

5.5 Multiplicative Characters over Finite Fields

The rule x(¢*) - x(¢/) = x(¢**7), in combination withy(0) = 0, shows that the
Legendre symbok is a multiplicative charactemwith x(z) - x(y) = x(xy) for all
T,y €< ]Fpk.
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Definition 11 (Multiplicative characters over finite fields) The functiony : F,» —

C is amultiplicative characteif and only if x(zy) = x(x)x(y) for all z,y € F,:. The
constant functiory(xz) = 1 is called the trivial character. (We do not consider the othe
trivial function x(z) = 0.)

See [32, 57] for the usage of multiplicative characters imber theory. They have the
following elementary properties, which we present withonatof:

e x(1)=1,

for all nonzerar, the valuex(z) is a(p* — 1)th root of unity,

if x is nontrivial, we have((0) = 0,

*

the inverse of nonzere obeysy(z ') = x(z) " = x(z)*,

e > _x(z) =0 for nontrivial x.

The remainder of this section is used to prove a ‘near orthalify’ property, typical
for nontrivial characters, which will be the crucial ingrexdt of the quantum algorithm
of the next section.

Lemma 9 (Near orthogonality of shifted characters) Consider a nontrivial charac-
terx : F,. — C. For the ‘complex inner product’ between twes that are shifted by
s andr € F, it holds that

f )
» B pt—1 ifs=r

2 M+ x(ats) = { —1 ifs#r.

mE]Fpk

Proof: Rewrite

doxr+r)xz+s) = D x@) x(x+4)

CEEFpk .’,CE]Fpk

with A = s — r. If s = 7 this sum equalg* — 1. Otherwise, we can use the fact that
X(@)'x(x+A) =x(1+z27"A) = x(A)x(A™! + z71) (for z # 0) to reach

> x@)xx+A) = x(A) ) x(At+ah.

:L‘GFpk .’EE]F;k

Earlier we noticed tha} _ x(z) = 0, and therefore in the above summation (where
the valuer = 0 is omitted) we have"_ x(z ' +A') = —x(A!). This confirms
that indeed

X(A) Yo Xt AT = -1

ref*
Epk

which finishes the proof. O
We will use this lemma in the setting where the characterastirlier described Leg-
endre symbol.
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5.6 The shifted Legendre Symbol Problem

Raymond Paley used the near orthogonality property of tlgeehére symbol for the
construction of his Hadamard matrices.[76] Here we will theesame property to de-
scribe a problem that, much like the above weighing matwbf@m, has a gap between
its quantum and its classical query complexity. In light dfebrem 8 and Lemma 7
the results of this section are probably not very surprisiRather, we wish to give an
example of how we can borrow the ideas behind the construoficombinatorial ob-
jects to design new quantum algorithms. In this case thismedy stating a problem
that uses the Legendre symbol over finite fields.

Definition 12 (Shifted Legendre Symbol Problem)Assume that we have a black-
box for a shifted Legendre functiofy : F,» — {—1,0,+1} that obeys

fi(x) = x(z+s),

with the—for us unknown—shift parameterc F,.. (Recall Definition 10 for a de-
scription ofy.) The task is to determine the valsavith a minimum number of calls
to the functionf.

First we will prove a lower bound for the classical query céempy of this problem.
This proof is almost identical to the lower bounds of Lemmarzie weighing matrix
problem.

Lemma 10 (Classical lower bound for the SLS problem)Assume a classical algo-
rithm that tries to solve the shifted Legendre symbol probtever a finite fieldr,,

To determine the requested valuavith a maximum error rate, requires more than
klogp + log(1 — &) — 1 queries to the functioffi.

Proof: For every indexi, there is exactly one function witlfi(i,) = 0. For the
decision tree of a classical protocol this implies that gveydez can only have two
proper subtrees (corresponding to the ansviéis= 1 and—1) and one deciding leaf
(the casef(_;) (i) = 0). Hence, a decision tree of deptitan distinguish no more than
24+l 1 dn"ferent functions. In order to be able to differentiatevbeen (1 — ¢)p*
functions, we thus need a depttof at leastiog((1 — &)p* — 1). O

The next theorem shows us how—with a quantum computer—weezvers
exactly with only two queries.

Theorem 9 (Two Query Quantum Algorithm for the SLS Problem) For any finite
fieldF, , the problem of Definition 12 can be solved exactly with twagtum queries
to the black-box functiorf.

Proof: We exhibit the quantum algorithm in detail. We start with superposition

|star} [dummy)|[1).

ﬁ(z K °) 7
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(The reason for the “dummy” part of state that we use will lBaclater in the analysis.)
The first oracle call is used to calculate the differgntalues for the non-dummy states,

giving

1 1
|starb Ef: Jril m;;k |z)| f5(2)) +\/ﬁldummw|l>

= [ Y @) | + -[dummy1).

1
VpF+1 rel \/ Pk +

At this point, we measure the rightmost register to see ibittains the value “zero”.

If this is indeed the case (probabiliyi—l), the state has collapsed|te- s)|0) which
directly gives us the desired answerOtherwise, we continue with the now reduced
State

[ Y e+ +%|dumm9|1>, (5.2)

VI e vt

on which we apply a conditional phase change (dependingeon ¥alues in the right-
most register). We finish the computing by ‘erasing’ thishtigost register with a
second call tof;. (For the dummy part, we just reset the value to “zero”.) TUnes
us the final state’, depending om, of the form

60 = —— [ 3 (@ +9)) |o>+%|dumm»|o>.

i\ v

(Notice how theyx(z + s) amplitude is zero for the missing entry = —s in the
summation oveF,: .)

What is left to show is thaf|y,)|s € F,} forms a set of orthogonal vectors.
Lemma 9 tells us that for the inner product between two statesd, it holds that

W) = ik > x(@+7)x(@+5) +ik
p mE]Fpk p

B 1 ifs=r

N 0 ifs#nr.
In other words, the states for s € IF,» are mutually orthogonal. Hence, by measuring
the final state in the-basis, we can determine without error the shift factar I,
after only two oracle calls to the functigf. 0

More recently, Peter Hgyer has shown the existence of a oaey quotocol for the
same problem.[private communication]
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The above algorithm only reduces theery complexityo f,. Thetime complexity
of the protocol is another matter, as we did not explain hopeidorm the final mea-
surement along the axes in a time-efficient way. In a recent article [37] it is wino
how one can implement the unitary mapping

) S @+ 9)la) | + ——|dummy)

i\ N

with an efficient quantum circuit of depth polylqg).

5.7 Conclusion

We have established a connection between the construdtimeighing matrices in
combinatorics, and the design of new quantum algorithmgvalt shown how every
weighing matrix leads to a query problem that has a more efficuantum solution
than is possible classically.

Using the structure of quadratic residues over finite fialsgave an explicit ex-
ample of a task with constant quantum query complexity, bgafithmic classical
guery complexity.

The implicit goal of this chapter was to suggest new poss#slfor the construc-
tion of useful quantum algorithms. Other results on Hadamaatrices that are espe-
cially interesting in this context are, for example, the péem Hadamard matrices of
Turyn[100] and the Hadamard matrices of the dihedral grgpp[61, 90].



Chapter 6

Self-Testing of Quantum Gates

This chapter concerns the problem how to test the behavior aé quantum gate. If
we think that we have a Hadamard gateH, how can we be sure thafd behaves
indeed correctly on all possible input qubitsa|0) + 3|1)? How can we test this
without having to rely on other quantum mechanical componets that can be
equally unreliable? These questions concern thgslf-testability of quantum gates.

We show how some gates or families of gates are self-testalbereas others
are not. These self-testing procedures are also “robust”. ¥this we mean that the
error during the test-procedure and the error of the gate areproportional: If we
detect a small error during the testing-procedure, then ths will always correspond
to a small error in the gate. The method is also extended to twqubit gates.

6.1 Introduction

We consider the design of self-testers for quantum gateselfAester for the gates
F., ..., F,, is aclassical procedure that, given any gaks. .., G,,, decides with
high probability if eachG; is close toF';. This decision has to rely only on measuring
in the computational basis the effect of iterating the gateshe classical states. It
turns out that instead of individual gates, we can only depigpcedures for families
of gates. To achieve our goal we borrow some elegant idedsedheory of program
testing: we characterize the gate families by specific ptase we develop a theory
of robustness for them, and show that they lead to selfseshe particular we prove
that the universal and fault-tolerant set of gates comgjsif a Hadamard gate (&Not
gate, and a phase rotation gate of arigle self-testable.

The idea of self-testing in quantum devices is implicit ia thork of Adleman, De-
marrais and Huang[1]. They have developed a procedure bgtmehquantum Turing
machine is able to estimate its internal angle by its own rmeader the hypothesis that
the machine is unitary. In the context of quantum cryptogyallayers and Yao[71]
have designed tests for deciding if a photon source is geiféese tests guarantee that

49



50 Chapter 6. Self-Testing of Quantum Gates

if source passes them then it is adequate for the securityeoBénnett-Brassard[20]
guantum key distribution protocol.

Here we develop the theory of self-testing of quantum gayesl&ssical proce-
dures. Given a completely positive super operator (CRS@)r n qubits, and a fam-
ily F of unitary CPSOs, we would like to decide@ belongs toF. Intuitively, a
self-tester is a procedure that answers the questiornc" F ?” by interacting with
the CPSOG in a purely classical way. More precisely, it will be a proligbc al-
gorithm that is able to acce€s as a black box in the following sense: it can prepare
the classical states € {0, 1}", iterateG on these states, and afterwards, measure in
the computational basis. The access must be seen as a wadtanped by a spe-
cific, experimental oracle fo&': once the basis state and the number of iteratioris
have been specified, the program in one step gets back one pdssible probabilistic
outcomes of measuring the state of the system &ftes iteratedk-times onw. The
intermediate quantum states of this process cannot be ysbd program, which can-
not perform any other quantum operations either. (Fer §; < J,, such an algorithm
will be a (6;, d)-tester forF if for every CPSOG, whenever the distance 6 and
F is at mostd; (in some norm), it accepts with high probability, and whesrethe
same distance is greater than it rejects with high probability, where the probability
is taken over the measurements performed by the oracle atie liyternal coin tosses
of the algorithm. Finally we will say thaf is testablef for every d, > 0, there exists
0 < §; < J, such that there exists (@, 6, )-tester forF. These definitions can be
extended to several classes of CPSOs.

The study of self-testing programs is a well-establishegaech area which was
initiated by the work of Blum, Luby and Rubinfeld[24], Rulbahd[79], Lipton[69] and
Gemmelet al. [47]. The purpose of a self-tester for a function family isdetect by
simple means if a program which is accessible as an oraclputsa specific function
from the given family. This clearly inspired the definitiohawr self-testers which have
the peculiarity that they should test quantum objects thet tan access only in some
restricted manner. The analogy with self-testing does togt with the definition. One
of the main tools in self-testing of function families is thlkaracterization of these
families by robust properties. Informally, a property idust if whenever a function
satisfies the property approximately, then it is close torection which satisfies it
exactly. The concept of robustness was introduced and pBdation for self-testing
was first studied by Rubinfeld and Sudan[81] and by Rubif@8d It will play a
crucial role in our case as well.

We note in the Preliminaries that for any reathe stateg1) andel?|1) are ex-
perimentally indistinguishable. This implies that if bdkte input states and the mea-
surement basis vectors are the classical stajesnd|1), then there are ‘families’ of
CPSOs which are mutually indistinguishable. For exam@etHe CPSCH be the
well-known Hadamard gate with

10) = 7(10) +11)) and [1) = (|0) - [1)),
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and letH,, be the same gate expressed in the b@8}se'?|1)), hence

10) = 5(10) +e?[1)) and [1) = Z5(e7?]0) — [1)),
for ¢ € [0,27). Any experiment that used and starts with the staté) or |1) will
produce the outcome®™and “1” with the same probabilities as the same experiment
with the Hy gate. Thus, no experiment that uses this quantum gate asondistin-
guishH from H,. Indeed, as stated later in Fact 15, we will have to consitestable
‘family’ F = {Hy|¢ € [0,27)} containing allH, gates.

The main result is Theorem 15 which states that for sevetaldeinitary CPSOs,
in particular, the Hadamard gates family, Hadamard gatgstbher withCNot gates,
and Hadamard gates witiNot and phase rotation gates of angt€, are testable.
This last family is of particular importance since everylet in the family forms a
universal and fault-tolerant set of gates for quantum cdatpmn[26].

For the proof we will define the notion of experimental eqoiasi which are func-
tional equations for CPSOs corresponding to the propeofi¢ise quantum gate that
a self-tester can approximately test. These tests are dartherinteraction with the
experimental oracle. The proof itself contains three pant3heorems 10, 11, and 12
we will exhibit experimental equations for the families ofitary CPSOs we want to
characterize. In Theorem 13 we will show that actually afjexxmental equations are
robust; in fact, the distance of a CPSO from the target famsipolynomially related to
the error tolerated in the experimental equations. Fingtigorem 14 gives self-testers
for CPSO families which are characterized by a finite set bfisb experimental equa-
tions.

In some cases, we are able to calculate explicitly the paolyabbound in the
robustness of experimental equations. Such a result willllstrated in Lemma 14
for the equations characterizing the Hadamard fafily, }.

Technically, these results will be based on the representat one-qubit states and
CPSOs inR?, where they are respectively vectors in the unit balkRdf and particular
affine transformations. This correspondence is known aBltieh Ball representation.

6.2 The Bloch Ball representation

Specific for the one-qubit case there is a very appealing Walescribing both the
states and its unitary transformationssidimensional Euclidean space, known as the
Bloch ball picture. This representation relies on the isgghsm between the group
U(2)/U(1) and the special rotation groy®(3), the set of3 x 3 orthogonal matrices
with determinant. This allows us to view one-qubit states as vectors in thehaili
of R?, and unitary superoperators as rotation®nWe will now describe exactly this
correspondence.

The Bloch Ball B (respectivelyBloch SphereS) is the ball (sphere) with radiuis
of the Euclidean affine spa@®. Any pointi € R?* determines a vector with the same



52 Chapter 6. Self-Testing of Quantum Gates

coordinates which we will also denote lay The inner product ofi and ' will be
denoted by(#, 7'), and the Euclidean norm afby ||i||.

Using spherical coordinates, we can characterize each goinR? by its norm
r > 0, its latitudef € [0, x|, and its longitudeb € [0, 27). Thelatitudeis the angle
between the-axis and the vectat, and thdongitudeis the angle between theaxis
and the orthogonal projection afin the plane defined by = 0. If @ = (2, v, 2)7,
then these parameters satisfy= 7 sinf cos ¢, y = rsinfsin ¢ andz = r cos . For
every(z,y, z)" € B C R? there exists a unique density matrix such that

. S - (T
?; N r4+iy 1—z |

2 P

This mapping is a bijection that also obeys

a 1—p
o+ o
= 10 — i
2p—1

In this formalism, the pure states are nicely characterizdgiby their norm.

Fact 9 A density matrixp represents a pure state if and onlg i€ S, that is,||p]| = 1.

Also, if § € [0,7] and¢ € [0,27) are respectively the latitude and the longitude of
J € &S, then the corresponding density matrix represents a pate ahd satisfies
1) = cos(£)|0) +sin(%)e!?|1). Observe that the pure stateg and|¢) are orthogonal
if and only if@Z = —d_f. We will use the following notation for the six pure statesrgj
thez, y andz axes:|(;) = Z5(|0) £ (1)), |¢;) = 5(/0) £i[1)), |¢F) = |0), and
|C;) = |1), with the respective coordinatés1, 0, 0), (0, £1,0) and(0,0, £1) in R?.

For each CPSW@~, there exists a unique affine transformati@nover R?, which

maps the ball3 into B and is such that, for all density matricesG(7) = G(p;.
Unitary superoperators have a nice characterizatidh in

Fact 10 The map betweebl(2)/U(1) andSO(3) that sendsA to A, is an isomor-
phism.

Fora € (—m, ], 0 € [0, 3], and¢ € [0, 27), we will define the unitary transformation
Ra,0,6 OVerH,. If [¢)) = cos(4)]0) + ¢ sin(4)[1) and|pt) = sin(£)]0) —e'? cos(£)[1)
then by definitionR, 4 4¢) = |¢) andR, .4|¢*) = e*[y+). If A is a unitary super-
operator then we havd = R, 44 for someq, 6, and¢. In R® the transformation
f{a,a,¢ Is the rotation of angle: whose axis cuts the sphesein the opposite point§
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and—1/7 = @ﬁ Note that ford = 0 the CPSOR,, ¢, does not depend op. We will
denote this phase rotation y,.

The affine transformation i which corresponds to the Von Neumann measure-
ment in the computational basis is the orthogonal projadiiothez-axis. Therefore
it mapsg = (z,v, 2) into (0,0, z), the point which corresponds to the density matrix
L210)(0] 4+ L52|1)(1]. ThusProb’[p] = =,

6.3 Norm and Distance

Consider the space of x n dimensional, complex valued matrices. We define the
trace normfor this space as follows.

Definition 13 (Trace norm) Let A € M, (C) be a complex valued matrix, the trace
norm is defined by

JAll, = (VAA)
- zn:o—ia
=1

whereA* is the conjugate transpose éfando,, o, ... are thesingular valueof A.
(See the appendix of thesis or [54] for more information asthterms.)

Definition 14 (Euclidean norm) For A € M, (C) a complex valued matrix, itEu-
clidean norm's define by

(6.1)

(6.2)

with o; the singular values of the matrik.

Both norms arenatrix normsbecause they obey the following properties (see Chapter 5
in [54] for much more on this topic):

1. nonnegativel|A|| > 0
2. positive:||A|| = 0ifand onlyif A =0
3. homogeneousiaA|| = |af - ||A|| foralla« € C

4. triangle inequality]| A + B|| < ||A]| + || B]|
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5. submultiplicativej| AB|| < ||A4]|| - || B]|-
In addition, for the tensor product between two matricesailse have the equality
o |[A® B[ = [Al-]Bll

A very useful relation between the trace and the Euclideamns easily established

by the inequalities />, 07 < Y. 0; < \/ny/Y_, 07 with the summation over the

singular values. We thus have
1Al < Al < VallAl, (6.3)

forall A € M, (C).

The trace norm has several advantages when we considerfigrenice between
two quantum states; andp,. Given a measurement settifg= { P;} (with the nor-
malization restrictiory _, PP, = I), a density matriy induces a probability distribu-
tion Prob(P;|p) over the different projectorB;. It can be shown that in this setting, the
trace norm of the difference, — p, is themaximal total variation distancbetween
the two states:

lor = pollyy = max (1;7 [Prob(“p1 = F;") — Prob(“p, = F;") )a
i€

where the maximization is taken over all measurement ggstfm This result suggests
that the expressiofip, — ps||,, is a natural way of measuring the difference between
the two stateg, andp,. The following Fact strengthens this belief.

Fact 11 The trace-norm distance between two qubit statesndp is identical to the
Euclidean distance betweer andps in the Bloch ball representation:

||P1—P2||tr = ||E>—@>||2-

For the density matricesp, o) andp(q, ) this value is explicitly expressed by

Ip(p, ) = p(q. B)ll, = 2V (p—q)?+ la— B~

6.4 Norms on Superoperators

Definition 15 (Trace Induced Superoperator Norm) For superoperators, the norm
induced by the trace norm is defined as

IGll, ~ m{w}

X0 L (1 XTL,
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We will denote bydist,, the natural induced distance by the ndrm||,,:

diSttr(F,G) = |||F_G|”tr
- [ IF0 =GO
X0 1 X 1],

As | - ||, is a norm, the usual properties liKeF' + G|, < ||F|,. + IG],, and
leF|,. = ||| F],, hold. Furthermore, we also have for every powes N:

dist, (F*, GF) < k-dist,(F,Q),

which we will use later in this chapter.

6.5 Properties of CPSOs

Here we will establish the properties of CPSOs that we wilchéor the characteriza-
tion of our CPSO families.

Fact 12 (Monotonicity of the trace-norm distance [82]) Let G be a completely pos-
itive, trace preserving transformation (a CPSO). The tramen distance between two
States is non-increasing under the actiotzof

1G (1) = G(p)llee < o2 = p2lliss
for all quantum states, andps.

Proof: First we rewrite the Hermitian difference matyix— p, according to its spectral
decompositionp; — ps = Aoy — Aaoe With A, Ay > 0, ando; and o, two unit
trace, Hermitian matrices that obeyo, = 0. Because the trace of the matfix —
p2) is zero and|oy — 0|, = 2, we have\; = Xy = 1|[p1 — p2f|,,- We conclude
the proof by using the triangle inequality and the homoggrithe norm|| - ||,,, in
combination with the requirement that tBeis a completely positive, trace preserving
linear superoperator:

1G(p1 = p2)|l;y = |G(Aor+ (=A1)o9)]l,,
< MGl + A [|G(o2) [,
= ||,01 - p2||tr'

O

Definition 16 (Constant transformation) A transformation isconstantf it maps all
States to the same output state.

Fact 13 If the mixturepp, +(1—p)po (with the non-degenerate probabilityx p < 1)
is a pure state, then bottp, andp, are identical tax as well.



56 Chapter 6. Self-Testing of Quantum Gates

Lemma 11 If a CPSOG : M, (C) — M,,(C) maps the totally mixed statd, to a
pure stateo, thenG is constant.

Proof: Take an-dimensional statg. The density matriy’ = %51, — L p will repre-

sent a proper state, and by linearity we know thatG(p) + ;25 G(p') = G(;1,) =

l©){p|. This is only possible itZ(p) = |¢){¢| (in combination withG(p’) = |¢){¢)).
O

Lemma 12 Let G be a quantum mechanical transformation of a single qubdt,lein
p be a qubit state. I& is not constant an@(p) is a pure state, thenhas to be a pure
State.

Proof: Let p be a mixed qubit an@(p) a pure stateo. We can decomposealways
as Y)Y (Y| + (1 — Ny (@t], with £ < X < 1 and|y) orthogonal tojy). By
linearity, it follows thatG (p) = (2A — 1)G(¢)) + (2 — 2))G(51>) equals the pure state
p. Becausd) < 2\ —1 < 1and0 < 2 —2X < 1, we can conclude tha& maps
the total mixtur&;IQ to the pure state. By the previous lemma this implies tHas
constant. 0

The space oP"” x 2™ matrices has dimensioff’, hence every, qubit CPSO is
uniquely defined by the images df independent states. However, the following
lemma shows that for unitary transformations it is somesisdficient to know only
3" images.

Lemma 13 Letp,, p2, andps be three distinct qubit density matrices representing pure
states, such that there is a convex combinatign + \2ps + A3ps that represents the
totally mixed qubit%IQ. If G is a CPSO forn qubits that acts as the identity on the set
{p1, p2, p3}°", thenG is the identity mappindy: .

Proof: Let P be the set of convex combinations of the three density nestrie =
{A1p1+Aapa + A3p3| A1+ Ao+ A3 = 1; A, Ao, A3 € [0, 1]}. To simplify the discussion,
we suppose without loss of generality tatontains the states™ and¢:. By linearity
of G, we know that it acts as the identity on all the statgs - - -® 0, aslong ag, € P
forall 1 < < n. Itwill be sufficient to show tha€ is the identity on density matrices
representing non-entangled pure states, since they foasia tor all density matrices.

For everyk, let A, be the set of density matrices representirgubit non-entangled
pure states, and le8,_, = {¢&, ¢(F}®"*. We will show by induction ork that, for
every0 < k < n, the CPSQOG acts as the identity od; ® B,,_x. The case& = 0
follows by the hypothesis of the lemma.

Suppose the statement is true for sodmé&ix o € A, andr € B, ;. ;. For every
one-qubit density matrix let p denote the:-qubit density matrix ® p ® 7.

We now prove that(p) = p, for everyp € A;. For this, we use the fact that the
density matrix¥ * representing the entangled EPR st;%(amo) +|11)), can be written
in terms of tensor products of tljestates:

U= NG+ G+ G+ RG -G el ¢ o).
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This can be generalized for the pure staté) = —(/0)|0) + |1)|1)):
U = JG oG+ oG+l +E o) 5ol +{ o).
If we apply the superoperatds. ® G to the statel't we get:
I ®G)(TY) = +3(GF @G +¢ 9G)
(e + ¢ el
—3(6 ® G(G)) + ¢, ® G(G,))-
If |) and|p*) are orthogonah-qubit pure states, then It . = —5(l¢)lo") —
loH) ). Since®_ . is orthogonal to all symmetrizn-qubit pure states of the form
¥ ® v, by projecting(I,» @ G)(¥*) to®_ | we obtain:
(@l @ GYINIRL,L) = —5(20,107 © GG)I,L)
1@, .1, ®G(()IP,,L).
SinceG is a completely positive, the left-hand side of this eqyafias to be non-

negative and in the right-hand side both terms are nonipesiTherefore, for every
orthogonal-qubit pure statelp) and|p+), we get

(@00 @ GCHIR,,) = (@G @G(()®,,.) = 0.

A straightforward calculation then shows tt@(fj) = fyi ThereforeG acts as

the identity on density matricest, ( and(;", which generate all density matrices,
and thusG(p) = p. 0
We also use the property that for CPSOs unitarity and inviéityi are equivalent.

Fact 14 Let G be a CPSO fon qubits. If there exists a CPS® for n qubits such
thatF o G is the identity mapping, the@& is a unitary superoperator.

Proof:. See, for example, Chapter 3.8 in [78]. O

6.6 Characterization of CPSO Families

In this section, every CPSO will be for one qubit. First we idefihe notion of experi-
mental equations, and then we show that several importaBOdBmilies are charac-
terizable by them.

Definition 17 (Experimental equation) An experimental equatioim one CPSO vatri-
able, is an equation of the form

Prob?[G*(|b)(b])] = T, (6.4)

wherek is a nonnegative integér,c {0,1}, and0 < r < 1.



58 Chapter 6. Self-Testing of Quantum Gates

We will call the left-hand side of the equation thmbability term and the right-hand
side theconstant termThesizeof this equation i%. A CPSOG will “almost” satisfy
the equations if, for example, it is the result of adding $regétematic and random
errors (independent of time) to a CPSO that does.cFor0, the CPSOG s-satisfies
Equation 6.4 if|Prob’[G*(|b)(b])] — 7| < e, and whens = 0 we will just say that
G satisfiesEquation 6.4. Lef E'} be a finite set of experimental equations.Gfe-
satisfies all equations i} we say thatz c-satisfies{ £'}. If someG satisfies{ £'}
then{£} is satisfiable The set{G : G satisfies{ E'}} will be denoted byF;;. A
family 7 of CPSOs igharacterizabléf it is 7z, for some finite se{ £} of experi-
mental equations. In this case we say that characterizesr.

All these definitions generalize naturally for-tuples of CPSOs fom > 2. In
what follows we will need only the case = 2. An experimental equatiom two
CPSO variables is an equation of the form

Prob’[FF o G oo F* o G ([b)(b])] =

whereky, ..., ki, 1, ..., [, are nonnegative integetisc {0,1}, and0 < r < 1.

We discuss now the existence of finite sets of experimentsteans in one vari-
able that characterize unitary superoperators, that espgeratorsR, ¢4, for a €
(—m,m], 0 €[0,3], ande € [0,27). First observe that due to the restrictions of exper-
imental equations, there are unitary superoperatorshbgtdannot distinguish.

Fact 15 Leta € [0, ], 6 € [0, 5], andgy, ¢, € [0, 27) such thaty, # ¢,. Let{E} be
a finite set of experimental equationsiinvariables. If

(Rop,61: Gos - - ., Gyy,) satisfies{ E'}
then there exists, . .., G,, andG,, ..., G, such that
(R-0p.6,:Go, ..., G,) and(Rap.4,. Gy, . .., G,,) both satish{ E'}.

In the Bloch Ball formalism this corresponds to the follogyisegrees of freedom in the
choice of the orthonormal basis Bf. Since experimental equations contain exactly
the stateg0)(0| and|1)(1| there is no freedom in the choice of theaxis, but there

is complete freedom in the choice of theandy axes. The indistinguishability of the
latitude¢ corresponds to the freedom of choosing the orientedis, and the indistin-
guishability of the sign o corresponds to the freedom of choosing the orientation of
they-axis.

We introduce the following notations. L&, denote the superoperator family
{Ruap0|¢ € [0,2m)}. For¢ € [0,2m), let theNot, transformation be defined by
Notg|0) = e'?|1) andNot,(e'?|1)) = |0), and recall that the Hadamard transformation
Hy obeysH,|0) = —5(|0) + ¢?|1)) andHy(e*?[1)) = %(m) — e'?|1)). Observe that
H, = R, =, andNot, = R, =, for ¢ € [0,2m). Finally, let{H,} = {H,|¢ €
[0,27)}, and{Not,} = {Noty|¢ € [0,27)}.
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Since the sign ofv cannot be determined, we will assume thas in the interval
[0, 7]. We will also consider only unitary superoperators such this rational. This
choice is good enough since these superoperators form & dabset of all unitary
superoperators. For such a unitary superoperatot, lbe the smallest positive integer
n for whichna = 0 mod 2x. Then eithem, = 1, orn, > 2 and there exists > 1
which is coprime withn,, such thate = (;-)27. Observe that the case, = 1
corresponds to the identity superoperator.

Our first theorem shows that almost all familiRg » are characterizable by some
finite set of experimental equations. In particul&f, } is characterizable.

Theorem 10 Let (a,0) € (0,7] x (0, 5]\{(7,5)} be such that is rational. Let
ze(a, 0) = cos? 0 +sin? 0 cos(ka)). Then the following experimental equations charac-
terizeRqp:

Prob’[G™ (|1)(1))] =0 and Prob’[G*(|0)(0])] = % + 1z4(a, 0),
fork € {1,...,n4}.

Proof: First observe that every CPSO R, 4 satisfies the equations of the theorem

ey
since thez-coordinate OR’;,97¢(|0><0|) is z(a, ) for every¢ € [0,27). Let G be a
CPSO that satisfies these equations. We will prove @&t a unitary superoperator.
Then, Fact 16 implies th& € R, 4.

Since z;(a, 0) # +1, we know G(]|0)(0]) ¢ {]|0)(0],|1)(1]}. Observing that
G"(|0){0]) = |0)(0], Lemma 12 implies thaf=(|0){0|) is a pure state. Thu$)(0|,
|1)(1], and G(]0)(0|) are distinct pure states, and sinG&* acts as the identity on
them, by Lemma 13 it is the identity mapping. Hence by Faazli4 a unitary super-
operator. O

Fact16 Leta € (0,7, 0 € (0,5], o € (—m,«], ¢ € (0,5], with ¢ a rational and
no the smallest positive integer such that = 0 mod 27, and letz; be the function
2k (a, 0) = cos? § + sin? § cos(ka). If z, (o, 0) = 2 (e, 0"), fork € {1,...,n,}, then

lo/| = o andf’ = 6.

The remaining familie®,, 4 for which ¢ is rational ar{R_,, R, }, fora € [0, 7],
and {Not,}. Let us recall thatM is the CPSO that represents the Von Neumann
measurement in the computational basis. SiMesatisfies exactly the same equa-
tions asR. ., andNot, o M satisfies exactly the same equationd\ast, for every
¢ € [0,2n), these families are not characterizable by experimentatmns in one
variable. Nevertheless it turns out that together with #reify {H,} they become
characterizable. This is stated in the following theorem.

Theorem 11 The family{(H,, Not,)|¢ € [0,27)} C {H,} x {Not,} is character-
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ized by the experimental equations in two varialEsG):

If & is rational, then the familyH,} x {R..} is characterized by the experimental
equations in two variabldF', G):

Prob’[F o G™ o F(|0)(0])] =
[ Prob’[F o G o F(|0){0])] = % 5 COs Q.

Proof: By the previous theorent, is characterized by the first three experimental
equations involvingF'. Because of this we know th#t|0)(0| corresponds to the pure
state|(7) = 5(/0) +e[1)).

In combination with the knowledge thét o F|0)(0| also yields the staté?, this
tells us tha(a acts as the identity off’. Consider now the combined CPSt,; 0 G.
This operator acts as the identity on the three density o) (0], |1) (1], ¢2, which,
following Lemma 13, implies thaNot, o G is indeedI,. This is only possible ilZ
equalsNot,.

For the second part of the theorem, we employ a proof methainafar vein.
BecauseF'|0)(0| = ¢ and F o G™ o F(|0)(0]) = |0)(0], We know thatG™* acts as
the identity on the pure statg, and hence (using?|0)(0] = [0)(0] andG|1){1] =
|1)(1]) that G"* is I, which is only possible if7 is unitary. The eigenvectors of the
U(2)/U(1) rotation associated witliF are|0) and|1), and because the,-th power
of G is the identity, its two eigenvalues have to obgy = \'~. By the probability
Prob’[F o G o F(|0)(0])] = % + £ cos a it follows that\; = Aee*i®. HenceG equals
R,orR_,. O
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6.7 Characterization of CNot gates

In this section we will extend our theory of characterizataf CPSO families for
several qubits. In particular, we will show that the famify@Not gates together with
the family {H,} is characterizable. First we need some definitions.
For everyg € [0, 27), we defineCNot, as the only unitary transformation ovet
satisfyingCNot,(]0)|¢))) = |0)|¢)) andCNot,|1)|1)) = |1)Noty|¢)), for all [¢) € Hs.
We extend the definition of the experimental equation for G®8iven in Equa-
tion 6.5 forn qubits. It is an equation of the form

Prob’[F¥ o G" o ---0 F¥ o G (Jw)(w|)] = r, (6.5)

where in addition to the notation of Equation @.50 € {0,1}", andPr’ is the prob-
ability of measuringv) (v|. For the variable#” andG of Equation 6.5, we also allow
both the tensor product of two CPSO variables and the temsdupt of a CPSO vari-
able with the identity. We now state the characterization.

Theorem 12 The family{(H,, CNot,)|¢ € [0,2n)} is characterized by the experi-
mental equations in two variabléF', G):

( Prob’[F(|0)(0])] = 3
Prob’[F2(]0)(0])] = 1
Prob’[F?([1)(1])] = 0

Prob®
Prob!
Prob!!
Prob'?

100)00))]
|01)(01))]
[10)(10))]
[11)(11))]

[G( 1
[G( 1
[G( 1
[G( 1

Prob™[(I; ® F) o G o (I ® F)(|00){00])] =
Prob’[(I, ® F) 0 G o (I @ F)(]10)(10])]

1
1

Prob®[(F @ I,) 0 G* o (F ® I)(|00)(00])]

1
Prob? [(F ®1I,) 0o G? o (F ® 1,)(]01)(01])] = 1

[ Prob”[(F ® F) o G o (F ® F)(]00)(00])] = 1.

Proof: Let F andG satisfy these equations. By Theorem 10, with- 7 andf = 7,
the first three equations imply th&t = H,, for someg € [0, 27). Using Lemma 13,
the remaining equations imply th&* = 1, and it follows from Fact 14 tha is a
unitary CPSO. A straightforward verification then showd thdeedG = CNot,.

0
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6.8 Robustness

In this section we introduce the notion of robustness foreexpental equations which
will be the crucial ingredient for proving self-testabjlitFrom now on{ E'} will al-
ways denote a such a set of equations.

First we define the notion of the distance between a CPSO amaiéy/fof gates.

Definition 18 The distance between a CP$Dand a sefF of gates is defined by the
minimization
disty; (G, F) = min dist(G, F).
Fer
For a Euclidean metric, this distance would express thetthenfthe shortest line

between a point and a set. We use this generalized distandefitee a notion of
‘robustness’ for a set of experimental equations.

Definition 19 (Robustness)Lete, § > 0, and let{ E} be a set of experimental equa-
tions. We say thatE} is (¢, §)-robustif whenever a CPS@; =-satisfies E'}, we have
diSttr(G,f{E}) S 0.

When a CPSO family is characterized by a finite set of experiaieequationg £},
one would like to prove thafE'} is robust. The next theorem shows that this is the
case fo € O(¢'/*) with k depending o{ E}.

Theorem 13 Let{E} be a finite satisfiable set of experimental equations. Thereth
exists an integek > 1 and a real’’ > 0 such that for alt > 0, {E} is ¢, Ce'/*)-
robust.

Proof: We will use basic notions from algebraic geometry for which wefer the
reader for example to [18]. In the prodf, is identified withR?. Then the sefC of
CPSOs for a fixed number of qubits is a real compact semi-edgebet. Suppose that
in { £'} there arel equations. Lef : K — R be the function that maps the CP$&to
the maximum of the magnitudes of the difference betweenbiegtility term and the
constant term of thé" equation in{ £}, fori = 1,...,d. By definition of f, we get
f71(0) = Firy. Moreover,f is a continuous semi-algebraic function, since it is the
maximum of the magnitudes of polynomial functions in thelyeoefficients oiG.
Letg : £ — R defined inG by ¢(G) = disti.(G, Fygy). Sincek is a compact
semi-algebraic sef,is a continuous semi-algebraic function. Moreover, foGak IC,
we havef(G) = 0 if and only if g(G) = 0. Then Fact 17 concludes the proof. O
For a proof of the following fact, see for example [18, Prog. 21].

Fact 17 (Lojasiewicz’s inequality) Let X C R™ be a compact semi-algebraic set.
Letf,g : X — R be two continuous semi-algebraic functions. Assume thaalfio
z € X, if f(x) = 0 theng(xz) = 0. Then there exists an integet> 1 and a realC > 0
such that, for alt € X, |g(z)|F < C|f(z)].
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In some cases we can explicitly compute the consta@raadk of Theorem 13. We
will illustrate these techniques with the equations in Tieeo 10 for the case = =
andd = 7. Let us recall that these equations characterize thiiig}.

Lemma 14 For every) < ¢ < 1, the following equations are (1824./z)-robust:
Prob’[G(]0)(0])] = &, Prob’[G*(|0){0])] =1, and Prob’[G*(|1)(1])] = 0.

Proof: Let G be a CPSO that-satisfies the equations. First we will show there

is a point 7 € S with z-coordinate0 whose distance fronG(|0)<0|3 is at most

10y/2. The last two equations imply th&iG>(|b)(b]) — |b)(b]|],, < 3/, for b =

0,1. Therefore||G*(]0){0]) — G*(|1)(1])||, > 2 — 61/, and by Fact 12 we have

IG(0)0) — G, > 2 — 6yE. Thus||GBE], > 1 — 6VE, for b =

0,1. LetT = p(3,a), whereG(|0)(0]) = p(p,). The first equation implies that
|7 = G0)(0)ll, < 2. Therefore, forp” = 7 /|| ||, we get||G(|0)(0]) — pll,, <
104/z.

The point 7 on S uniquely definess € [0, 27) such thaftL,(J0)(0[) = 7. One
can verify thainj1 o G acts as the identity with error at madst,/= on the four density
matriceg0)(0|, |1)(1], H,(]0)(0]), andH,(|1)(1]). From Lemma 16 we conclude that
IG — Hy,, < 1824,E. 0

Lemma 15 Let G be a superoperator ohl,(C). Let0 < ¢ < 1 be such that
IG(G) = Gl 1G(G) = Gl 1G(EE) = ¢l < &) thenl|G — L, < V10

Proof: Define a four dimensional bas{#;} for the linear spac€**? by b, = ¢,
by = (¢, by = ¢ — ¢ andb, = ¢, — (. Any 2 x 2 complex valued matrix
can now be expressed a$, = ) . o;b;, with o; € C. This implies for the trace
norm of the matriX|M,|,, > [[Mall, = /|1 [? + |a2]? + |as]? + [as]?. By the as-
sumption of the lemma we haygG — I,)(b1)|,,, |[(G — I)(b2)]|,, < &, and also
(G = 12)(bs) ],y (G — I)(by)]|,, < 2¢. Combining these bounds yields

(G = L)(Mo)ll, < (laa| + |az| + 2|as| + 2|as])e.

We are thus left to maximize the fraction
|G — LMol (oul + |as] + 2ay] + 2|ad|)e
| Mall;, B \/|041|2+ |2 + Jas|? + |ayl?

over alla; € C. Clearly, we can assume allcoefficients to be nonnegative reals and
impose the restrictio} ", o? = 1. With the use of Lagrange multipliers one can now
prove without much effort that the above fraction cannot iggér tham/10s (which

is established by the values = a, = \/% andas = a4y = \/%). O

Lemma 16 Let v andv represent two pure qubit states (amd andv* the respec-
1

tive orthogonal dual states), witfu|v)|* = 5. If G is a one-qubit CPSO such that

|G(z) — 2|, <efor0<e<1andallz € {u,v,u*,v*}, then|G — L, < 96e.
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Proof: We can suppose without loss of generality that ;- andv = (. Consider
the statep = G(¢,1), with its three parameters y, 2 in

S B O o e V]
Pr= 5| zx iy 1—2z |-
From Fact 12 it follows thalt G (¢;F) — pl|,, < 1€ — ¢/fIl,. = V2. By the assumption

of this lemma we have th§G/(¢") — (||, < e, and hencd¢ — p|,, < V2+e. The
same relation holds also for the other three fixed pajnts(;", and(, . As a result,
the three coordinates pfhave to obey the four inequalities

2 +y?+(zx1)?and(z £1)2+y2+22 < (V2+¢e)? < 244 (6.6)

A second set of restrictions dm, y, z) comes from the complete positivity 6. Like
in the proof of Lemma 13 we use the decomposition of the EPf $ta, to analyze
the two-qubit state:

LG = +3G G+ ®G((G,))
+3(F @GN + ¢ ®G(())
—1(¢ @ G(G)) + ¢ @ G(()))-

Using the hypothesis, the projection of this state onto titesymmetrical entangled
qubit pair|®~) = —5(|01) — [10)) yields

(7T ® G)(IM)[@7) < 26— 27| @ G((N)|@7)
—(P|¢, ® G(¢,))|D ).

SinceG is a CPSO, as in Lemma 13 we gdt [(; ® p|®~) < 4e. A straightfor-
ward calculation shows that this last relation is equivialeith a restriction on the
coordinatey > 1 — 16¢.

This last inequality implieg? > 1 — 32¢, which combined with the restrictions of
Equation 6.6, leads to the conclusion thatt 1)2 < 244 —y? — 22 <1+ 36¢,
and similarly(z & 1)* < 1 + 36¢. Thez andz coordinates op satisfy|z|, |z| < 18e.
Together these bounds imply

IG() =Gl = Va2+ @ —12+2 < V904e.

The same result can be proved fgr. Therefore by Lemma 15 we can conclude the
proof. O

6.9 Quantum Self-Testers

In this final section we formally define our testers and eshlthe relationship be-
tween robust equations and testability. Experimental oracl®|G| for G is a prob-
abilistic procedure that takes inpuis k) € {0,1} x N and generates outcomes from
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the set{0, 1} such that for every input bitand size:
Pr[O[G](b.k) = 0] = Prob"[G"(|b){b])].

An oracle prograrfl’ with an experimental oracl®[G is a program denoted §°IG]
that can ask queries to the experimental oracle in the fallgwense. Whef presents
a query(b, k) to the oracle, it receives the probabilistic outcome&d&| in one com-
putational step. A query to the experimental oracle thusuzap the notion of a single
experimental run of the black-bax.

Definition 20 (Tester) Let F be a family of CPSOs, and lét< §; < 6, < 1. A
(01, 0 )-tester forF is a probabilistic oracle prograin such that for every CPSQ,

o if dist,(G, F) < 5, thenPr[T9IG] saysPASS > 2,

o if dist, (G, F) > 6, thenPr[TOG] saysFAIL | > 2,

where the probability is the expectation over the outconieébeexperimental oracle
and the internal coin tosses of the program.

Theorem 14 Lete, § > 0, and lef{ E'} be a satisfiable set dfexperimental equations
such that the size of every equation is at miodf { E'} is (, §)-robust then there exists

an(=, 0)-tester forF, s, that make)(dlog(d)/e*) queries.

Proof: We will describe a probabilistic oracle prograin Let G be a CPSO. We can
suppose that for every equation{if'’}, 7" has a rational numbersuch thatr —r| < £,
wherer is the constant term of the equation. By sampling the oré&§(@&|, for every
equation in{ £'}, T obtains a valug such thap — p| < ¢ with probability at least
1 - i wherep is the probability term of the equation. A standard Chermaffind
argument shows that this is feasible witlilog(d)/<?) queries for each equation. If
for every equatiop — 7| < 23—5 thenT saysPASS otherwis€el’ saysFAIL . Using the
robustness of £'} and Lemma 17, one can verify théis a (57, 0)-tester forF gy, O
Lemma 17 Let {E} be a finite satisfiable set of experimental equations such tha
the size of every equation is at mdstand letG be a CPSO. For every > 0, if
dist, (G, Fymy) < e thenG (ke)-satisfies{E'}.

Proof: Let F' be the CPSO itF such thatlist,,. (G, F) < . Thendist,,(G’, F’) < je

for everyj € N. Hence, by the maximum siZeof the experimental equatioq€},

the lemma follows. O
Our main result is the consequence of Theorems 10, 11, 1241and Lemma 14.

Theorem 15 Let F be one of the following families:

® Rayp for(a,8) € (0,7] x (0, 5]\{(7, 5)} where2 is rational,
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o {(Hy,Noty)|¢ € [0,27)},

e {Hy} x {Ry,} for2 rational,

o {(Hy, CNoty)|¢ € [0,27)},

o {(Hy, Ry, 1, CNoty)|¢ € [0,27),5 = £1}.

Then there exists an integer> 1 and a real” > 0 such that, for alt > 0, F has an
(e, Ce'/k)-tester that make®(1/<2) queries. Moreover, for evefy < ¢ < 1, {Hy}
has ar(<,1824,/z)-tester that make9(1/<*) queries.

Note that each triplet of the last family forms a universal éault-tolerant set of quan-
tum gates[26].



Chapter 7

Quantum Kolmogorov Complexity

In the classical setting, the Kolmogorov complexity of a sting is the length of the
shortest program that can produce this string as its outputwhich is a measure of
the amount of innate randomness (or information) containedn the string. In this
chapter we define the quantum Kolmogorov complexity of a qubistring as the
length of the shortestquantum input to a universal quantum Turing machine that
produces the target qubit string with high fidelity.

In related work, Paul Vit anyi [102, 103] proposes to count the amount aflas-
sical information that is necessary for an approximating scheme bthe quantum
state, whereas here we consider the necessary amountafantum information
for a similar scheme. We argue that our definition is a naturaland accurate
representation of the amount of quantum information contaned in a quantum
state. Peter Gacs [45] has also proposed two measures of ‘quantum algorithic
entropy’, which are based on the existence of a universal serdensity matrix.
These measures partially correspond, it turns out, to Vianyi's definition and the
one presented in this chapter, respectively.

7.1 Introduction

In classical computations, the Kolmogorov complexity ofraté string is a measure
of its randomness.[30, 64, 94] The Kolmogorov complexity:aé the length of the
shortest program which producesas its output. It can be seen as a lower bound
on the optimal compression thatcan undergo, and its expectation in a probabilistic
ensemble is close to the Shannon entropy.[35, 89]

Kolmogorov complexity has been shown to have a windfall gii@ations in fields
as diverse as learning theory, complexity theory, combmeg, graph theory, and anal-
ysis of algorithms.[67]

With the advent of quantum computation, it is natural to aslaws a good def-
inition for the Kolmogorov complexity of quantum strings.uOgoal is to argue that

67
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our definition is a natural and robust measure the amountaritgu information con-
tained in a quantum string, and that it has several appeptiogerties.

Finding a robust definition for quantum Kolmogorov comptgxias been of inter-
est for many years (see for example [95].) Paul Vitanyi [1023] has also proposed
a definition for quantum algorithmic complexity. Our defiort differs significantly
from Vitanyi's: the definition he proposes is a measure efaimount ofclassicalin-
formation necessary to approximate the quantum state vgénalty depending in the
error of the approximation. More recently, Peter Gacs [#g also proposed two def-
initions for quantum Kolmogorov complexity, both of whichedbased on the notion
of a universal semi-density matrix. One of Gacs’ definisi@nclose to ours, while the
other is related to Vitanyi's.

7.2 Desired Properties

A good definition of quantum Kolmogorov complexity shouldeh#e following fun-
damental criteria. These are intended to insure that itsgiwveaccurate representation
of the information content of a quantum string.

e It should be robust, that is, invariant up to an additive tamisunder the choice
of the underlying universal quantum Turing machine.

¢ It should bear a strong relationship with quantum infororatheory.

¢ It should be closely related to classical complexity ongilee strings.

However, quantum Kolmogorov complexity should not be exgeéto always be-
have the way classical Kolmogorov complexity does. Theeeathy want to bear in
mind typical non-classical quantum phenomena such as ttodonang theorem[107],
whose consequences we will discuss in Section 7.14.

A first attempt at defining quantum Kolmogorov complexity ajubit string.X is
to consider the length of the shortest quantum program tioaiycesX as its output.
There are many questions that arise from this ‘definition’.

Bits or qubits? The first question to consider is whether we want to measiege th
amount of algorithmic information of a string in bits, or inlgts. Note that bit
strings (programs) are countable, whereas qubit strirgsiacountable, so any def-
inition that measures in bits would have to overcome thisaegt contradiction. Paul
Vitanyi [102, 103] considers classical descriptions obifstrings, whereas we con-
sider qubit descriptions.

Exact or inexact? What does ‘produce’ mean? Is a minimal program required to
produce the string{ exactly, or only up to some fidelity? In the latter case, is the
fidelity a constant? Otherwise, how is it parameterized?r @xact simulation, we
can only hope to simulate a subclass of the Turing machirasbyg restricting the
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set of possible amplitudes. What would be a reasonable ePpidVe will use an
approximation scheme.

What model of computation? The size of quantum circuits is not an appropriate
measure because it is possible to have a large circuit treahézertheless a small
description in terms of a generating computer program. Itisrreason we choice the
Turing model of computation.

What is meant by ‘quantum program?’ A program for a quantum Turing machine
is its input, and if we want to count program length in qubits, must allow for ‘pro-
grams’ to be arbitrary qubit strings. (These can be viewepragrams whose code
may include some auxiliary ‘hard-coded’ qubit strings.)

One-time description or multiple generation? In the classical setting, the program
that prints a string € {0, 1}™ can be run as many times as desired. Because of the no-
cloning theorem[107] of quantum physics however, we caaastime that the shortest
program can be run several times to produce several coptbe aglame string. (This
will be due to the fact that it is not possible to recover thigioal program after it
has produced its output.) There is also a second, but relleasion not to choose the
multiple generation option. The complex-valued paransetep € C of a qubit|q) =
«|0)+ /|1) can in principle contain an unbounded amount of informatibwe would

be able to reproduce the statever and over again and without error, then we would
be able to extract this information, and hence we would hagemclude that the single
gubitg contains an unlimited amount of information. This contcislihe fact that the
guantum mechanical system of a qupitan only contain one bit of information.[53]
For the above two reason, we will not require a ‘reusabilityndition.

7.3 Classical Kolmogorov complexity

The Kolmogorov complexity of a string, in the classical st is the length of the
shortest program which prints this string on an empty ifput.

Formally, this is stated first relative to a partial compiggiinction, which as we
know can be computed by a Turing machine.

Definition 21 (Kolmogorov complexity) Fix a Turing machineél’ that computes a
universal function® . For any pair of strings,y € {0,1}*, the Kolmogorov com-
plexity C of x relative toy (with respect td") is defined as

Cr(zly) = min{l(p): ®((p,y)) = x}.

Wheny is the empty string, we simply writ€' ().

The key theorem on which rests the robustness of Kolmogasowpéexity is the
invariance theorem This theorem states that the length of shortest prograrmas do
not depend by more than an additive constant on the undgrijiming machine. In
the classical case, this theorem is proven with the exist@fi@a particular type of
universal Turing machine. This machine has two inputs: aefidescription of the
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original Turing machine, and the program that this Turinghiae executes to output
the string.
More formally, the invariance theorem in the classical casebe stated as follows.

Fact 18 There is a universal Turing machibesuch that for every Turing machiré
and pair of strings:, y,

Cy(zly) < Cr(zly) + er,

wherecy is a constant depending only @hn

Giving an invariance theorem will be key to showing that guam Kolmogorov
complexity is robust.

Since for any string of lengthn, C'(x) < n+O(1), a string which has complexity
at leastn is calledincompressibleThe existence of incompressible strings is a crucial
fact of Kolmogorov complexity, and very useful in applicats thereof.

Fact 19 For every string length, there is a string of lengthn such thatC (z) > n.

The proof that there exists incompressible strings is a lerapplication of the
pigeonhole principle. By comparing the number of stringdeoigth» (2") and the
number of programs of length smaller thai@2" — 1 in total), one must conclude that
there is at least one string of lengthwhich is not the output of any of the program of
length< n.

7.4 Quantum Information Theory

In this section we describe the quantum, or Von Neumannopytf ensembles, and
important properties which will be used in the proofs of aesuits.
We start the section by defining the quantity’ for ensembles.

Definition 22 (Holevo’s chi quantity [53]) For an ensemblé = {(p;, p;)}, with p =
>, vipi, Holevo’s chi quantity equals

xX(€) = S(P)—ZPiS(Pi)-

Note that they quantity depends not only gn but also on the specific paifg;, p;)-
The following monotonicity property of Lindblad and Uhlnrawill be very useful
later on.

Fact 20 (Lindblad-Uhlmann monotonicity [68, 101]) LetE = {(pi,p;)} be an en-
semble, andS a completely positive, trace preserving mapping. For egeigh&
and S, it holds that: x(S(£)) < x(&), whereS(€) is the transformed ensemble

{(S(pi)api)}'
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The entropy of finite systems is robust against small chang@s continuity ofS
over the space of finite dimensional density matricésalso callednsensitivity and
is expressed by the following lemma.

Fact 21 (Insensitivity of Von Neumann entropy (see Section.|A in [105])) Ifa se-
quencep, pa, . .., haslimy_,, pr, = p, then alsdimy,_,, S(pxr) = S(p).

Proof: The convergence of, po, ... to p is understood to use some kind of norm for
the density matrices that is continuous in the matrix estiii@|j). (The operator norm
|p| = tr(pp*), for example.) The entrop¥(p) is a continuous function of the finite set
of eigenvalues op. These eigenvalues are also continuous in the entrips of O
Further background on these measures of quantum informaatid their properties can
be found in [78, Chapter 5] and [105]. Another good sourceigden’s thesis [73].

7.5 Symmetric Subspaces

We use the symmetric subspace of the Hilbert space to praove 86 our results on
copies of quantum states. L#t; be a Hilbert space of dimensiehwith the basis
states labeledll),. .., |d). The symmetric subspac& ™ or \/™ #H, of the m-fold
tensor product spacky™ contains the states that are invariant under permutation of
its m parts. As a consequence, it is a subspace spanned by as nssydiors as
there are multisets of size of {1,...,d}. If A = {iy,...,4,} is such a multiset of
{1,...,d}, then|A) is the normalized superposition of all the different peratioins
of i1,...,i,. The set of the different vectorsl) (ranging over the multisetd) is an
orthogonal basis of the symmetric subsp&tg™. This shows that the dimension of
the symmetric subspace @@;_dl’l), because choosing such a multiset is equivalent to
splitting a sequence of, zeroes intal (possibly empty) intervals. (If; is the size of
the of ith interval, then this number also represents that the eleie {1,...,d}
appearg; times in the multiset. The number of ways of splitting a sexpaeof sizen
into d intervals is("™ 1 ").)

The symmetric subspa@é;™ is the smallest subspace®f™ that contains all the
pure states of the fori)®™ for all |¢) € H,.

As an example, consider the symmetric subspgage For every qubit|0) + 3]1),
we can indeed express any three-fold copy in the four dino@ssf#y?:

(a]0) + B]1)%* = @®|000) + ?B(]001) + [010) + [100)) +
aB%(]011) + |101) + [110)) + A%|111)
= a’{0,0,0}) + ?BV3[{0,0,1}) +
af?V3{0,1,1}) + B3|{1,1,1}).
We thus reach the important conclusion that there existstaryriransformation from

the 3 qubits of the symmetric subspa@£)® to the two qubits of the space spanned
by the vectord{0,0,0}), [{0,0,1}), [{0,1,1}) and|{1,1,1}). The generalization of
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this compression result for all valuésandm is presented in Section 7.14. For more
information on the symmetric subspace and its propertesstise paper by Barened
al. [8].

7.6 Accumulation of Errors

The following lemma is used to bound the error introduced wb@mposing two in-
exact quantum procedures.

Lemma 18 (Fidelity of composition) Let p;, p» andps be three density matrices.
IfE(pr,p2) >1 =01 and F(pa, ps) > 1— 6,

thenF(,Ol, ,03) Z 1-— 261 - 262

Proof: We say that a bi-partite, pure statd”? is the ‘purification’ of the (mixed)
statep if we obtainp by tracing out theB part of pZ: p = trp(¢*?). The lemma
now follows from Uhimann’s theorem[44], which says that fltelity between two
(mixed) stateg; andp, equals the maximum ‘pure state fidelity®,|¢-)|, with ¢, the
purifications ofp;. O
This lemma is especially powerful in combination with thermatonicity property: the
result that the fidelity between two states cannot decreadera quantum mechanical
transformation.[9] It enables us to prove the followinguleshat bounds the error of
two consecutive operations.

Lemma 19 (Fidelity after two transformations) If U; andU, are two quantum me-
chanical transformations amd, p,, ps are density matrices such that

F(p2,Ui(p1)) > 1 =61 and F(ps,Us(p2)) > 1 — 6o, (7.1)
then, for the combined transformatibpU;,
F(pg, U2 . Ul(pl)) Z 1-— 261 — 2(52 (72)

Proof: FromF(p,, U (p1)) > 1 — &1, and the nondecreasing property of the fidelity it
follows thatF (Us(ps), Uz - Ui (p1)) > 1 — 6;. Lemma 18 concludes the proof. O

In order to give bounds on the complexity of several copies stiate, as we do in
Section 7.14, we also need the following bound on the totak en then-fold tensor
product of the approximation of a given state.

Lemma 20 (Fidelity of copies) Let p?" and p$" be then-fold copies of the mixed
statesp; andp,, thenF (p$", p§") = (F(p1, p2))". Hence, iff (p1, p2) > 1 — 4, then
F(pi™", p3") > 1 —nd.
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Proof: Apply the matrix propertiest®”B*" = (AB)®" andtr(A®") = (tr(A4))" to
the definition of Equation 1.4 to obtain:

F(pf", p3") = tr (\/\//ﬁz-pé‘@”-\//ﬁ‘?ﬁ
_ tr( m-pz-mm)
_ tr( Jp_l-m-ﬁly-

7.7 Quantum Kolmogorov Complexity

We define theguantum Kolmogorov complexityC of a string of qubitsX, relative

to a quantum Turing machin®, as the length of the shortest qubit string that, when
given as input taV/, produces on the output register the qubit sttdg(Note that we
only allow M that have computable transition amplitudes. See the esti@2, 38],
and particularly Definition 3.2.2 in [22], for a further degtion of this computational
model.)

7.8 Input/Output Conventions

First we will specify in more detail what is meant by the ‘inpand ‘output’ of a
guantum computation.

We consider quantum Turing machines with two heads on twevwameinfinite
tapes: one input/work tape, and one output tape. We allot tagtes to be changed
because we want to be able to move the input qubits to the tiape.

For a QTM M with a single input, when we say/ starts with inpu”, we mean
that M starts with the quantum std€$00 - - - ) on its input tape, anth0 - - - ) on the
output tape. Th& symbol is a special endmarker (or blank) symbol.

Note that testing for the end of the input can be done with@itiching the input,
since we assume that the ‘$’ state is orthogonal to thend ‘1’ states. (This is
analogous to the classical case, where where Turing macipoés are encoded in a
three-letter alphabet; nevertheless we consider thelacfud to be encoded only over
the character8 and1.) A string is a proper input if there is only one position oe th
tape where the the endmarker symbol ‘$’ appears. We dismiss@n-proper inputs
as this would allow the endmarker to be in a superpositiorre¢sal positions, which
cannot be checked by the quantum Turing machine.

For a QTM with multiple inputs, we assume that there is a cotiga for en-
coding the multiple inputs so that they can be individuakbgavered. For exam-
ple, when we writeM (Y7,Y5), we may assume that the input tape is initialized to
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11407)0Y,Y,$00 - - - ): the sequence of ond$™) is unambiguously delimited by the
leftmost zero in the string, and with the thus obtained véli&) we can separatk
andY; from the remainder of the sequence. Likewise, for multipigoats, if we write
M(Y1,Y3) = (X4, X5), we mean tha; and X; must be encoded according to a pre-
arranged convention so that, and X, can be recovered individually from the output
tape. (We do not define prefix-free complexity in this thésis.

We let M7 (X) denote the contents of the output tape affesteps of computa-
tion. We consider only QTMs that do not modify their outpypaaafter they have
‘halted’. (Because of reversibility, they may modify thg@iurt/work tape after reaching
the halting state.) The output stridg(X ) equals the content of the output tape at any
time afterM has stopped changing this tape. We allow the content of ttubtape
to be entangled with the input/work tape affdr has halted. If this is the case, then
the outputM (X) is the mixed state that one obtains by ‘tracing out’ the ihpatk
tape. Note that this output does not change when the computénues to change the
input/work tape after is has officially halted.

7.9 Defining Quantum Kolmogorov Complexity

For some fidelity functiorf : N — [0, 1] we will now define the corresponding quan-
tum Kolmogorov complexity.

Definition 23 (Quantum Kolmogorov complexity with fidelity f) For any quantum
Turing machineM and qubit stringX, the f-approximation quantum Kolmogorov
complexity, denoteat)C@(X ), is the length of the smallest qubit stridiysuch that
for any fidelity parameter we havel’ (X, M (P, 1%)) > f(k).

Note that we require that the same strifidpe used for all approximation parameters
k. This way we do not have to consider a sequence of progfanfs, . . ., which may
not have a well defined limiting sidém;,_, ., ¢(Fy).

Note also that we allow both the stridg, the programP, and the outpud/ (P, 1¥)
to be mixed states for the following reasons. There is nareasy the approximation
M (P, 1%) of a pure stateX has to be pure as well. By allowing mixed states we avoid
this problem, and, as a bonus, get also a definition for theptmnty of mixed states.
Because the fidelity and the time evolution/Mdfis properly defined for mixtures this
causes no serious problems. (Clearly, the progfrthat simply moves from the
input to the output tape will have to be mixed as well, whicplains the necessity of
mixed input strings.)

We will say that progran® ‘ M -computesX with fidelity f (k)" if for all k& we have
F(X, M(P,1%)) > f(k). If fis the constant functiom, we thus have the following
definition.

Definition 24 (Quantum Kolmogorov complexity with perfect fidelity) The perfect
fidelity quantum Kolmogorov complexity i©C,(X).
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The problem with this definition is that we do not know whetharinvariance theo-
rem can be given for this perfect-fidelity Kolmogorov conyie This is because the
invariance theorems that are known for quantum computeakwi¢h approximating
procedures rather than with exact simulations. We theegfoove an invariance theo-
rem for a weaker, limiting version, where the outpufldfmust have high fidelity with
respect to the target string: F(X, M (P, 1¥)) ~ 1.

Definition 25 (Quantum Kolmogorov complexity with bounded fidelity) For a im-
perfect fidelitye < 1, the complexityQC",(X) is the constant-fidelity quantum Kol-
mogorov complexity.

Again there are problems with this definition. First, it m&the case that some strings
are very easy to describe up to a given constant, but inHgreary hard to describe for
a smaller error. Second, it may be the case that some striegasier to describe up to
a given constant on one machine, but not on another machare¢h&se two reasons,
this definition does not appear to be robust.

A stronger notion of approximability is the existence of @p@ximationscheme.
(See, for example, the book by Garey and Johnson [46, Ch@jdtarmore on approx-
imation algorithms and approximation schemes.) For cottstpproximability, differ-
ent algorithms (with different sizes) can exist for differeonstants. In an approxima-
tion scheme, a single program takes as auxiliary input anoxppation parametet,
and produces an output that approximates the value we wémhwie approximation
parameter. This is the model we wish to adopt for quantum kgionov complexity.

Definition 26 (Quantum Kolmogorov complexity with fidelity converging to one)
The complexityQC:(X) is equal toQC?,(X), wheref (k) = 1 — -

We choose to encode the fidelity parameter in unary, and tnecgence function to
be f(k) = 1 —  so that the model remains robust when polynomial time boanels
added. We discuss this further in Section 7.10.

We may also defin€C'l (X |Y), the complexity of producing’ whenY is given
as an auxiliary input, in the usual way.

7.10 Invariance

To show that our definition is robust we must show that the deriy of a qubit
string is minimized by a particular type of universal ma&hiand is invariant, up to an
additive constant, under the choice of a different Turinginize.

We use the following result, proved in the paper of Bernsasid Vazirani [22]. To
be precise, we use the notatidn to denote the classical description of the quantum
Turing machineM. (Recall that we only consider quantum Turing machines whos
amplitudes can be computed to arbitrary precision with égficlassical description.)
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Fact 22 (Universal quantum Turing machine [22]) There exists a universal quantum
Turing machind’ with a finite classical description such that the followirgjds. For
any quantum Turing maching (which has a finite classical description), for any pure
stateX, for any approximation parameteyand any number of time stepps we have
F(UM,X,1¥,T), M*(X)) > 1 — +. (Remember thabl™ is the contents of the
output tape oM afterT time steps.)

Theorem 16 (Quantum invariance theorem) There is a universal quantum Turing
machinel such that for any quantum Turing machikeand qubit stringX,

QCH(X) < QON(X) +eur,
wherec), is a constant depending only .

Proof: The proof of this theorem follows from the existence of a empal quantum
Turing machine, as mentioned here in Fact 22. lLdie this UTM. The constant,,
represents the size of the finite descriptidrthatU requires to calculate the transition
amplitudes of the machink. Let P be the state that witnesses tiga€'} (X) = ¢(P),
and henc& (X, M(P,1%)) > 1 — | for everyk.

With the descriptionV/ (with lengthc,,), U can simulate with arbitrary accuracy
the behavior of\/. Specifically,U can simulate machin&/ on input(P, 1%*) with a
fidelity of 1 — . Therefore, by Lemma 1&(X,U(M, P,1')) > 1 — 1. O
The same holds true for the conditional complexity, thathsere exists a UTM/ such
that for all quantum machine® and quantum string&, Y we haveQC}' (X]Y) <
QCI(X|Y) + cu.

Henceforth, we will fix a universal quantum Turing machirieand simply write
QC(X) instead ofQC}' (X). Likewise we writeQC(X|Y) instead ofQC}! (X[Y).
We also abuse notation and writ¢ instead of) to represent the code of the quantum
Turing machineV/ used as an input to the universal Turing machine.

The simplest application of the invariance theorem is thieviong lemma.

Lemma 21 There exists a constant such that for any qubit string(, QC(X) <
(X)) + ¢. The value ofc depends only on our choice of the underlying universal
Turing machine.

Proof: Consider the quantum Turing machiné that moves its input to the output
tape, yieldingQC',(X) = ¢(X). The result follows by invariance. O
We may also define time-boundégl” is the usual way, that is, fiX : N — N
a fully-time-computable function. The@C” (X|Y') is the length of the shortest pro-
gram which on inputY, 1¥), producesX on its output tape aftef'(¢(X) + £(Y))
computation steps. The simulation of Bernstein and Varzgatails a polynomial time
blowup (polynomial in the lengtli(Y") of the input and the length of the fidelity
parameter), so there will be only a polynomial time blowugha corresponding in-
variance theorem.
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7.11 Properties of Quantum Kolmogorov Complexity

In this part we compare classical and quantum Kolmogorovptexity by examining
several properties of both. We find that many of the propexiethe classical com-
plexity, or natural analogs thereof, also hold for the quamtomplexity. A notable
exception is the complexity ofi-fold copies of arbitrary qubit strings.

7.12 Correspondence for Classical Strings

We would like to show that for classical states, classical gnantum Kolmogorov
complexity coincide, up to a constant additive term.

Lemma 22 There is a constamt such that for every finite, classical strimgit holds
thatQC(z) < C(x) + c.

(The constant depends only on the underlying universahgumachine.)

Proof: This is clear: the universal quantum computer can also sitawny classical

Turing machine. O
The converse is also true, as shown by Peter Gacs [45].

Fact 23 (See [45] for the proof.) There is a constantsuch that for every finite,
classical string:, it holds thatC (z) < QC(x) + c.

7.13 Quantum Incompressibility

In this section, we show that there exist quantum-incongiés strings. Our main
theorem is a very general form of the incompressibility teeo with some useful
special cases as corollaries.

Assume we want to consider the minimal-length programsdeatribe a set of
guantum states. In general, these may be pure or mixed .stélteswill use the
following notation throughout the proof. The mixed stages. . ., py; be the target
strings (those we want to produce as output). Their minierdith programs will be
o1,...,0, respectively. The central idea is that if the staieare sufficiently differ-
ent, then the programs must be different as well. We turn this into a quantitative
statement with the use of the insensitive chi quantity in loim@&tion with the mono-
tonicity of quantum mechanics.

Earlier, Michat Horodecki used a similar technique to praw@osely related result
[55], which shows that the Holevo quantity is a lower boundtf@ optimal compres-
sion rate for ensemble of mixed states.
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Theorem 17 For any set of string®,, ..., py such thatvi, QC(p;) < [, thisl is
bounded from below by

L= S(0)= > S(e).

wherep is the ‘average’ density matrix = ﬁ >, pi- (Stated slightly differently, this
says that there is arsuch that)C (p;) > S(p) — - >, S(pi).)

Proof: Takep, ..., py and their minimal programs; , . . ., oy (and henc&C(p;) =
{(o;)). Let S* be the completely positive, trace preserving map corredipgrio the
universal QTMU with fidelity paramete. With this, we define the following three
uniform ensembles:

e the ensembl€ = {(p;, 1)} of the original strings,

e &, the ensemble of prograni$o;, --)}, and

o the ensemble of the-approximations£* = S*(&,) = {(p¥, &)}, with §F =
Sk(O'Z)

By the monotonicity of Fact 20 we know that for everyx(£¥) < x(&,). The chi
qguantity of the ensemblé&, is upper bounded by the maximum size of its strings:
x(&,) < max;{¢(0;)} < 1. Thus the only thing that remains to be proven is tf(@"*),

for sufficiently bigk, is ‘close’ tox(€). This will be done by using the insensitivity of
the Von Neumann entropy.

By definition, for alli, limy,_, ., F(p;, p¥) = 1, and hencéim,_,., p¥ = p;. Because
the ensemble$ and€* have only a finite numben() of states, we can use Lemma 21,
to obtainlimy_,« x(£¥) = x(&). This shows that for any > 0, there exists & such
that x(£) — 6 < x(E*). With the above inequalities we can therefore conclude that
x(€) — 0 < holds for arbitrary smalh > 0, and hence thdt> x(&). O

The following four lemmas are straightforward with the abdheorem.

Lemma 23 For every length, there is an incompressible classical string of length

Proof: Apply Theorem 17 to the set of classical stringsudfits: p, = |x)(z| for all

x € {0,1}". All p, are pure states with zero Von Neumann entropy, hence the lowe
bound or/ readsl > S(p). The average staje= 2" _|z)(xz| is the total mixture
2~ [ with entropyS(p) = n, hence indeed > n. 0

Lemma 24 For any set of orthogonal pure states), . .., |¢y), the smallest such
that for alli, QC(¢;) < l is at leastog M. (Stated differently, there is ansuch that

QC(¢;) > logM.)

Proof: All the pure states have zero entrofyp;) = 0, hence by Theorem 17: >
S(p). Because alp;s are mutually orthogonal, this Von Neumann entréjy) of the
average state = -- >, |¢;) (¢;| equaldog M. 0
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Lemma 25 For every length, at leas™ — 2"~“+1 mutually orthogonal qubit strings
of lengthn have complexity at least — c.

Lemma 26 For any set of pure statés,), ..., | ), the smallest such that for alf,
QC(¢;) < lis at leastS(p), wherep = == >, |¢:){¢il.

7.14 The Complexity of Copies

It is trivial to copy a classical bit string to them-fold statez®™. As long as we know
the integem, the complexity oft®™ is no bigger than that of the single copyor in
Kolmogorov complexity termsC (z®™|m) < C(x) + O(1). This no longer holds in
the case of quantum information, as it is in general not jpes$0 copy an unknown
quantum state.[107] Typically for a quantum stafe the complexityQC' (X ®™|m)
will grow asm gets bigger. This should not surprise us because a largeerumbf
copies enables us to estimate the amplitude¥ ofiore accurately than a single copy
would. Hence, we can ‘extract’ more information fraki¥™ if we have more copies
of X. An obvious upper bound on the quantum Kolmogorov compfexitX ™ is
QC(X®™"m) < m - QC(X). The two main theorems of this section tell us that,
despite the ‘no cloning’ phenomenon of quantum mecharticspbssible to compress
copies of pure states. This result is established with thedfehe theory of symmetric
subspaces. We start with the general upper bound.

Theorem 18 There exists a constant such that for an arbitrary pure stake and
integerm it holds that

(7.3)

2QC(X) _ 1
QO(X®™m) < log (”” )+c,

2Q0(X) — 1

and hence)C(X®™) < log (/25 1) + O(logm).

Proof: First we outline the proof, omitting the effect of the apgration. Consider a
pure qubit stringX whose minimal-length program 13¢. To producen copies ofX,
it suffices to producen copies ofPy and execute these programs.

We can always assume that ttitg is a pure state, because for a mixture of pro-
grams, any of the pure programs in the mixtures will prodicas well. Let/ be
the lengthQ C(X) of Py ; we denote thé!-dimensional Hilbert space by. Consider
H®™ them-fold tensor product oH. The symmetric subspa@¢’™ is d-dimensional,
whered = (™}#*1). The sequenc®Z™ sits in this symmetric subspace, and can
therefore be encoded exactly usiog d + O(log m) qubits, where then term is used
to describe the rotation from thiedimensional space to the copies inH®™. Hence,
givenm, the quantum Kolmogorov complexity of ®™ is bounded from above by

logd + O(1) qubits.
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For the full proof, we will need to take into account the effet the imperfect
fidelities and prove that we can reach a fidelity not smallanth— %

The first part of the computation consists of the mapping ftioei dimensions to
the symmetric subspadé'™. This is the transformatiofi) — |A;) for 1 < i < d,
which labels all the multisetd; C {1,...,2'} of sizem. We approximate this unitary
transformation with enough accuracy such that the outpsifidality > 1 — ﬁ with
the perfect stat@y™.

Next, we execute the progrant’; with a fidelity parameter olkm. Hence the
joint, m-fold evolutionUs™ establishe® (X ®™, U5 (PE™)) > 1 — 4 (Lemma 20).

We finish the proof by employing Lemma 19, which tells us thataverall fidelity-
error of the above two transformations cannot be bigger han 0

This upper bound is also very close to being tight for sofheas we show in the
next theorem.

Theorem 19 (Incompressibility for copies of quantum states For everym andn,

there is am-qubit stateX such that)C(X®™) > log ("}>" ).

Proof: Fix m andn and let# be the2"-dimensional Hilbert space. Consider the (con-
tinuous) ensemble of ath-fold tensor product state§“™: & = {(X®“™ )}, where
pt = erH dX is the appropriate normalization factor. The correspogdiverage
state is calculated by the integral= 1 [, _,, X®™dX. This mixture is the totally
mixed state in the symmetric subspag&™ (see Section 3 in [106]), and hence has

entropyS(p) = log (m;?fl’l). Because alK“™ are pure states, we can use Lemma 26
to prove the existence of axi for which QC'(X®™) > log ("> ["). O

The results of this section can be viewed as a refinement oidtfetoning theorem,
in the following sense. The quantityC' (X ®™|m), for any stateX, gives a measure
of how clonable that particular state is. Theorem 19 tellthasthere exist strings that
are ‘maximally non-clonable’.

7.15 Subadditivity

Consider the following subadditivity property of classigalmogorov complexity.

Fact 24 For anyz andy, C(z,y) < C(z) + C(y|z) + O(log(C(x))).

In the classical case, we can produgend then produceg from z, and print out the
combination ofr andy. In the quantum case, producifgfrom X may destroyX.
In particular, withX = Y, the immediate quantum analog of Fact 24 would contradict
them = 2 case of Theorem 19.

A natural quantum extension of this result is as follows.

Lemma 27 For any pair of quantum strings, Y, we have)C(X,Y) < QC(X, X)+
QC(Y]X) + O(log(QC(X))).
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7.16 The Complexity of Correlations

In this section we will use quantum Kolmogorov complexityqumantify the complex-
ity of the correlation between two systems. For a bipartiéées 5 we denote this
quantity by@Cor(pag), which is defined as follows.

Definition 27 (Quantum Kolmogorov Complexity of Correlations) Consider a bi-
partite state ,p of n+m qubits wheren qubits are or’s side and3 has the remaining
m qubits. The quantum Kolmogorov complexi@yCor of the correlation betweeA
andB is defined by

QCOT(pAB) = QO(PABMA,,OB),

whereps = trp(pap) andpp = tra(pas).

Because the complexity Cor(p4p) can never be bigger thapC (p45), the following
general upper bound holds.

Lemma 28 There exists a constantsuch that for every bipartite, + m-qubit state
pap We have

QCor(pap) < n+m-+ec. (7.4)

Proof: Apply Lemma 21 to the relatio®Cor(pap) < QC(paB)- O
The gap between the correlation complexity’or and the Kolmogorov complexity
can be made arbitrarily big as is shown by the next lemma.

Lemma 29 There exists a constansuch that for any combination of lengthsndm,
there is am+m-qubit stringp 4 g with maximum Kolmogorov complexitg)C (pag) >
n + m, combined with a constant lower bound on the complexity efcabrrelation

QCor(pap) < c.

Proof: Consider the set of classical strings of lengthm. Clearly, these states can be
expressed as tensor produgiss = X4 ® Xp, whereX 4 (Xp) aren (m) bit strings.
By the program of size that moves the input&’, and X to the output tape (thus
producingX 45) we obtainQCor(Xp) = QC(Xap|Xa, Xg) < c¢. On the other
hand, by Lemma 23, at least one of these striigg also has to obey)C (X 45) >
n—+m. O

The central idea behind the definition QiCor is that we consider the complex-
ity of the correlations ‘high’ when the partial states andpz do not contain much
information about the total configuratign,z. In this sense it is possible that all the
complexity of a state is contained in its correlations. Toléofving lemma expresses
this result.

Lemma 30 For every lengtm, there exists a bipartite; + n-qubit statep,p with
maximum correlation complexit§) Cor(pap) > 2n.
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Proof: First we consider the = 1 case of two distributed qubits. Take the four Bell
states ¢ 5) = 5(|00) + [11)), [¢% ) = J5(100) — [11)), [¢%5) = 5(01) +[10)),
and|¢% z) = %(ml) — |10)). As these states are mutually orthogonal, we can use

the uniform sourc& = {(¢%5, 1)} to encode two bits of information.[21] It is also
straightforward to see that all the partially traced outestare identical to the same
totally mixed qubit:¢%, = ¢% = 1(|0)(0| + |1)(1|) = 31 for all i. Hence, for one of
the ¢'s we must have)Cor (¢ 5) = QC (¢ 511 @ I) > 2.

This result easily generalizes to thet+ n-qubit case if we take the-fold tensor
product of the above source. We can use the words ofthisto encode2n bits of
information, while the partially traced out words all eqtiad¢ totally mixedn qubit
state2~"I. This shows that for at least one of the words it must holditeabrrelation
complexity is not smaller tha®w. O

It would be incorrect to think that the complexityCor is ‘yet another measure
of entanglement’. It is true that tensor product states® Xp have a low correla-
tion complexity, but so have highly entangled states (ike|0405) + %|1A13>)®".
Moreover, the definition also covers the complexity of pyrelssical correlations.
Rather than quantifying entanglement, we expect the abefeition to be useful in
the context of ‘communication complexity theory’. The lasttion of this chapter will
explain this point further.

7.17 Extensions and Future Work

We have argued that th@C' of Definition 26 is a robust notion of Kolmogorov com-
plexity for the quantum setting. It would be interesting ée $f an invariance theorem
can be shown for the ideal quantum Kolmogorov complexity efiition 24. It would
also be interesting to see if the invariance theorem (Tmedr@) can be improved in
general.

Kolmogorov complexity in the classical setting is a good! t@o showing lower
bounds in computational complexity. For instance, one bawsower bounds in clas-
sical communication by using classical Kolmogorov comipiexA simple example is
the following lower bound on the communication complexitylee equality function.
Assume that there is a protocol that decides whether twagstiof length. are equal,
in which ¢ bits are exchanged. Consider an incompressible sirioflengthn, and
simulate the protocol on inpyt, z). Let T be the transcript of the communication
on that input. Now we argue that the Kolmogorov complexitytteé string can be
bounded above by a function of To printz, we use the transcript and the protocol
to find x as follows. Without loss of generality, assume that the ségayer always
decides whether or not to accept the input. For every catelidior z, simulate the
protocol for the second player on inputand use the transcript to obtain the commu-
nication that the second player would have received froniitbeplayer. Because the
protocol is sound, the simulation will only acceptzift= z. We output whenever a
string is found that causes the protocol to accept. Thisnaragvhich printse is of
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size (roughly)t, and therefore we have < C(z) < t, from which we can conclude
that the communication complexity of the equality functisat least:.

Could a similar argument be carried over to the quantunmggttif so, then by ap-
plying this framework to other problems in quantum comgigxjuantum Kolmogorov
complexity could become a powerful new tool in proving loweunds.

The number of applications of classical Kolmogorov comjpjeis countless, and
it is our hope that this definition will lead to a similar widariety of applications in

guantum complexity theory.






Appendix A

Complexity Classes and Reductions

A.1 Complexity Classes

P: (Classical) polynomial time

NP: (Classical) nondeterministic, polynomial time
EQP: Exact, quantum, polynomial time

FP: Exact, polynomial time functions

FEQP: Exact, quantum, polynomial time functions
EXP: Exponential time

PSPACE: Polynomial space

PP: Probabilistic, polynomial time

CA: The clas< with queries to the set

CA: The clas<C with non-adaptive queries to the sét
CA: The clas< with not more thark queries to the set
C*™: The clas< with not more thark non-adaptive queries to the sét
Sigma classes>} = P, and>?,, = NP*

Delta classes:A?, | = P™

Theta classes.©] ; = P

Computable Decision Problems: X,
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A.2 Reductions

many-one reducible “<P ”: B<? A, if there exists a poly-time reductiansuch that
x € Bifandonlyifr(z) € A.

truth-table reducible * <P.". B<{ A, if there exists an algorithm faB that answers
the question® € B?” with polynomial many non-adaptive queriesAo

Turing reducible “ <%": B<! A, if there exists an algorithm faB that answers the
question % € B?” with polynomial many queries td.

A.3 Query Complexity

n-bit black-box An (unknown) functionf : {1,...,n} — {0,1}. We say that the
black-box ‘contains’ thex-bit string f(1), ..., f(n).

(Probabilistic) query complexity The number of times, as a function of that the
black-box f has to be queried to solve a problem (with high probabilitife
worst-case distribution over all possible black-boxessuaned.

Unstructured Problem A problem that is defined for all string®), 1}, and hence
for all black boxes.

Structured Problem A problem that is only defined on a proper subsef@fl }". We
say that there is a ‘promise’ on the input of the problem.



Appendix B

Properties of Matrices

B.1 Properties and Transformations

For a finite dimensional, complex valued matrixc M, (C), we can define its

set of complex matricesM,,(C): then byn dimensional matrices with complex val-
ued entries

set of real matricesM,,(R): then byn dimensional matrices with real valued entries
transposeA”: defined by(A”);; = Aj;

conjugate transposeA* defined by(A*);; = (A4;:)*

adjoint A* identical to theconjugate transpose

inverse A~! For non-singular matriced € M, (C) the inverse is defined by -
A~ =1,,; otherwiseA™! is undefined.

square rootv/A The square root ofl is the matrix such that/A - vA = A. For
a diagonal matrixD, we thus haveév/D);; = /D;;. Using the spectral de-
composition we can see that the root of normal matrices caexpeessed as

VA = VUAU* = UVAU*,
trace tr(A) the valued ;" | A;

A finite dimensional, complex valued, matrik € M, (C) can have the following
properties.

Diagonal: if A;; = 0 for every: # j
Hermitian: if A = A*

Normal: if A-A*=A*. A
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Unitary: if A-A* =1,. The set of unitary: x n matrices is denoted By(n).

Special Rotations: if a real-values matrix obeys - AT = I, anddet(A4) = 1; the set
of these matrices is denoted 59 (n)

Positive definite: if all the eigenvalues ofl are positive

Positive semidefinite: if all the eigenvalues ofi are nonnegative

B.2 Decompositions

Singular value decomposition Every matrixA € M, (C) can be written as the prod-
uct A = VIW*, with V andWW unitary matrices, anl a nonnegative diagonal
matrix. The values; = ¥;; are thesingular valuesf A.

Spectral decomposition of normal matricesAny normal matrix A can be decom-
posed as a produet = UAU*, with U a unitary matrix, and\ a diagonal matrix.
The diagonal entried;; are theeigenvalues\; of A and the se{A;, Ao, ...}
is thespectrunof A.



Appendix C

Norms and Distances

C.1 Norms and Distances on Vectors and Matrices

absolute value|z|: For a complex value € C, its absolute value, or norm, is defined

by |z| = Vaa*,

Sum norm ||z||;: For a complex valued vectar € C", the sum norm is defined
by ||z|y = )_, |xi|. This norm is also called thg, or Manhattan norm.For
bitvectorsz € {0, 1}" the sum norm corresponds with tHamming weighof a
bit string: ||z||, = “number of ones in".

Euclidean, or £2, vector norm ||x||2: For a complex valued vectare C", its norm
is defined byl|z||, = />, ziz}.

Max, or £, NOrm ||x||c: For a complex valued vectar € C*, the max norm is
defined by||z||, = max; |x;].

Fidelity: Thefidelity between two mixed statgsando is defined by
F(p,0) = tr( \/ﬁ-a-\/ﬁ> :

although the reader should be warned that some authors eisgtiare of this
value.

Euclidean matrix norm || A||2: For a complex valued matrid € M, (C), the Eu-
clidean norm is defined by

A, = > AyAy = ir(4- A%).
i,

Alternative names are’,, Frobenius, Hilbert-Schmidar Schur norm.
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We call this normunitarily invariant because|U - A - V||s = ||A]|, for unitary
U,V € U(n). From this invariance it follows, using the SV decompositithat

we have
[Alls = ‘/Zaf,

with ¢; the singular values of,, and hence for normal matrices

Al = > Il

where)\; are the eigenvalues of.

Trace norm || A||,,: ForamatrixA € M, (C), the trace norm is defined by
4l = o (VA-a) = Sa

with o, the singular values ofi. From this definition it follows that fonormal
matrices the trace norm equals

||A||tr = Z |)‘Z|a

where\q, )\, . .. are the eigenvalues of.

In the case of positive, semidefinite matrices we thus faMg, = tr(A), hence
the name of this norm. (As a consequence, all proper denstyicas obey

The usefulness of this norm lies in the distarfige— o||,, it defines between
two density matricep ando. For any measurement settiy = {P;} (with
>, PP, = I), thetotal variation distancebetweenp ando is bounded from
above by

lp=all, > 3 [Prob(p= P") — Prob(* = P}

peP

b

with Prob(“p = B") = (F(P;, p))?. If we choose the projector®; of P to be
the eigenvectors gf — o, then we obtain the above bound, hence

P,eP )

o=l = max (Z Prob(*p = B") - Prob(*c = ;")
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Both the Euclidean and the trace norm aratrix normshecause they obey the follow-
ing properties (see Chapter 5 in [54] for much more on thigc)op

1. nonnegativel|A|| > 0

2. positive:||A|| = 0ifand only if A =0

3. homogeneousiaA|| = |af - ||A|| forall « € C

4. triangle inequality]| A + B|| < ||A]| + || B]|

5. submultiplicativej| AB|| < ||A4|| - || B]|-
In addition, for the tensor product between two matricesailse have the equality

o | A® Bl =|A]-|B].

A very useful relation between the trace and the Euclideamns easily shown
by the inequalitiesiﬁ Y0 </ ia?? < > ,0; for any n nonnegative values
o1,...,0,. If we take these; to be the singular values of, we see that

1ALl < [[All < V- (1Al (C.1)

forall A € M, (C).

C.2 Norms on Superoperators

Trace induced superoperator norm: For a superoperatdt : M, (C) — M,,(C) we
can use the trace norm to define

[E(A)]l
£l = max .
AR AL,

If E is a positive, trace preserving mapping, the||,. = 1. A drawback of
this norm is that it can increase if we tendBrwith the identity operator. Take
for example the one qubit transpose, witiA) = A", which has|T|,, = 1,
butalso|T ® L, ||,, = 2.

Diamond superoperator norm: Let E : M, (C) — M,,(C) be a linear superopera-
tor, thediamond norntan then be defined by

IE], = IE &L,

The reader is referred to the original articles [3, 62] byxgieKitaev et al. for
more details. One of the appealing properties of this noritsisobustness:
IE &1, = [ £]|-

If E is a completely positive, trace preserving transformatiben|| E||, = 1.
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Euclidean induced superoperator norm: We define a norm for a superoperaior:
M, (C) — M,,(C), by the maximization of the Euclidean norm for matrices:

||E(A)||2
FE|, = max ————.
||| |||2 A0 ||A||2

It is straightforward to show that this norm is, like the d@md norm, robust:
IE ®1|, = ||E|,, for the identity operatok.

By the bounds of Equation C.1, we have for any superope#atoi/, (C) — M,,(C)

IEl, < VolEll, and |E],, < vm|E],.

Becausd|E ® I||, = || E|,, we thus obtain an upper bound on the diamond norm in
terms of the trace norm:

IEl, = IE@Ll, < Vom|EQL, = vam|E|, < nv/m|E],,

in combination with the trivial lower bounfiE ||, < || E| ..



Appendix D

Approximate Interrogation

In this appendix we calculate the expected number of cobiector the ‘approximate
interrogation’ procedure of Section 3.6.

We can assume without loss of generality that the queriedgsis the all zeros
stringz, - - - z, = 0™, such that thed, transformation is the identity operator, and the
Hamming weight|y|| of a measured outcomg - - - y,, equals the number of incorrect
bits. We thus set out to prove the following lemma.

Lemma 31 With the state

0y = D ),

ze{0,1}"

then-fold Hadamard transform oF will have an expected Hamming weight of

Blsoneg™" |w,))] = >t (’;‘) 1107 )

-1

= g e(ajai )VJj+1yn—j

R‘

<.
Il
)

Note that we are expressing here the number of incorregtftwta which the equality

E[#tzerogH®"|¥;))] = g + z_: Re(ajaj)vi+1y/n—j.

follows directly.
The proof of this lemma requires some knowledge about tHewalg family of
orthogonal polynomials.
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Definition 28 (Krawtchouk Polynomials [65]) Forr,n € N, the Krawtchouk Poly-
nomialK,(-,n) : N — Z is defined by

r

ki = v (1) (7))

j=0
From Chapter 5 in [70] we copy the following property of KraWwbuk polynomials:
" /n . ‘ B 2”(2) if r=s,
> (t)m,n)m(t,n) - {0 e (0.1)
Another important result is the following three-term reemce relation thai< satis-
fies:
(n—=2t)Ki(t,n) = (k+1)Ky1(t,n)+(n—k+ 1)K, 1(t,n). (D.2)

From this, the fact thak'?(¢,n) = KZ(n — t,n) for all k, n, ¢, follows easily.
We now proceed with the proof of the lemma.
Proof: By rewriting the state in lemma according to

k llzl[,=J
Hlgy) = S —He Y HOja)
=0 1/ (5) ectony»

llzlly =5

_ Z Z Qj Z _1)(y,m) y),
ye{o 1}n j=0 \/U z€{0,1}"

we obtain the following expression for the expected Hammegyht:

D(a,n, k) := E[#onesH®"|¥};))]

n n B .
= 2t (t)|<1t0" e )
t=0
1
- 2—2
=0

;
B S Een()()
( |

llz|[1=7

SRS SRS
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It is easy to see thdD is a second degree, multivariate polynomial in the varsbje

k
D(a,n, k) = Z Bijaics
,j=0
with 5;; € Randp,;; = f;; for all i, j, such thatD(«, n, k) € R for all « € C*. Our

task is thus to determine theSecoefficients.
We start by considering the diagonal eleme#ts with:

By = %Zt@ KJZ(%”)'

Now, because of the symmet(y) K#(t,n) = (,",) K?(n — t,n), we can rewrite this
summation as (using Equation D.1 for the last line)

Bii = ﬁig(?)&z(t;n)

Jj/ t=0

NIE

Next, we look at the off-diagonal terms:

n

1 n
= ——— E Ki(t,n)K;(t,n).

By rewriting thet in front of the (’}) binomial ast = % — 1(n — 2t), and using # j
with Equations D.1 and D.2, we get
By =~ tn= 20} ) Kalt. Gy 1)
2 /() ()
-1 n
= ——) (?) [(0+ 1) K1 (t,n) + (n — i+ 1) K1 (t,n)] K;(t, n).
2 () ()=
The orthogonality property o shows that the above term is zerai i j # +1;
otherwise, we have
5, = —3/(n—i)(+1) ifi+1=yj,
Y -3/ (@) (n—i+1) ifi—1=j.
This concludes our proof that indeed (using the normabzetéstrictiony . |o?| = 1)

k k-1
n 1 ~— * ¥
Dlon k) = 23102 = 5 30Vl 0+ ety + aiodyy)
i=0 i=0
—_
= 5 -2 Vi DRefaial)
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Samenvatting

“Over Quantumberekeningen”

Een quantumcomputer is een computers wiens gedrag cruaadt bepaald door de
wetten van de quantummechanica. Dit is een ander soort meadan de traditionele
computer die we kennen uit het dagelijkse leven aangeziea fimctioneert volgens
de regels van de klassieke mechanica. Hoewel men er noginggeslaagd om een
werkende quantumcomputer van behoorlijke grootte te bauvgehet wel mogelijk
om de eigenschappen hiervan te onderzoeken. Dit thedretistk dat zich op het
grensgebied bevindt van de quantummechanica en de tlsabr@informatica is het
onderwerp van dit proefschrift.

In de hoofdstukken 1 en 2 geef ik een samenvatting van de @@spean de quan-
tummechanische theorie die essentieel zijn om te begripEnquantuminformatie
en quantumcomputers zijn. De twee belangrijkste ingradie hierbij zijn het zoge-
naamdesuperpositie principen hetinterferentie fenomeen.

De toestand van een quantummechanisch systeem is in hetedgesen lineaire
combinatie van de eigentoestanden van dit systeem. Dikémttelat een quantumbit
niet alleen “nul” of “€één” kan zijn, maar ook een mengelifgyperpositie) van deze
twee toestanden. Wiskundig wordt dit het best beschrevddets eer2-dimensionale,
vector («, #) van lengtel, waarbij de complexe waarde de amplitude is van het
“nul”-gedeelte van de quantumbit, grde complexe amplitude van het “€één”-gedeelte
van de quantumbit. Als we een quantumait 5) bekijken dan zullen we de waarde
“nul” waarnemen met waarschijnlijkheid?|, en de waarde “één” met waarschijnli-
jkheid |3?| (vandaar ook dat de lengte van de vectanoet zijn: |o?| + |3?%| = 1).
Zodoende corresponderéh 0) en (0, 1) met een klassieke waardes “nul” en “één”,
terwijl (£, %) een {(36%,64%)-combinatie’ is van beide. Als we twee quantumbits
willen beschrijven dan hebben we een vier-dimensionaléoveey, o1, 10, 1)
nodig, waarbijg, de amplitude is voor de waarde “nul, nut’y; voor de waarde “nul,
eén”, enzovoorts. In het algemeen beschrijft men dus estdnd vam quantumbits
met een eed”-dimensionale vector.
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De tijdsevolutie van een quantummechanisch systeem kamitse®n worden als
een lineaire transformatie van bovengenoemde vectorerenide eis waaraan deze
functies moeten voldoen is dat ze de lengte van de vectoe¢uerianderen. Wiskundig
gesproken zijn dit de 'unitaire transformaties’. Voor eebits quantumsysteem van
dimensie2" hebben we dus een unitaire matrix met gro@ttex 2" nodig om deze
tijdsevolutie te kunnen beschrijven.

Om informatie (bits) op een quantummechanische manier weetxen hebben
we een quantumcomputer nodig die de gewenste unitaireforamaties kan imple-
menteren. Dit beschrijven we als volgt. In de theoretisof@matica abstraheert men
computers vaak tot netwerk van elementaire poorten. Vasskbke computers zijn
deze basispoorten delD, deOR, en deNOT operatie; middels welke we elke andere
transformatie kunnen opbouwen. Voor quantumcomputersdretve een soortgelijke
situatie, alleen zijn de basispoorten natuurlijk andeezédnoeten natuurlijk quantum-
mechanisch zijn). De complexiteit van een berekening kan meuitdrukken als de
minimale grootte van het netwerk (dat is: het minimale darda basispoorten), dat
nodig is om deze berekening uit te voeren. De klassieke aoxitpit is zodoende het
minimale aantal klassieke poorten dat men nodig heeft veoptbssing van een prob-
leem, terwijl de quantumcomplexiteit het minimale aantegtumpoorten als maatstaf
heeft. Uit onderzoek is gebleken dat voor sommige berekemide quantumcomplex-
iteit veel kleiner is dan de bijbehorende klassieke conmif@éx Met andere woorden:
guantumcomputers zijn soms efficiénter dan traditionetequters.

De hoofdstukken 3, 4 en 5 hebben als onderwerp het quantunamisch ‘on-
dervragen’ van informatie. In hoofdstuk 3 is deze inform&en rijz,,...,x, vann
onbekende bits. Op de vraag “watig?” krijgt men als antwoord de waarde van de
bit z;. 1k laat zien dat het, middels een superpositie van vragegetijk is om met
grote kans allex bits te weten te komen met slechts- \/n quantumvragen. Klassiek
is dit onmogelijk en zal men altijd om dit te bereiken alleragen %,?", ..., “z,?”
moeten stellen. Dit ‘quantumvoordeel’ wordt verder uitgiélin de volgende twee
hoofdstukken.

In hoofdstuk 4 wordt beschreven wat mogelijk is als men quantagen kan
stellen aan een ‘orakel’ dat bepaalde, zeer specifieke catimoele problemen kan
oplossen. Door nu de juiste superpositie van verschillemdgen aan het orakel te
stellen kunnen meer algemene ‘meta-vragen’ beantwoordemoop een manier waar-
bij we het orakel veel minder hoeven te consulteren dan dessigk vereist is. Hoe
groot dit verschil tussen de quantummechanische and &kessraagcomplexiteit is
hangt af van het soort orakel dat men gebruikt en of men deswragteractief’ kan
stellen.

Hoe kunnen we andere orakel-problemen construeren waagenoguantumcom-
puter veel minder vragen hoeft te stellen dan een klassiekguter? Deze vraag
wordt behandeld in hoofdstuk 5. In de wiskunde van de combiiek bestudeert men
al meer dan een eeuw lang zogenaamde ‘Hadamard— en weagwatie zich ken-
merken doordat elke rij in deze matrices maximaal versehiit alle andere rijen. Ik
laat zien dat deze constructies zeer geschikt zijn voordfatidren van problemen die
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zich lenen voor een quantumoplossing die efficinter is dakldssieke oplossing van
hetzelfde probleem.

‘Zelftesten’ refereert aan de mogelijkheid van een appanaeeigenhandig te con-
troleren of het naar behoren werkt. Quantumpoorten (zoaldievwillen gebruiken in
een quantumcomputer) kunnen zichzelf inderdaad testdyewigzen we in hoofdstuk
6. Dit is goed nieuws aangezien dit resultaat laat zien datlevparadoxale situatie
kunnen vermijden waarin we de bruikbaarheid van een quardomputer alleen kun-
nen verifieren met behulp van een reeds werkende quantuputem

In hoofdstuk 7, tenslotte, proberen we een definitie te gexan de ‘quantum-
Kolmogorov-complexiteit’ van quantuminformatie. In deakbieke informatietheorie
komt de Kolmogorov-complexiteit van een strimg, . . ., z,, overeen met de grootte
van het kleinste computerprogramma dat. . ., z,, als uitvoer heeft. Zo ziet men dat
de Kolmogorov-complexiteit van een string vamiljoen nullen veel kleiner zal zijn
dan dat van een even grote string dat een adressenbestahdjfietioe deze definitie
te generaliseren voor quantuminformatie is geenszinsdedrand liggend aangezien
het niet duidelijk is hoe precies men de amplitugess) dient te benaderen. De sug-
gestie die we doen in dit laatste hoofdstuk bestaat eruitiel@uantum-Kolmogorov-
complexiteit van een rij van quantumbits wordt gedefiniedste lengte van het kort-
ste guantumcomputerprogramma dat deze rij met willekewagruratesse kan repro-
duceren, maar niet noodzakelijk perfect.
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