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Abstract

This thesis discusses the connection between the nonlocal behavior of quantum me-
chanics and the communication complexity of distributed computations. The first three
chapters provide an introduction to quantum information theory with an emphasis on
the description of entangled systems. The next chapter looks at how to measure the
complexity of distributed computations. This is expressedby the ‘communication com-
plexity’, defined as the minimum amount of communication required for the evaluation
of a function

� �����—a communication necessary because the input strings� and�
are distributed over separated parties. In the theory of quantum communication, we try
to use the nonlocal effects of entangled quantum bits to reduce communication com-
plexity. In chapters 5, 6 and 7, such an improvement over classical communication is
indeed established for various functions. However, it is also shown that entanglement
does not lead to a more efficient calculation of the inner product function. We thus
reach the conclusion that nonlocality sometimes—but not always—allows a reduction
in communication complexity. This subtle relationship between nonlocality and com-
munication vanishes when we consider ‘superstrong’ correlations. We demonstrate that
if a violation of the Clauser-Horne-Shimony-Holt inequality with the maximum factor
of � is assumed, all decision problems have the same trivial complexity of a single bit.
The thesis concludes with an overview of the current status of quantum communication
theory, and a discussion of the experimental feasability ofthe suggested protocols.
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Preface

This is the D.Phil. thesis of Wim van Dam. It contains the workthat I did as a graduate
student under the supervision of Artur Ekert at the Centre for Quantum Computation,
University of Oxford.

The main part of this thesis deals with the investigation of quantum communication
protocols that have a smaller complexity than any possible classical protocol: that is,
quantum communication complexity. This advantage of quantum over classical is made
possible by the nonlocal correlations, which can be established with entangled quantum
bits.

The first four chapters of this thesis are of an introductory nature. In them, I give
a brief overview of, respectively, quantum information, quantum communication, non-
locality, and communication complexity theory. Chapter 5 gives an example of two
quantum communication protocols that have a reduced complexity when compared to
classical procedures. The results of this chapter are described in

� “Quantum entanglement and communication complexity”, by Harry Buhrman,
Richard Cleve, and Wim van Dam, Technical Report RS-97-40 inthe BRICS
Research Series, University of Aarhus; quant-ph archive, report no. 9705033,

where the phrasing of the quantum protocol is due to the author of this thesis.
The 6th chapter generalizes the above protocol to the multiparty setting. It was

published earlier as a part of

� “Multiparty quantum communication complexity”, by Harry Buhrman, Wim
van Dam, Peter Høyer, and Alain Tapp,Physical Review A, Volume 60, No. 4,
pp. 2737–2741 (1999); quant-ph archive, report no. 9710054.

The proof method of the classical lower bound is my main contribution to this article.
Together with Lucien Hardy, I published the paper that is described in Chapter 7,

� “Quantum communication using a nonlocal Zeno effect”, Lucien Hardy and
Wim van Dam,Physical Review A, Volume 59, No. 4, pages 2635–2640 (1999);
quant-ph archive, report no. 9805037.

It shows how the quantum Zeno effect of an entangled pair of qubits can be used to
reduce the error in a one-bit communication protocol. The derivation of the minimal
classical error rate is by my hand.
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Chapter 8 shows that there are distributed functions that donot allow a reduction
in complexity by the use of entanglement. The analysis of thetwo-bit case is my
contribution to this part, with the corresponding publication

� “Quantum entanglement and the communication complexity ofthe inner prod-
uct function”, by Richard Cleve, Wim van Dam, Michael Nielsen, and Alain
Tapp,Proceedings of the 1st NASA International Conference on Quantum Com-
puting and Quantum Communications, in Lecture Notes in Computer Science,
No. 1509, (editor: Colin P. Williams), Springer-Verlag, pages 61–74 (1999);
quant-ph archive, report no. 9708019.

The last chapter before the Conclusion discusses the consequences of superstrong
nonlocality for communication complexity. This work will be published in the near
future as a single author article.
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Chapter 1

Introducing Quantum
Information and
Communication

In this thesis we investigate the theory of quantum information and communication.
The current interest in this field is fueled by the discovery that the use of quantum
mechanical processes provides us with an advantage over thetraditional, classical ways
of manipulating information. In this chapter I will introduce the notion of ‘quantum
information’, and the standard notation as it will be used throughout the rest of the
thesis.

Section 1.1 Modeling Information

The term ‘bit’ stands for ‘binary digit’, which reflects the fact that it can be described
and implemented by a two-level system. Conventionally, these two levels are indicated
by the labels “zero” and “one”, or “

�
” and “�”. If we want to capture more than two

possibilities, more bits are needed: with� bits we have�� different labels.
The abstraction from� two-level systems to the set��� ��� of size�� takes us away

from the physical details of the implementation of a piece ofmemory in a computer,
and instead focuses on a more mathematical description of information. This ‘physics
independent’ approach to standard information theory has been extremely successful
in the past decades: it enables a general understanding of computational and commu-
nicational processes that is applicable to all the different ways of implementing these
processes. It is for this reason that the Turing machine model of computation gives an
accurate description of both the mechanical computer suggested by Charles Babbage
and the latest Silicon based Pentium III processors, despite their obvious physical dif-
ferences. This does not mean that Turing’s model ignores thephysical reality of build-
ing a computer, on the contrary. The observation that it would be unphysical to assume
an infinite or unbounded precision in the components of a computer is expressed by
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1.2. QUANTUM INFORMATION

Turing’s rule that per time-step only a fixed, finite amount ofcomputational work can
be done.[63] The proper analysis of algorithms in the theoryof computational com-
plexity relies critically on the exclusion of computational models that are not realistic.
Such models often give the wrong impression that certain complicated tasks are easy.
(A good example of this is the result that the factorization of integers can be done in
polynomial time if we assume that addition, multiplicationand division of arbitrary
big numbers can be done in constant time. (See Chapter 4.5.4,Exercise 40 in [40] and
[60].) There is, however, also a danger with this axiomatization of the physical as-
sumptions in information theory: believing that the assumptions are true. This is what
happened with the traditional view on information, forgotten were the implicit clas-
sical assumptions that ignore the possibilities of quantummechanics. The realization
that quantum physics describes a world where information behaves differently than in
classical theory led to the blossoming of several fields—quantum information, quan-
tum computing, quantum communication, et cetera. In this thesis I will focus on the
differences in communication complexity between a classical and a quantum model of
communication. Before doing so, it is necessary to define what we mean by quantum
information and communication.

Section 1.2 Quantum Information

At the heart of quantum mechanical information theory lies thesuperposition principle.
Where a classical bit is either in the state “zero” or “one”, aquantum bit is allowed to
be in a superposition of the two states. A qubit with the label� is therefore described
in Dirac’s bra-ket notation by the linear combination:

��� � ��“zero”� � � �“one”��
where for the complex valued amplitudes�, � � � , the normalization restriction

���	��� �	 � � applies. In this formalism, the state space of a single qubitis built up by
the unit vectors in the two-dimensional Hilbert space
	. For � qubits, there are��
basis states and hence the corresponding superposition is alinear combination of all��
possible strings of� bits:

��� � � ���� � �������� �
� ����

Again it is required that the amplitudes�� obey the normalization condition�� ��� �	 �
�. (In Section 1.4 we will see the reason behind this stipulation.) The state space of
� qubits is the�-fold tensor product of the state space of a single qubit. This space is
identical with a single��-dimensional Hilbert space:

��� � � � ��� � 
	 � � � � �
	 � 
	� �
For our purposes we will only use finite sets of quantum bits, so there is no need to
look at infinite-dimensional Hilbert spaces.
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1.3. TIME EVOLUTION OF QUANTUM BITS

Section 1.3 Time Evolution of Quantum Bits

Quantum mechanics only allows transformations of states that are linear and respect
the normalization restriction. When acting on an�-dimensional Hilbert space, these
are the� �� complex valued rotation matrices that are norm preserving:the unitary
matrices of U

���. It is easy to show that this corresponds exactly to the requirement that
the inverse of

�
is the complex conjugate

��
of the matrix. (The complex conjugate

is defined by
������� � ���������, where	�

‘row’ � ‘column’
�

is used to denote the
different matrix entries.)

The effect of a unitary transformation
�

on a state� is exactly described by the cor-
responding rotation of the vector

��� in the appropriate Hilbert space. For this reason,
“
�

” stands both for the quantum mechanical transformation as well as for the unitary
rotation:

� ��� � � 
� �� ���
�

� � ��� ��� � � ��� � � � �� � ��
It follows from the associativity of matrix multiplicationthat the effect of two consec-
utive transformation

�� and
�	 is the same as the single transformation

��	 ����. Just
as matrix multiplication does not commute, so does the orderof a sequence of unitary
transformations matter: in general

�	�� �� ���	. We can restate this in a more intu-
itive way by saying that it makes a difference if we first do

�� and then
�	, or the other

way around. (A convincing example is that of the two actions “add five” and “multiply
by two”.)

Section 1.4 Measurements

When measuring the state
��� � �� �� ���, the probability of observing the outcome

“
�
” equals

��� �	. This explains the normalization restriction on the amplitudes: the
different probabilities have to add up to one. But what exactly is a ‘measurement’ and
an ‘observation’, and how do we describe this mathematically? These are thorny issues
that this thesis will leave untouched. Here we will only givea formal description of the
measurement process and a short explanation of why this is such a problematic part of
quantum mechanics.

The possible outcomes “
�
” of � correspond to a set of orthogonal vectors�������

of the measuring device. This device can be our own eye or somekind of machine,
but the crucial point is that ‘measuring�’ implies ‘interacting with�’. The effect on�
of such a measurement is that the statecollapsesaccording to the outcome “

�
” of our

observation. This is described by the transformation:

� �� ��� �������� � ���� (1.1)

The collapse as described above is a non-unitary transformation. This is typical when
we try to describe the behavior of� as it interacts with a system that lies outside of the
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1.5. LIMITATIONS OF DIRAC’S KET NOTATION

state. (We say that� is an ‘open system’.) When we view� and the measurement de-
vice togetherduring the observation, the evolution becomes unitary again. Our current
example is then described by the transformation:

� �� ��� � �
measurement device� �

� � �� ����outcome����
The problem with this last description is that it no longer specifies the specific outcome
“
�
” that we seem to observe. It is here where the debate on themeasurement problem

starts and our discussion ends.
For the purposes of this thesis it is more convenient to use the terminology of the

collapsing quantum state. We will therefore describe the effect of a measurement as in
Equation 1.1 for practical reasons. (This does not imply that I really think that there is
such a collapse, but this issue are not the topic of this text.In this thesis we are mainly
interested in the differences between the classical and thequantum mechanical theory
of information. These differences, expressed in probabilities et cetera, are independent
of the viewpoint that one has on the measurement problem.)

We just described the traditional ‘Von Neumann measurement’ where we observe
the state� in the canonical basis spanned by the basis vectors

�
. Other, more subtle,

measurement procedures are also possible by choosing an in-or over-complete basis.
We will postpone the description of these two options the point when we discuss the
density matrix formalism, which is more suitable for the general theory of interacting
quantum mechanical systems.

Section 1.5 Limitations of Dirac’s Ket Notation

The braket notation that we discussed above is tailor-made for the description of closed
quantum mechanical systems. By this we mean the evolution ofstates that do not
interact with an exterior environment. When we also want to consider the behavior of
open systems, the ket-notation becomes less suitable. Thiswas already obvious in the
discussion of the measurement procedure where we had to expand the set of unitary
operations with a probabilistic procedure that ‘collapses’ the quantum state to one of
the basis states. One cannot help but feel uncomfortable about this sudden change of
rules: is it not possible to deal with open and closed quantumsystems in the same way?
Luckily, we find in the formalism of density matrices a positive answer to this question.

Section 1.6 Density Matrices

An �-dimensional pure state� can be expressed as a normalized vector
��� in the

Hilbert space
�. The complex conjugate
���� of this vector is the bra

�� �, which is
an element of the adjoint space
�

�. By taking the direct product between the ket
���

and the bra
�� �, we thus obtain an� �� complex valued, Hermitian matrix: thedensity

matrix of �.
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1.6. DENSITY MATRICES

As an example, for the state
��� � �� �� ���, the density matrix is:

����� � � 
� �� ���
� ��� ��� � ��� � ��� ����� ���� ��

In the case of a single qubit with the ket description
��� � ������ ���, this leads to the

� ��matrix in the standard basis

������ � � ���	 ������ �� �	 � �
From now on, the density matrix of the state� will be denoted by the same symbol�, and the fact that a matrix is a density matrix will be indicated by its square brackets.
The great advantage of this formalism is that it also allows the description of an

ensembleof pure quantum states. If we have such a state�, which is a probabilistic
mixture of the pure states

���� with probabilities��, then the matrix� is the weighted
linear combination of the corresponding pure states matrices,

� � � �� � ������� ��
with �� 	 �

and�� �� � �.
Every density matrix that can be written as such a convex combination of pure

states is a legal, or ‘allowed’, state, where allowed means,“allowed by the laws of
quantum physics”. It follows from linear algebra that this restriction coincides with
the requirement that the matrix is a Hermitian, positive, semidefinite matrix with unit
trace.

The spectral decompositionof a proper density matrix� is done in terms of its
eigenvalues
� and eigenvectors

����, by the equality

� � � 
� ������� �� (1.2)

This shows that we can interpret� as the mixture��
� � �������, where the states�� are
pure and mutually orthogonal.

The above decomposition gives a convenient way of assigninga mixture to a given
density matrix. It is important to realize, however, that a density matrix corresponds to
a whole family of possible mixtures. Take the two ensembles���	 � ����� ��	 � ����� and
���	 � ��	 ���� � ������ ��	 � ��	 ���� � ������, which have the same density matrix:

�
� � � �

� � � � �
� � � �

� � � � � �	 �
� �	 �

� �
� � �	 �	�	 �	 � � �

� � �	 �
�	

�
�	 �	 � �

We shall see that this implies that these two mixtures are indistinguishable from each
other; it is therefore more accurate and less confusing to consider them as equivalent
mixtures.
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1.7. SEPARATED SYSTEMS

The density matrix of aqubit � in the standard basis is always of the form

� � � � ��� ��� � �

with the probability� between
�

and � and the ‘off-diagonal term’
���	 � � �� ���.

If
���	 � � �� ��� then� is a pure state with

��� � �� ��� � ��� ��� (or
��� � ��� if� � �

); otherwise the qubit� corresponds to a mixture.

Section 1.7 Separated Systems

We need the technique of density matrices to be able to describe the evolution of an
open system. By ‘open’ we mean that there is a possible interaction between the quan-
tum mechanical state and its environment, where the information in the latter is ignored
(traced out). We already saw how a (pure) qubit changed into aprobabilistic mixture
after it interacted with a measurement device outside the qubit system.

This thesis analyses the possibilities of communication between remote parties. An
individual party in this setting is therefore an open systemas it interacts with the other
participants. Here we will show how we describe local actions and observations in such
an extended environment.

Let � and� denote two separated parties Alice and Bob, each with their personal
qubits�� and��. The joint �-qubit space of� and� is the tensor product of the
two subspaces
� �
�, which is a�-level system. The question now is: if there
is a state��� that lives in this joint space
� �
�, how does�’s part of���
look like? Or more specifically, how do we calculate the local� � � density matrix
�� from the global� � � state���? The answer is that this is done by ‘tracing
out’ the environment (here�’s part) of the state. The state space for��� is spanned
by the�-dimensional basis	 �� � �������� ������� ������� �������, which can be
decomposed as the product of the bases of the two subsystems,	 �� � 	 � �	 � �
������ ����� ������� �����. When we want to consider�’s part of���, we have to
express this in the basis	 � while ignoring�’s state space
�. This is calculated by

�� � 
����
����� � ��� ���� ���� � ��� ���� �����

Conversely, if we want to know the state on�’s side, we trace out�’s part of the state
space,�� � 
����

�����.
The above method is easily extended to the general case. For ajoint state���

(where	 � by itself can represent a multipartite system), the densitymatrix on�’s
side is calculated by performing a partial trace over a complete basis for the state space
of 
�. If ������� is such a basis, then this is thus done by the calculation

�� � �
��� ���� �����

The experienced reader must have noticed by now that we use a notation for mixed
states in this thesis that is perhaps unconventional. If��� is a (pure) distributed state,
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1.8. VON NEUMANN ENTROPY OF MIXED STATES

then�� will refer to the (mixed) subsystem on�’s side. This means that we allow
the symbols�, � and even� to refer to a mixed state. I realize that this is not in
accordance with most of the literature, but it gives us a morenatural way of denoting
the different parts of a distributed system.

Section 1.8 Von Neumann Entropy of Mixed States

The eigenvalues
� of a density matrix are always non-negative and sum up to one.
If we decompose a mixture into a linear combination of orthogonal pure states, then
the
’s will correspond to the probabilities of the respective eigenvectors. (See Equa-
tion 1.2.) Although the eigenvectors of a density matrix arenot always unique, its
eigenvalues are. This allows us to unambiguously define theVon Neumann entropy���� of a state with spectral decomposition� � �� 
� ������� �by

���� � �� 
� ���	 
� �
If we calculate the logarithm of a matrix with the Taylor expansion:������ � �������	 �� � ��	 � �� �� � ��� � � � � , this can also be written as

���� � �
����� ���	 ��.
The Von Neumann entropy

���� reflects how ‘mixed’ or random� is, where pure states
have zero entropy.

Section 1.9 Operations on Mixed States

A unitary transformation
�

maps the state
��� to the new pure state

� ���. The latter
reads as density matrix

� ����� ���. In the language of density matrices, the corre-
sponding transformation�� is therefore calculated by ‘sandwiching’ the matrix� be-
tween

�
and its conjugate

��
:

�� ������ �� � � ����� ��� �
If we have a mixed state�, then �� acts linearly on the eigenvectors of�. The following
equation shows us that this calculation can be done without having to decompose�,
and that our sandwich expression therefore also holds for mixed states:

�� ��� � �� 
� 
� ������� ��
� � 
� � �� �������� ��
� � 
� �� ������� ���
� � 
� 
� � ������� ����
� � � � ��� �
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1.10. OPERATOR SUM REPRESENTATION

It is clear that the positive eigenvalues
� of � remain unchanged, and that�� only
rotates the eigenvectors�� to the new eigenstates�� ����.

Unitary operations are an example of completely-positive,trace preserving maps:
every positive, semidefinite matrix is mapped to (another) positive, semidefinite matrix,
and the trace of the matrix remains unaltered. Complete-positivity, in combination with
the preservation of the trace, assures us that the result of atransformation will be a
proper state if we started with a proper one.

Besides the unitary functions, there are other transformations that are possible in
quantum mechanics. Just as mixed states are composed of purestates, so can a positive
map be a linear combination of matrix multiplications similar to the ones we discussed
above. An example of such a non-unitary mapping is the mapping �� , corresponding
to a measurement of a qubit in the standard basis��� ��. This function consists of two
‘projectors’

�� � ������ and
�� � ������ that transform a qubit� into a probabilistic

mixture of the states
�

and�. Explicitly:

�� ��� � �� �� � ��� ��� ��
� ��� �� � ��� ��� �� � ��� �� � ��� ��� ��
� � � �

� � � � � � �
� ��� �

� � � �
� ��� � �

We see that the eigenvalues of the new density matrix are� and� �� with the corre-
sponding eigenvectors

������ and
������. In general, the eigenvalues of� will change

under this transformation and hence there it is no unitary operation that can establish
the above mapping. In the next section we will give a formal description of all trans-
formations, such as the above�� , that are allowed by quantum physics.

Section 1.10 Operator Sum Representation

The following requirements for an operator�� are necessary and sufficient for�� to be
a proper quantum mechanical transformation:

1. The mapping�� can be written as a set of matrices����� with which it maps a
state� to the linear combination��

�
� � � ����.

2. The set of operators����� has to obey the identity restriction��
��
� ��� � �.

(Note the change of order of
�

and
��

in the multiplication.)

These two requirements exactly describe the set ofcompletely-positive, trace preserv-
ing maps.Complete-positivity means that we require both�� as well its trivial exten-
sions �� � �� to higher dimensions to be positive. This is a stronger condition than
positivity. An example of a positive but not completely-positive map is the partial
transpose�� , which is defined by�� ��� � �� .
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1.10. OPERATOR SUM REPRESENTATION

We have truly extended the set of unitary transformations and measurements by the
above ‘operator sum’ formalism. An example of this is the mapping that erases a qubit
and replaces it with the value zero. This non-unitary function is the combination of two
operators

�� � �� � �
� � � � � � �� � �� �

and has the same effect on every qubit�, namely

�� ��� � �� �� � ��� ��� ��
� � � �

� � � � � ��� ��� � � � �
� � � �

� � �� � � � � ��� ��� � � � �
� � �

� � � �
� � � � � ��� �

� � �
� �������

We previously argued that a measurement has a non-unitary effect on a state be-
cause we ignored its interaction with an outside system (themeasurement device). This
lesson holds for all allowed transformations:

Every completely-positive, trace preserving transformation �� of a system
� can be viewed as a part of unitary mapping��� on a bigger system
� �
�. That �� by itself appears to be non-unitary is due to the fact
that we ignore the space
�.

It can be shown that for the extension of the system it is sufficient to assume that the
dimension of the appended space
� is twice as large as that of
�, and that its initial
state is

�� � � ���. Hence, for every allowed quantum mechanical transformation �� that
acts on an�-dimensional system, there exists a unitary matrix

�� �U
���� such that

�� ��� � 
���� ��� �� � ��� � � ������� � � ��� ������
for all �. This is, in more general terms, the difference that we encountered between
the Equations 1.1 and 1.2. The non-unitary ‘collapse’ associated with an observation,
or any other kind of interaction, is again a unitary transformation when we incorporate
the measurement device into the description of the event.

The converse of the earlier statement also holds: every mapping that can be writ-
ten as a traced-out, unitary transformation on a larger Hilbert space is a completely-
positive, trace preserving mapping. The reader is referredto the standard book by
Asher Peres[53] and the article by Benjamin Schumacher[59]for a more extended and
rigorous treatment of this ‘operator sum representation’.
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1.11. A FEW ELEMENTARY OPERATIONS

Section 1.11 A Few Elementary Operations

In quantum computing and communication we look at the possibilities of transforming
information as is allowed by the laws of quantum mechanics. We usually decompose
such quantum algorithms in a series of small elementary steps that consist of one and
two qubit operations. The following unitary gates are so commonly used that we will
define them here in the introduction; we can therefore then use them throughout the
rest of the thesis without having to specify them.

The Not gate: This is the same gate that we know of in classical computationwith the
additional characteristic that it respects the superposition of a qubit:

NOT
����� � � ���� � ���� � �����

Phase Flip: The FLIP gate changes the phase of a qubit conditional on its value:

FLIP
����� � � ���� � ���� �� ����

Phase Rotation: A more general phase rotation is provided by the PHASE operation
which has a free variable� that determines the angle of the phase change:

PHASE
�������� � � ���� � ���� � ���� ����

(Note: FLIP � PHASE
���.)

Hadamard transform: This transformation� maps the zero and one state to a super-
position of the two basis states:

� ��� � ��	 ���� � ���� and � ��� � ��	 ���� � �����
The Hadamard is its own inverse (�

	 � �) and is often used in parallel on a
� qubit register. Such a�-fold application of� translates the information of a
classical string into the phases of a full superposition andback again:��� � � ���� ����� �� ��	� 

��������
�
�����

��	 ����

where
����� is the inner product modulo� of the� bit vectors� and�.

Rotations: With the rotation
 with an angle�, we mean the unitary one qubit trans-
formation:


��� � � ��� � �� ��� � ��� � �
Controlled-Flip: The controlled-flip is a two-qubit operation that applies the FLIP

gate to the target bit, if the control bit equals “�”; otherwise it leaves the target
unchanged:

CFLIP
����� � �

����� ������
for all ��� � ��� ��.
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1.12. NO INFLUENCE-AT-A-DISTANCE

Section 1.12 No Influence-at-a-Distance

We conclude this chapter by a brief look at the typical example of a two qubit entangled
state. Let��� be the pure state

����� � ��	 ����� � �����. As a density matrix, this
reads in the standard basis:

��� � ��������� � �
�
���

�	 � � �	� � � �
� � � ��	 � � �	

�
��� �

When ‘viewed’ from either side as a subsystem, this pure state equals the maximally
mixed qubit:

�� � �� � ��� ���� ���� � ��� ���� ���� � � �	 �
� �	 � �

The complete, entangled state is therefore fundamentally different from the tensor
products of its subsystems:��� �� �� � ��. In the next chapters we will see how
different these entangled states are from states that can bewritten as tensor products.
But before doing that, we will finish our introduction with anexplanation why entan-
glementcannotbe used for instantaneous information transfer.

Entanglement between Alice and Bob does not allow Bob to indirectly influence
the state of Alice’s system. Let��� be the joint state (and hence�� the system
Alice’s side). Everything that Bob can do with his part��, can be described with the
operator-sum representation. That this does not effect Alice’s system can be expressed
by the following equations. In the most general setting, thesystem��� is a mix-
ture of pure states

����� �, where each state can be written as a bipartite superposition����� � � �� ��� ��������� �. This gives the following summation with probabilities��,
and amplitudes���:

��� � � �� � ����� ������ �

� � ���� ������� � ��������� ���������� �
� ��� ��������� � ����� ������ � � ����� ������ ��

From this expression we can now calculate the density matrixof Alice’s subsystem
�� with the partial trace over Bob’s part. This shows us that�� is independent of
the local transformations that Bob may have applied to his part ��. For, if we assume
that this action has the operator sum representation��� ��� � ��

�
� � � ����, then the
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1.12. NO INFLUENCE-AT-A-DISTANCE

‘new’ state ��� on Alice’s side equals��� � 
����
���� � ��� ������

� ��� ��������� � ����� ������ � �
��� ���� ������ ������ ���
� ��� ��������� � ����� ������ � �
��� �

�

�
�
����� ������ �����

� ��� ��������� � ����� ������ � �
��� ������ ������ ���
(The last step in the above derivation uses the fact that
����� ��� � 
����� ���
in combination with the restriction that��

��
� ��� � ��.) Clearly, the final outcome��� does not depend on the remote operation��� of Bob, and hence equals the original

state��.
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Chapter 2

Quantum Communication

The theory of quantum communication looks at the consequences for information
transfer if we allow the settings where we can send qubits anduse entanglement. In
this chapter some of the possibilities and impossibilitiesof quantum communication
are explored. We pay special attention to the procedure of teleporting quantum states
with classical signals. Also Holevo’s bound on the amount ofinformation that can be
transfered with quantum signals is discussed.

Section 2.1 Entanglement

At the end of the previous chapter, we encountered a combination of two entangled
qubits distributed over two parties� and�:

����� � ��	 �����������. It is impossible
to write this pure state as a tensor product� � �

. Even if we allow a mixture of tensor
products, such a decomposition remains impossible. We say that the ��	 ����� � �����
is anentangled state.More explicitly, the definition of entanglement is as follows:

A bipartite system��� is separable if and only if it can be expressed as a
mixture of tensor products:

��� � � �� � �� � �� �

where� is a probability distribution, and�� and
�� are quantum states on

� and�’s side respectively.

A state that isnot separableis entangled.

The condition of entanglement is stronger than that of traditional correlations. Two
classical bits that are either

��
or �� (with a

���
-
���

distribution) can be written as
the unentangled mixture�	 ��������� �	 ��������. A system over� and� is uncorrelated
if it can be written as a single tensor product�� �

with again� and
�

(mixed) states on
� and�’s side. It is the difference between the ‘��	 ’ amplitudes of the entangled state

and the ‘
���

’ probabilities of the classical correlation that plays a crucial role here.
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2.2. AN EXAMPLE: WERNER STATES

The question of how to decide, with an efficient procedure, whether a mixed state is
entangled or not is still unresolved.[36, 37, 54] Although we have a clear definition of
what it means for a state to be separable, it is still not clearhow to search the continuous
space of possible decompositions���� ��� � �� with an algorithm that always gives a
reliable answer. This is not only due to the finite precision of the algorithm, but, more
important, also to the fact that we do not know when we can stopour search for an
unentangled decomposition.

Here we will limit ourselves to an example for the entanglement of two qubits in
the presence of noise: the Werner states. After that, we continue with a description of
the protocols forsuperdense codingandteleportation,which highlight the usefulness
of entanglement for purposes of communication.

Section 2.2 An Example: Werner States

We will use the family of Werner states[66] to clarify the difference between classical
and quantum correlations. The state

��� � ��	 ����� � ����� is entangled, whereas the

two random bits are�� � not even correlated. Hence, if we consider the one parameter
family �� � 
 � � � ���� � � for

� � 
 � �, we cover the whole spectrum from
uncorrelated bits (
 � �

), to maximally entangled qubits (
 � �). The critical point for
�� to be an entangled state is
 � �� . We will prove this in two parts: the separability
of �� if 
 � �� , and the entanglement of�� for every
 � �� .

Define the following six qubit states:
���� � � ���, ���� � � ���, ���� � � ��	 ���������,

and
���� � � ��	 ���� � � ����. The reader is invited to check for him or herself that we

can decompose���	�	 into a sum of zeta tensor-products:

��
�� 	 �

�


�

�� � � ��� �� � �
� � �� ��� � � ��

�
���

� �� ���� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ���
� �

hence���	�	 is separable. From this it follows that for any
 � �� , �� is a mixture of
two disentangled states:�� � �
 ����	�	 � ����� � �.

The case when
 is bigger than�� is analyzed with inseparability criterion of Asher
Peres[54]. This sufficient condition tells us that a bipartite state��� is not separable if
the ‘partially transposed’ matrix

���� � ������� has negative eigenvalues. The reason
for this is the following. If the matrix�� represents a valid state, then so does its trans-
pose �� ���� � ����� . Hence, for every disentangled state��� � ���� � ��� � ��� ,
the partially transposed matrix���� � ��� � ���� �� will also correspond to a proper
state. If this is not the case—if the transposed matrix has negative eigenvalues—then
we can conclude that the original matrix cannot be written asa sum of tensor products,
and hence that��� is entangled. It is straightforward to verify that�� has negative
eigenvalues under the transformation��� � ��� if 
 � �� . This concludes our proof that
the mixture�� � 
 ��� ���� �� is entangled if and only if��  
 � �. (Another proof
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2.3. SUPERDENSE CODING

of the entanglement of�� can be given in terms of ‘distillable entanglement’. This is
done in [10], where it is shown how one can create near perfectentangled states from
an unlimited supply of�� pairs, under the assumption that
 � �� .)

Section 2.3 Superdense Coding

The procedure of superdense coding shows us how we can transmit two bits of infor-
mation with only one qubit. This result was published by Charles Bennett and Stephen
Wiesner in 1992[8], and was one of the first examples of ‘entanglement enhanced com-
munication’.

Take two parties Alice and Bob (� and�) that want to communicate with each
other. More specifically, Alice wants to send two classical bits of information to Bob
with a minimum amount of effort. The setting is such that the two parties initially
share one entangled pair of qubits��� � ��	 ����� � �����, and that Alice is allowed
to use qubits for her signal, rather than classical bits. Thefollowing single qubit pro-
tocol establishes the� bit transmission. (The bits that Alice wants to send are labeled�����. The NOT and FLIP operations are unitary, one qubit transformations, defined
by NOT

����� � � ���� � ���� � ���� and FLIP
����� � � ���� � ���� �� ���.)

1. Depending on the� and� values, Alice performs the unitary operation NOT
� �

FLIP
�

to her qubit�� of the entangled pair���. (The qubit that is the result of
this transformation is indicated by���� .)

2. Next, Alice send her qubit to Bob.

3. At this stage, Bob, who now possesses both the qubit���� and��, measures this
entangled pair����� in the four-dimensional basis

��
�

����� � ��	 ����� � ������ ����� � ��	 ����� � ������
����� � ��	 ����� � ������ ����� � ��	 ����� � ������

It turns out that the label of the outcome
��� of this measurement tells Bob exactly

which bits� and� Alice wanted to convey, as he will always measure
���.

The correctness of this protocol is best proven by a case-by-case analyses of all four
possibilities�� � ������� ��� ���.

1. If �� � ��
, then Alice did not change her qubit and hence the pair that Bob

possessed before the measurement was indeed
������� � ��	 ����� � ����� ������.

2. If �� � ��, then the FLIP action by Alice corresponded to the joint transforma-
tion FLIP � �	 on the pair���, yielding the pure state��	 ������ ����� � �����.

3. In a similar way, does the NOT on Alice’s side (the case�� � ��) and the identity
on Bob’s side give the entangled pair

������� �
�����.
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4. The combination of FLIP and NOT on�� results in the state
������� � ��	 �����������, which can be detected with���� reliability, corresponding to the right

answer�� � ��.
As the four

�
states are mutually orthogonal, no confusion over the outcome is neces-

sary if we assume that Alice and Bob are capable of perfect manipulation, transmission
and observation of their qubits.

Superdense coding shows us how one entangled pair and one qubit of communica-
tion can be used to transmit two classical bits of information. The obvious question is:
Can we improve this result by either increasing the number ofbits transmitted, or by
reducing the resources needed for this protocol? The answeris: No, this is not possible.
In the next section, we will collect some of the evidence for this answer by looking at
theteleportationprotocol.

Section 2.4 Teleportation

How can we get a qubit across? If we have a perfect quantum channel between two
parties, then we can simply send the quantum information from� to�. But what if we
do not have have this possibility and there is only a classical channel at our disposal?
The surprising answer is that the reliable transmission of qubits is still possible if the
two parties share some entanglement between them. In 1993 Charles Bennett, Gilles
Brassard, Claude Crépau, Richard Jozsa, Asher Peres and Bill Wootters showed how
one entangled pair of qubits and two bits of classical communication are sufficient to
transmit an unknown qubit between two parties.[9] (Note that when the properties of
the qubitare known, a classical description of its parameters can be broadcasted over
the classical channel and no entanglement is required.) This protocol, which has been
coined ‘teleportation’, is in a sense the complement of superdense coding, which uses
one entangled pair and one qubit of communication to convey two classical bits of
information. The procedure is as follows.

Let Alice have a qubit� that she wants to convey to Bob. Both parties share the
standard entangled pair

����� � ��	 ����� � �����. The parameters of the qubit are��� � ���� �� ���, but are unknown to the parties. Hence a complete classical descrip-
tion of the qubit is impossible to obtain. Instead, Alice will let � interact with her part
�� of the entangled pair��� by means of a measurement on the two qubits. The basis�

of this measurement is equivalent to the one that we used in the superdense coding
protocol:

��
�

����� � ��	 ����� � ������ ����� � ��	 ����� � ������
����� � ��	 ����� � ������ ����� � ��	 ����� � ������

After this, � and�� are ‘collapsed’ according to the outcome
���, and Bob’s qubit

is no longer entangled with the system of Alice. Instead, hisnew���� is correlated with
the initial qubit� and the measurement outcome�� in the following way:
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2.5. INFORMATION VERSUS INFORMATION REPRESENTATION

outcome�� Alice’s � qubits Bob’s qubit
����� ��� ��� ���� � � ����� ��� ���� �� ���

�� ��� � ��� � ����
�� ��� � ��� �����

.

It is straightforward to verify that for every combination�� � ��� ��	 it holds that

NOT
� �FLIP

� ����� � � ���� � � ��� � ���� (2.1)

After the measurement, Alice therefore broadcasts the two classical bits� and � to
Bob who then corrects his qubit���� according to Equation 2.1. This completes the
teleportation procedure as Bob has now obtained a qubit withthe same parameters���� � � ���, while on Alice’s side no trace of the original qubit� is left. It is an
important aside that during the protocol no information about � is obtained: all four
measurement outcomes�� are equally likely and independent of the amplitudes� and�. We also do not ‘copy’ the qubit� as Alice loses all her information about� (see the
next section for an explanation of why this is important).

There seems to be a close connection between superdense coding and teleportation:
both use the same measurement basis, transformations and ingredients. This similarity
can be used to prove that the two procedures are optimal with respect to their resources.
But before establishing this result, we need to convince ourselves of a some important
upper bounds on the transfer of information with quantum mechanical means.

Section 2.5 Information versus Information Representation

Thinking about qubits as states with complex valued parameters is sometimes mislead-
ing. The uncountably many differentmathematical expressions���� �� ��� �
 for a
qubit, suggest that a single qubit contains an infinite amount of information, which is
not the case. If we have a single copy of a qubit�, then only a small amount of informa-
tion about its amplitudes can be obtained via a measurement.After this, the quantum
state� has changed according to the observed outcome and no more information about
the original amplitudes� and� is accessible.

Furthermore, theno-cloning theoremtells us that it is also impossible to copy an
unknown quantum state� in order to obtain the tensor product� ��.[67] This prevents
us from creating a large set of identical�s, which would enable us to estimate� and�
with arbitrary accuracy.

It is often claimed that the above are typical features of quantum information, but
this is a misconception. To see this, it is instructive to realize that the same theorems
also hold for classical, probabilistic information. It is impossible to infer more than
one bit of information from the mixture� � � ������ � �� � ��������, although for
every

� � � � � this probabilistic bit� is different. Nor is it possible to reliably
clone the unknown state� to � � �. The conclusion should therefore be that in both
cases of probabilities and probability amplitudes, the real and complex values of the
statedescriptionare highly redundant when compared to the amount of accessible
information in the state itself.
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2.6. HOLEVO’S BOUND AND AN APPENDIX TO IT

It is the combination of superpositions with the phenomenonof interferencethat
makes the crucial difference between classical and quantuminformation. The possi-
bility of the superpositions��	 ���� � ���� and ��	 ���� � ���� to evolve to the different

pure states
��� and

��� (after a Hadamard transform), somehow suggests that a quantum
mechanical superposition is more ‘real’ than the probabilistic combination of two bit
values. It seems as if for a qubit���� � � ���, both states are really present, whereas
in the probabilistic case, the mixture� ������ � �� ��������� ‘in reality’ has already
decided which binary value it represents. But this does not allow us to confuse a quan-
tum mechanical superposition with its deterministic description as a density matrix on
a piece of paper. Such confusion leads too easily to an overestimation of the inherent
complexity of a single quantum state.

Section 2.6 Holevo’s Bound and an Appendix to It

A more accurate analysis on the limitations of qubits to carry classical information is
provided by Alexander Holevo’s theorem on quantum sources[35] and an addendum to
this result by Michael Nielsen (see the original [24] and theappendix of thesis).

For the purpose of this thesis we will focus here on the latter, but the reader is
encouraged to familiarize him or herself with Holevo’s result as well as with a recent
generalization of this theorem by Ashwin Nayak[48].

Nielsen’s result reads as follows. If Alice wants to transmit � bits of information
to Bob and� and� start as unentangled systems, then this can only be done withat
least� (quantum) bits of communication between the two parties. This can be further
specified as a lower bound on the amount of communication fromAlice to Bob (being
��� qubits), and on the total amount of communication,��� � ���. (where��� is
the number of qubits that Bob sends to Alice during the protocol). The bounds are in
accordance with what we already know to be possible with superdense coding:

� For the communication from Alice to Bob:���
	 ��	�.

� For the total amount of communication:��� � ���
	 �.

We can reach Nielsen’s bounds if we let Bob distribute��� (with ���
� ��	�) entan-

gled pairs by sending��� qubits to Alice, who then uses��� qubits for superdense
coding and� � ���� qubits for traditional communication. For every allowed value
of ���, this protocol indeed uses��� � � � ��� � ��	� (quantum) bits from Alice
to Bob, and��� � ��� � � qubits in total.

Section 2.7 Optimality of Superdense Coding and Teleportation

A direct consequence of Nielsen’s bound is that when Alice sends � qubits to Bob,
she can only convey�� classical bits of information. This, in combination with the
protocols for superdense coding and teleportation, gives the following useful limits:

1. If Alice and Bob share initial entanglement and Alice sends� classicalbits, then
only � bits of information can be transmitted from Alice to Bob.
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2. Superdense coding cannot be used to transmit more than twoclassical bits per
qubit.

3. It is impossible to teleport a qubit with less than two classical bits of communi-
cation from Alice to Bob.

These three results are easily proven by the strong similarity between superdense cod-
ing and teleportation. Respectively:

1. By running two such protocols in parallel, Alice would be able (using superdense
coding) to replace her�� classical bits with� qubits. Hence we would have a
protocol with ��� � � that transmits more than�� bits of information from
Alice to Bob. This is impossible.

2. This is a specific instance of Nielsen’s result.

3. Assume that strictly less than� bits are necessary. For big enough� it should
then be possible to teleport� � � qubits with�� classical bits. Hence, if we
would use the� � �qubits as part of a superdense coding procedure, we would
transmit more than�� ��bits with �� bits of classical information. This is not
possible by the first result.

The preceding sections seems to suggest that the differencebetween quantum and
probabilistic bits is ‘a factor of two’ and that teleportation and superdense coding sum-
marize everything there is to know about (errorless) quantum communication. The fact
that there are many more pages to follow in this thesis indicates that this is not the case.
In the next chapter we will touch on a much discussed feature of quantum mechanics:
nonlocality. We will see that there is a fundamental difference between the classical
and the quantum theory of information after all, and that isby definitionthat there is
no classical explanation of the ‘nonlocal’ correlations that are possible with entangled
qubits.
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Chapter 3

Nonlocality

In this chapter the issue of nonlocality is discussed. We look at how local hidden
variable theories put a limit on the correlations that they can describe. The predictions
of quantum mechanics violate these bounds, which tells us that the theory of quantum
physics does not have a local, probabilistic model. Specialattention is paid to the
so-called ‘loopholes’ of experiments that try to verify thenonlocality of Nature.

Section 3.1 Bell’s Inequality

It was in 1964 that John Bell gave a new impulse to the discussion on the foundations
of quantum mechanics with his celebrated inequality of locality.[6, 7] Ever since then,
other such inequalities have been derived, corresponding experiments have been per-
formed, and heated debates are still being held about the exact implications of it all. It
is the opinion of this author that the most important thing tounderstand about Bell’s
inequality is that does not try to say anything about the theory of quantum physics.
Instead, it puts a general bound on all possible classical, local models for Nature. Af-
ter the derivation of this bound there are two kinds of (possible) violations that draw
our attention. The first one is themathematical factthat conventional quantum me-
chanics gives predictions that are not possible to describewith a classical model. The
experimental verificationof the violation of the inequalities is the second and most
important aspect of Bell’s result. It is because of this dichotomy between theory and
experiment that the nonlocality of Nature can be verifiedindependentlyof the validity
of our current theory of quantum mechanics.

Section 3.2 Classical or Hidden Variables Models

Crucial to a proper understanding of quantum nonlocality isthe definition of what is
meant withclassical locality.In this thesis we adopt the (arguably conventional) inter-
pretation of the terms ‘local, realistic theory’ and ‘hidden variable model’, which both
refer to the same set of classical assumptions about a system. To avoid any unnecessary
confusion, we will define these terms below.

page 28



3.2. CLASSICAL OR HIDDEN VARIABLES MODELS

When measuring a physical system��, we observe certain outcomes with certain
probabilities. Without loss of generality we assume here that we always have binary
outcomes “yes” (�) or “no” (

�
). The probability of obtaining the answer “yes” when

performing the measurement	 on system�� is denoted by
�����	 �

���. A range of
different measurements	, 	 �, � � � on the same system leads to a corresponding range
of probabilities

�����	 �
���, �����	 �

�
���, � � � We speak of adeterministic system�

if for each measurement	�, the outcome is completely predetermined. In this case,�����	� ��� is always an element of��� ��; and hence, with� different measurement
settings (� � ��	��� �), there are�� different deterministic systems.

A probabilistic system�� is a mixture of deterministic systems�� (indexed by
�
),

with the probability distribution�: “ �� � ���� ������”. A measurement	 on such
a mixture �� will therefore give the answer “yes” with probability

�����	 �
��� ��� �� � �����	 ����. (Note that for the distribution�, it holds that�� �� � � and�� 	 �

.) Just as the outcomes
�����	 ��� � ��� �� for deterministic systems are

predetermined, so are the probabilities
�����	 �

���completely specified in advance by
the distribution�. This is the ‘realistic’ part of traditional theories: every characteristic
that one can measure about a system is already described (‘isreal’) in that system
before the actual measurement.

Consider now a deterministic bipartite system��� that is distributed over Alice
(whose subsystem is labeled��) and Bob (with his��). A model for��’s behavior
is considered ‘local’ if nothing outside the measurement setting 	� and the state��
can influence the outcome of this specific experiment. This means that even though
�� was once part of a larger system���, �� by itself contains all the information
about the way it will ‘react’ to the measurement	�. For two different measurements	�� and	�	 there are� deterministic subsystems��� . The same applies for exper-
iments done by Bob on his part��. From this it follows that we have�� possible
states��� � ���� ���� � if ��� has to give a local and deterministic description
for the combinations of separated experiments

�	�� �	�� �, �	�� �	�	 �, �	�	 �	�� �
and

�	�	 �	�	 �. Note that when we drop the locality requirement, each experiment
has four possible outcomes, leading to much more,�� � ��, different deterministic
models.

A probabilistic bipartite system can again be described as amixture� of determin-
istic states: ���� � ����� � ���� ���� ����� . In such a scenario the probabilities for a
measurement	� are calculated by

�����	� � ����� � ��� ��� ������	� ���� ��

and similarly for Bob’s side by
�����	� � ����� � ��� ��� ������	� ���� ��

The locality restriction does of course not forbid the existence of correlations be-
tween the two parts of����. It is very well possible to construct a distribution� such
that

�����	� �	� � ����� �� �����	� � ����� ������	� � ������
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If there is a local, realistic theory for a system, then the behavior of this �� is
completely specified by its underlying distribution. Such atheory is therefore also
called a ‘hidden variable model’, where the variables are understood to be defining
function�. Bell’s inequality gives us a limit to what is possible with systems that admit
such a classical description.

Section 3.3 Two-Party Nonlocality

I will present here the variant of Bell’s inequality as it wasphrased by John Clauser,
Michael Horne, Abner Shimony and Richard Holt in 1969: theCHSH inequality.[22]
The traditional labeling with spin directions is replaced with an equivalent description
in bit values as this is how we will use the result later in the thesis.

Consider two separated parties� and� who both receive a subsystem�� and
��. Each side chooses to perform one out of two experiments:	�� or 	�� on Alice’s
side, and	�� or 	�� for Bob’s part. This procedure is repeated many times such
that all four possible measurement settings can be examined. We are interested in the
correlated (	�� � 	�� ) and anti-correlated (	�� �� 	�� ) outcomes for those four
possibilities. By using binary values in combination with modulo two arithmetic (with
�� � � �

), we can rewrite these (anti)-correlations as

	� �	� � � �
if the outcomes	� and	� are correlated,

� if the outcomes	� and	� are anti-correlated.

After a sufficient number of experimental runs, Alice and Bobshould be able to esti-
mate the overall likelihood that the outcomes	�� �	�� equals� �� for ��� � ��� ��.
If the experimental settings�� are chosen at random on both sides, this correlation
equals

�������� � �� 
���

�����	�� �	�� � ���

� �������	�� �	�� � � �������	�� �	�� � ��������	�� �	�� � � �������	�� ��	�� ��
Assume now that the state��� is a deterministic one, and hence that all occurring
probabilities are

��
or ����. Inspection of the�� possible systems��� shows that

the value
�������� will always be bounded by

����������� � �
� . (Take, for example,�����	�� � � �����	�� � � �����	�� � � � and

�����	�� � � �
, then

���� ��� �� � � � � � �� � �
� .) Allowing the system to be probabilistic (with���� �

���� �������) does not change these bounds on
�������� as the expected value is a

weighted sum of the deterministic cases:

������������ �
����� �

��
�	� �� ����������������� ��

with ���� � �. The conclusion is therefore that for every system���� that can be
described by a hidden variable model�, the restriction “

������
����� � �
�” holds.
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3.4. THREE-PARTY NONLOCALITY

The theory of quantum mechanics surpasses the above bound. Take instead of���
an entangled pair of qubits

����� � ��	 ����� � �����. Let the measurements	� and	� be the projection on the respective vector (for both sides):

�	�� � �� � ���� ��� � �� � ���� ��� and
�	�� � �� ����� � ��� � �� ����� � ����

It does not involve much mathematics to verify that for this setting, the expected cor-
relations have become:

�����	�� �	�� �� �����	�� �	�� �

�����	�� �	�� �� �����	�� ��	�� �

��
� � �	 � �	

� �

leading to the combined sum
���������� � �	 � �	

� � �����. This shows that the
theory of quantum mechanics cannot be captured by a classical model that uses local
hidden variables. A more detailed analysis of what the crucial ingredients of the above
argument are will be done after the following inequality formore than two parties is
discussed.

Section 3.4 Three-Party Nonlocality

The following nonlocality proof involves three parties andis generally considered more
‘convincing’ than the results of the previous section. It was introduced by David
Mermin[45, 46] as a rephrasing of the original four-party example by Daniel Green-
berger, Michael Horne and Anton Zeilinger[30].

We will label the parties�, � and�, and the systems they receive��, �� and
�� respectively. As in the previous example, we allow the participants to use one
out of two measurement settings (	� and	�). This time we are interested in the
correlation term

����	
� � �������	�� �	�� �	�� � ��� �������	�� �	�� �	�� � ����������	�� �	�� �	�� � ��� �������	�� �	�� �	�� � ���

which is again estimated with the outcomes of many differentexperimental runs.
The scenario where���� is a deterministic system bounds the possible value of

���� from above by
�
� , as can easily be shown. Assume a local, deterministic system

� that obtains a correlation ratio strictly bigger than
�
� . For this to be possible,� has

to fulfill the first three clauses of the
����	
� expression, and hence has to obey:

�����	�� ��� ������	�� ��� ������	�� ��� � �
�����	�� ��� ������	�� ��� ������	�� ��� � �
�����	�� ��� ������	�� ��� ������	�� ��� � ��

By adding these three equalities we can now infer that

�����	�� ��� ������	�� ��� ������	�� ��� � ��
page 31
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(We used here the fact that all probabilities are zero or one and thus
�����	 ��� �

�����	 ��� � �
for any 	.) This conclusion contradicts the fourth clause of the

GHZ-term, proving that for this system
�����	
� � �

� .
This bound immediately implies that all probabilistic, hidden variable models for

�����’s behavior have to obey the same bound:

������
�	
� � �
� � (3.1)

By using a three qubit entangled state we can go beyond this limit and, in fact, reach
the maximum possible value

������	
� � ��
Below we will see how the theory of quantum mechanics establishes this correlation
factor.

Distribute the three entangled qubits
������ � ��	 ������ � ������ over the par-

ties�, � and�. All three positions use the same projectors for their two possible
experiments:

�	�� � ��	 ���� � ���� and
�	�� � ��	 ���� � ������

With this set-up, the four correlation values are indeed allequal to one:

�����	�� �	�� �	�� � ��� �����	�� �	�� �	�� � ��
�����	�� �	�� �	�� � ��� �����	�� �	�� �	�� � ��

��
� � ��

This adds up to the total value
����	
� � �, which violates the classical bound of

Equation 3.1.
What do nonlocality proofs tell us about the difference between the classical and

the quantum theory of information? We now know that it is sometimes impossible to
mimic the joint behavior of entangled but spatially separated qubits with a classical
system in the same setting. This impossibility disappears if we let go of some of the
assumptions in the description of the experiment. In the next section we will try to get
a better understanding of such ‘locality loopholes’ as thiswill give us a clearer insight
into the subtleties of the above results.

Section 3.5 Locality Loopholes

When is a classical system���� able to simulate the predictions of quantum mechan-
ics? A partial answer is that this simulation is possible when �’s system�� has
knowledge about the setting	�� on Bob’s side, or vice versa. This knowledge can
be obtained in different ways, each leading to a potential loophole for an experimental
verification of Nature’s nonlocality:

No-signaling requirement: It should be impossible for��� to broadcast any infor-
mation to Bob’s side about the measurement setting	�� that it has encountered.
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3.5. LOCALITY LOOPHOLES

The no-signaling requirement is fulfilled if both measurements	� and	� are
space-like separated events in space-time. Special relativity then tells us then that
no information can travel between the two acts of measurement. Note that this
space-like separation is only a method to establish the no-signaling condition.
It would be equally valid if we were able to prohibit the transfer of information
between� and� by other means.

Unpredictable measurement settings:The transfer of information between the two
parties is unnecessary if the measurement settings are known to the systems���
and ��� from the start. It is straightforward to reproduce the statistics of quantum
mechanics if the four different experimental settings	�� 	�� occur in a regular
pattern that can be predicted by the system���� before it separates into two
subsystems. The choice on both sides should therefore be made at random and
independently of each other. (The independence can again beestablished by
making the two decisions at space-like separated events.)

Besides the aforementioned two restrictions, there is a third, more practical, way for
a model to mask its classical foundations: the detector efficiency loophole. In practice
it will almost never be the case that every signal can be detected by the measurement
apparatus. As an example, with current technology, the detection of both the polariza-
tions of entangled photons succeeds with a success probability of less than one percent.
In such situations it is possible to come up with a classical model where the photons
only ‘reveal’ themselves at	� and	� if the setting of the devices is in accordance
with a scheme that was agreed upon before��� and ��� parted. When one of the pho-
tons encounters an undesired setting, this particle then ‘hides’ itself from the detector,
resulting in just one of the many unsuccessful polarizationmeasurements. Such (ad-
mittedly contrived) ‘conspiracy theories’ are able to givea local explanation for all the
performed nonlocality experiments to date.[52]

The reader might wonder what the practical merits are of these academic objec-
tions to the acceptance of nonlocality as a feature of Nature. After all, if our quantum
communication protocol works as desired, why contemplate the ins and outs of the
model that describes it? The surprising counter argument tothis critique is that the
above conditions translate directly into the requirementsfor a quantum protocol that
truly outperforms the classical ways of processing information. This is the exciting
idea behind quantum communication as I will discuss it in this thesis: to use Nature’s
nonlocality to save on the amount of communication that is necessary in certain set-
tings.

In the next chapters, we will see how the above arguments about the foundations
of quantum mechanics can be transformed into procedures that reduce the complexity
of distributed calculations. But before we are able to do this, it will be necessary to
introduce a notion from computer science: communication complexity.
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Chapter 4

Communication Complexity

In this chapter we introduce the notion ofcommunication complexity.It is first defined
in the traditional, classical sense after which we expand itto the quantum case. Also
the generalization to multiple parties is made. Special attention is paid to the notion
of probabilistic protocols and how they can be viewed as mixtures of deterministic
communication procedures.

Section 4.1 Introduction

Consider two remote parties Alice and Bob each in possessionof data that is unknown
to the other person. If Alice has a natural number� and Bob has�, how many bits does
Bob have to send to Alice such that she will be able to determine if � � � is even or
odd? Clearly this can be done with a single bit of informationas Alice (who knows�)
is only interested in whether or not Bob’s� is even or odd. But what if Alice wants to
decide if��� is prime? Intuitively one expects that in order to determinethis decision
problem, Alice and Bob will have to exchange more information than the previous one
bit, and that this amount of communication will depend on thesizes

�� � and
�� �of the

input strings. But how will it depend on the input size? What is the most efficient
protocol? And given this optimal solution, how do we prove that there does not exist
a better procedure? The theory ofcommunication complexitytries to answer questions
like these.

Section 4.2 Two-Party Communication Complexity

The setting for communication problems where there are two cooperative parties who
want to compute a joint decision problem is as follows.

Alice and Bob are given two strings� and� respectively, both of length�. They
want to compute a Boolean function

�
on these two input strings, hence for a given�,

the function
�

will be of the form
�
� � ��� ������� ��� � ��� ��. The communication

complexity of this function is the minimal amount of communication between the two
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parties that is necessary for Alice to calculate the binary value
�
�
�����. More precisely,

the complexity of the distributed task
�

is expressed by the relation between the input
size� and the amount of communication necessary for the evaluation of

�
�
����� for

the worst case input strings� and�. The following observations should clarify this
definition.

Section 4.3 Some Observations about Communication Complexity

The trivial example of the “��� even or odd?” problem in the beginning of this chapter
is one of the simple cases where the communication complexity is constant and hence
independent of the input size. The version where Alice triesto determine the primality
of � � � has the obvious upper bound of� (which holds forany

�
�), because Bob can

always send all his� bits to Alice who then finishes the computation “� � � prime?”
on her side. This underlines the fact that thecomputational difficultyof determining
the function PRIME (or any other function

�
) does not play a role here.

Because of the worst case assumption, the following line of reasoning is incorrect:
“The sum� � � will be even (and hence composite)

���
of the time. This can be

checked with a single bit of communication; therefore, the average communication
complexity of the PRIME� problem will be less or equal to�	 .” Instead, we should
conclude that the complexity of PRIME is going to be determined by the values of�
and� for which their sum is not divisible by two.

The fact that Bob does not have to know the answer after the protocol does not have
any significant consequences: it will only require one additional bit of communication
for Alice to tell the final answer

� ����� to Bob.

Section 4.4 Formal Definition of Deterministic Communication

A deterministic protocol
�

fully determines for every possible input
����� which party

is going to communicate which bit at what stage of the protocol. At the start of the
procedure, the parties are unaware of each others inputs; therefore, who is going to
communicate the first bit has to be ‘input independent’ (and hence pre-determined). If
we assume that this is Alice, then she has to act according to two decision sets�� and
�� in that she sends a “zero” to Bob if and only if her input� � ��, and a “one” if and
only if � � ��. Because we require the protocol to be unambiguous and well-defined
for every�, it follows that�� ��� is emptyand that�� ��� covers the whole set of
possible inputs for Alice. For the second bit, the situationbecomes more complicated
as we now have the two situations where the first communicatedbit was zero or one.
We will make this distinction by putting the relevant history of communication in the
upper indices of the decision sets. Hence, we could have the description in the form
of the two couples

���� ����� and
���� �����, which would tell us that depending on the

first bit, Alice or Bob announces the second bit. More specifically, if the first value
was zero, then Alice continues according to the sets��� and���. Otherwise, Bob uses
his decision sets��� and���. Again, each couple of sets obeys the above-mentioned
restrictions for a deterministic protocol. In general, we will completely specify what
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happens after Alice and Bob have communicated the string� � ��� ��� by either a
pair

���� ����� if Alice has to communicate the next bit, or
���� ����� if it is Bob’s turn.

Notice that it is not possible to have a combination of�� and�� as this makes it
ambiguous who is going to communicate. At the end of the protocol it is Alice who
has to determine the function value

� �����. Similarly, we can represent this with two
decision sets for�, as long as we understand that this time the lower index denotes the
final decision and is no longer part of the communication.

We can visualize a deterministic protocol as a decision treewhere the nodes are
labeled by the strings� that express the ‘communication so far’ and the branches by
the respective decision sets���, ���, et cetera. Figure 4.1 shows such a tree for a simple
three bit communication protocol, which we shall use for thefollowing example.

Imagine a two-party protocol
�

where both Alice and Bob receive two bits (���	,���	 � ��� ��	) that is described by:

1. If Alice has�� � �
, then she sends a “zero” to Bob, who then knows that the

protocol has ended.

2. Otherwise, Bob will receive the value “�” from Alice, telling him that he has to
communicate back both his input values�� and�	.

3. After the communication has ended, Alice calculates the outcome of the proto-
col:

������ is the bit value�� � �����	�	�. She is able to do this either because�� � �
, or on the basis of her knowledge of Bob’s two input bits�� and�	 (in

combination with her own input���	).
A description such as the one above easily becomes unclear for larger protocols.

It is for this reason that we use the formalism of decision sets. The three steps of the
above example are thus summarized by the pairs of sets:

1. Alice’s sets�� � �������and�� � ���� ���.
2. Bob’s first bit with��� � ������� and��� � ���� ���; his second bit:���� �

���� � ���� ���and���� � ���� � ���� ���.
3. And the final conclusion of Alice by the table:

��� � ������� ��� ��� and ��� � ��
����� � ������� ��� ��� ����� � ��
����� � ������� ��� ����� � ����
����� � ������� ����� � ���� ���
����� � ������� ��� ����� � ����.

Notice that the ‘completeness requirement’ for the union��� � ��� � ������� ��� ���
sometimes leads to a redundancy in the sets as they cover input states that do not apply
to them. (For example, the fact that���	 � ��

is an element of���� , which only is
used when�� � �.) By the tree construction we also see that the strings����� of the
final conclusion sets for Alice form a complete, self-delimiting code such that no�� is
the prefix of another string�� , and any sufficiently long bit string starts with one of the
words��.
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AA 10

0
1B 1B

0B 0B0B0B

1

10 10 11 11

Figure 4.1: The decision tree of a simple deterministic communication protocol for
two parties. Alice starts by sending one bit to Bob. If this bit has value zero, then the
procedure has ended and Bob does not communicate anything toAlice. Otherwise (the
right part of the tree), Bob has to send back two bits of information before Alice is able
to determine the outcome of the procedure. Notice that the sets that Alice uses for this
conclusion are not shown here. (See the main text for a fully worked out example of
this tree.)
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The two important characteristics of decision trees and their sets that we mentioned
earlier will be repeated here formally.For a deterministic protocol that calculates a
function

�
�� �� � ��� ��, the decision sets have to obey the following:

1. Every occurring node� � ��� ��� in the tree either contains a pair
���� ����� or���� �����.

2. For every pair
���� ����� it holds that��� ���� � �� and��� ���� ��.

3. All the ‘leaves’ (or end nodes) of the tree are� pairs as these contain the con-
clusion of Alice after she has completed the communication with Bob.

The amount of communication before Alice’s conclusion corresponds exactly with
the length

���of the string� that labels the leaves��. The worst case assumption tells us
that the communication complexity of a protocol is the longest possible� that appears
in a leaf. This is identical with the depth of the decision tree, minus one. Our tree-
example for the calculation of the function�� � ��� � �	�	� therefore has complexity�
, despite the fact that for the case�� � �

, it only requires one bit of communication.

Section 4.5 Probabilistic Protocols

We speak of a probabilistic solution if the parties use a protocol that gives Alice the
correct answer

� �����with high probabilityfor all combinations
�����. The minimum

correctness ratio��� (a protocol with probability of error�) will in general influence
the amount of communication that is necessary to obtain the confidence level. With
� � �

we obviously return to the deterministic case.
An important aspect of the definition lies in the phrase “for all combinations

�����”
which I will clarify here. Imagine a deterministic protocol

�
that is successful for all

possible input combinations
����� except one. At first glance this may seem a reliable

solution of the problem. But the worst-case assumption tells us, in fact, that with this
protocol

�
, we should expect the values� and� for which the procedure fails. This

teaches us that if there is an input on which a deterministic procedure makes an error,
then this protocol has to be considered useless (the error� equals�). For a successful
probabilistic approach, we need to add randomness as one of our ingredients.

The reason that our deterministic protocol failed was because its errors were also
deterministic and hence predictable by the worst-case distribution � that specifically
‘aims’ at the weak spots of proposed solutions. We counter this by randomizing the
errors ourselves in the sense that we try to ‘spread out’ the values

����� for which we
are likely to make a mistake. Such an approach requires Aliceand Bob to share some
random bits on the basis of which they execute their otherwise deterministic protocol.
The following example should be instructive.

Assume that Alice and Bob try to calculate the distributed function
�

� � �� �

��� �� (where� stands for the set of input values��� � � � ���). Imagine that for each��� � �� �� there exists an efficient deterministic protocol
��� that works correctly

except for the one combination
�� � ��� �  �. That is, every protocol

�
can make a

mistake, but the protocols differ inwherethey err. This allows� and� to adopt the
following strategy:
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1. Alice receives�, Bob receives his� ��.

2. Both parties agreeat randomon a pair
��� � that determines which one of the�	

protocols
�

they are going to execute.

3. Alice and Bob perform the deterministic protocol
��� .

(Note that the random bits (� ���� in total) are usedbeforethe actual communica-
tion procedure.) Unlike the earlier non-randomized approach, this protocol is highly
successful, as we can easily see. Given any combination

�����, Alice and Bob have
probability �

�� that they ended up executing the flawed protocol
��� for this specific

input. We have the remaining probability of�� �
�� that the two parties performed one

of the�	 � �procedures
�

that leads to the right answer
� �����. For reasonably large�, this will occur with high probability. As it is impossible for the distribution of the

input values to ‘anticipate’ the protocol
��� that� and� are going to perform, it is

also impossible to force an error rate higher than the�
�� that holds for this probabilistic

solution.
A few more words about the random bits that the parties use before we give our

final characterization of probabilistic communication protocols. The randomization
that we saw in the last example wasshared randomness:both parties could agree on the
random numbers

��� � without having to communicate this specification to each other.
This is also called the ‘public coin model’ of communicationand can be viewed as
the situation where Alice and Bob share an unlimited amount of classically correlated
states

������� ���� � �	 ��������� �	 ���������
A more restricted model of randomized communication is the one where the parties
only have ‘private coins’. In this model, shared randomnesscan only be achieved
after one party has communicated some of his or her coin flips to the other participant.
Hence, in this ‘private coin’ model we have to take into account the amount of shared
randomness that the parties have to send to each other for thesuccessful execution of
their randomized procedure. In this thesis, we will always assume the ‘public coin’
model for reasons that will be explained in Section 4.10.

Another issue is that of the moment of randomization in the protocol. If we know
beforehand the outcomes of all the random coin flips that willoccur during a protocol,
then we can again view the procedure as a deterministic one. And because there is
nothing during the protocol that can influence the outcome ofa coin flip, we might as
well observe all of them before we start with the procedure

�
. As long as we establish

our randomizationafter we received the� and� values, the input distribution cannot
‘anticipate’ any weaknesses specific for the outcomes of thecoin flips.

It is for the above reasons that we can assume, without loss ofgenerality, that the
probabilistic protocol

�
is executed according to the three steps previously shown:

1. The parties receive their respective inputs.

2. With the help of public coin flips, Alice and Bob agree on a random number
�

(according to some fixed distribution�).
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3. The deterministic protocol
�� is executed.

This can be summarized by the statement that the probabilistic procedure
�

is a mixture
of deterministic protocols,

� � ���� ������, and that on the input strings
�����, it

outputs the corresponding probabilistic bit
� ����� ��� �� ��� �����.

The quest for the optimal probabilistic protocol for a function
�

can be approached
in two ways:

Given a desired success rate�� �, how many bits of communication are required?

Or alternatively:

What is the minimum error rate� that can be obtained with� bits of communication?

Although both kinds of questions will be asked in the coming chapters, we will here
investigate problems of the second kind. The next section will show us how we can
employ some standard techniques from game theory for our analysis of communication
complexity.

Section 4.6 An Application of Von Neumann’s Min-Max Theorem

Consider again the setting that we described before we endedthe previous section.
Alice and Bob want to calculate the distributed function

�
� ��� ��� � ��� ��� �

��� ��with only � bits of communication between them. Our task is to optimize their
randomized protocol in that we want the highest possible success ratio� � � for this
limited amount of communication�. What do we do if every deterministic protocol
(with � � �

) requires more than� bits of communication?
As we now know, every probabilistic protocol

�
can be expressed as a mixture

���� ������, where� is the defining probability distribution over the set ofall the de-
terministic protocols

��. (Typically, we will have�� � �
for many unreliable proto-

cols
��.) Our second relevant distribution is the function� that defines the probability

�
����� that Alice and Bob receive the input pair

�����. Given the distributions�
(defining the protocol

�
) and� we calculate the error rate by

�� �� � 
��� �

����� ������� ����� �� � ������

� 
��� � �

����� ��� � ��� �������� �������
where� is the ‘difference function’ with���� � � �

if
� � 

and���� � � � other-
wise. The worst case assumption for the input distribution can now be expressed as the
maximization of the error over all�’s:

�� � ���� �� �� �
But we, in the meantime, are looking for the protocol

�
thatminimizesthe error, and

hence we are trying to reach the minimum of this maximum error, which is

��� �� � ��� ���� �� �� � ��� ���� 
������

����� ��� � ��� �������� �������
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where
�

is the problem in question, and all
�� are deterministic protocols. This is the

situation from the viewpoint of Alice and Bob.
Nature, with her worst case behavior, on the other hand, aimsfor the highest possi-

ble error for each protocol
�

. This corresponds to an expression that is almost identical
to the previous one,

���� � �� � ���� ��� �� �� �

except for the changed order of the two optimizations.
This puts us in the situation where we have to analyze two conflicting strategies:

the minimization of� by Alice and Bob, and the maximization of the same term by
Nature. It is therefore legitimate to ask if the whole setting is properly defined; for
it is not inconceivable that the chain of arguments “Alice and Bob use protocol

�
”,

“Nature reacts by using the worst possible distribution�”, “knowing this specific�,
the two parties change to a better

�
�”, “Nature counters with a new��”, et cetera,

has no well-defined end. Luckily, Andrew Yao’s usage of Von Neumann’s Min-Max
theorem assures us that this is not the case, as there is a fixedpoint

�� ��� for this
problem. (See the article [68] and the references [47, 49, 50, 51] for an introduction to
game theory.)

It turns out that the above setting is an example of a ‘zero-sum, two player game’.
Let the first player be the duo Alice & Bob with their protocol

�
, and the opposing one

Nature with her strategy�. We can rephrase the conflicting goals for the participants
by stating that Nature tries to maximize the error�, whereas Alice and Bob try to
maximize the negated term “��”. This indeed makes it a zero sum game (for two
players), and hence Von Neumann’s celebrated Min-Max theorem applies. This result
states that in the just-described setting there is always a fixed point

�� ��� (a solution
of the game), such that the corresponding� (the uniquevalueof the game) solves the
equation

���� ��� �� �� � ��� ���� �� �� �
As this defines asaddle point,both parties know that any variation in their strategy
(� for � and�, and� for Nature) is not going to do them any good because, for the
solution of the game, it holds that

For any alternative protocol��, we obtain an error that cannot be smaller.

All other input distributions�� give an error that cannot be bigger.

In short,��� �� 	 �� �� and�� ���

� �� ��, for all �� and��.

(Note that it is very well possible that several solutions exist for a game, but all of them
will share the same value�.) The above two characteristics in combination with the
decomposition of a probabilistic protocol as a mixture of deterministic ones, also gives
us a technique to easily ‘recognize’ the fixed-point solution of a setting. This will be
explained in the next section.

page 41



4.7. PROVING PROBABILISTIC BOUNDS

Section 4.7 Proving Probabilistic Bounds

We now know that for every probabilistic communication setting, there is a solution in
the form of an ideal protocol

�
, a worst case input distribution� and the resulting error

rate�. But how do we determine such a solution? As stated earlier inthis thesis, we are
mainly interested in the setting where we try to minimize theerror under a restriction
on the amount of communication. In this setting, a relevant probabilistic protocol

�
will have to be a mixture���� ������ of deterministic procedures

�� that all obey this
limitation on the information transfer between Alice and Bob. Hence, if we can exhibit
a specific input distribution� and an error rate

�
for which every alloweddeterministic

protocol
�� obeys

��� �� 	 � �

then we can immediately conclude that anyprobabilistic protocol
�

will obey this
bound

�
as well. And because� is the maximum of� �� overall distributions�, we

now also know that
�

is a lower bound on the value�. In mathematical terms, this
reasoning can be summarized by

� 	 � �� � ��� �� �� � ��� � �� � ��� �� 	 � �
Conversely, if we can prove for the same

�
the existence of a protocol

�
that obeys

�� �� � �
for every input distribution� and hence�� � �

, then we can conclude that
� � ��� �� � �

. (The proof of this “�
� �

” is usually done by showing that for
every pair

�����, the error probability of the protocol
�

is limited by
������ ����� ��� ������ � �

.)
The combination of the two bounds shows that indeed� � �

, and the solution
for this value is obtained by the distributions� and� that we used in the proof. In
practice, it will almost always be the case that we simply suggest a distribution� for
which it is easy to verify that everydeterministicprotocol has an error rate of at least
�. After that lower bound, we then continue by describing a probabilistic protocol with������ ����� �� � ������ � � for every input pair

�����. This is sufficient to prove
that

�� ��� is a solution of the communication game with value�. (It is typical for
the worst-case distribution� that it will be zero for any couple

����� for which the
protocol performs above average.)

Some readers might find it unsatisfying that we just ‘state’� and� without giving
a method for deriving such solutions. Such a derivation is possible because the Min-
Max expression for� is a linear equation, which can be solved in a straightforward way.
But this is only possible if we are willing to deal with excessive amounts of data and
variables. In this thesis, we try to avoid such an approach asit only gives a solution,
but not much insight and understanding. Instead, the readeris invited to honestly try
out all the possible deterministic protocols when this is suggested, and to see for him or
herself that the error rate is indeed the minimum� as stated. This dirty ‘work by hand’
is likely to give some insight in both the kind of instances

����� that are ‘problematic’
for Alice and Bob, and the set of optimal deterministic protocols that are used in the
probabilistic mixture

�
. (This, at least, was my personal experience when I obtained

the results.)
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Section 4.8 Relations and Problems with a Promise

We can extend the setting of distributed decision problems of the form
�

� � �� �

��� �� to the broader notion ofrelations.Problems of this kind are described by a subset

 � � �� ��, where Alice’s input is an element� � � and Bob a� � �

. The
task for the two parties is to determine a value� � � such that

������� � 
 with the
minimum amount of communication required. A function is a relation for which every
combination� and� has a uniquely defined� � � ����� such that

����� � ������ � 
,
and a decision problem is a function with� � ��� ��. (Note that for a general relation
it is possible that there exist values of� and � with no corresponding� such that������� � 
. In this case, the input combination

����� is illegal as there is no correct
answer� to the problem.)

In the next chapters, we will use relations to describe the so-calledpromise prob-
lems. These are distributed functions

�
� � � � � ��� �� for which we are only

interested in the protocol’s behavior on asubset
�

of the possible inputs� ��
. The

promise is therefore that Alice and Bob only receive� and� such that
����� � �

. The
standard way of describing such a promise problem is to express it as a relation
� ��
which is a conventional decision problem

�
on the proper inputs, but a trivial relation

on the inputs that lie outside
�

. Hence,

������� � 
� �� if and only if � ����� � �
and� � � ������ or����� �� ��

which shows that, provided that the communication protocolhas a well-defined out-
come, every

� ����� for the improper inputs
����� �� �

will be a correct outcome with������ ������ � 
� ��. The protocol therefore has a���� success rate on those in-
puts, and hence it follows from the worst-case assumption that Alice and Bob do not
have to expect such trivial cases. This is equivalent to the original setting where the
distribution�

����� is only non-zero for proper values of
����� � �

, with the differ-
ence, however, that we still require the protocol

�
to behave properly onall possible

input values.

Section 4.9 Quantum Communication with Entanglement

It may come as a small surprise that we will not devote a separate chapter to the def-
inition of the model for quantum communication, but after the preceding section and
chapters this turns out to be unnecessary. In Section 4.5 we saw that the crucial in-
gredient for probabilistic communication protocols is therandomness that the parties
can share. This randomness can be described as a ‘public coin-flip’ with the density
matrix:

����� � �	 ��������� �	 ���������
Besides the supply of these shared random bits, everything else is identical to the setting
of deterministic protocols.
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In short, we could say that the same holds for the difference between quantum and
classical communication, with the exception that we replace the classical correlations
of the state����� with the nonlocal correlations of entangled qubits of the form

���� � �	 ��������� �	 ��������� �	 ��������� �	 ���������
In order to enable Alice and Bob to process their qubits, we also have to ex-

pand their set of local transformations with the unitary operations; our main inter-
est however—the communication—is still done with classical bits. The four different
stages of a quantum communication protocol are thus:

1. Alice and Bob share a sufficient amount of public coins����� and entangled
qubits����. They also agree on the protocol� that they are going to use.

2. The parties receive their input values� and� with probability�
�����, where�

is the worst case distribution for the protocol�.

3. The protocol� is executed by� and� according to their inputs� and�.

4. Alice announces the (probabilistic) outcome������.
Obviously, we could replace the coin flips in step 2 by more entangled qubits as they
behave exactly like����� when measured in the standard basis. Nevertheless, we will
refrain from this, as it would advocate the usage of ‘quantumresources’ where it is not
necessary.

The amount of classical bits of communication during the third phase of the pro-
tocol� does not only depend on the pair

�����, but also on the randomized measure-
ment outcomes on the probabilistic states (classical or quantum) during the protocol.
It is customary to define the overall communication complexity of a protocol� as the
highest possible amount of communicated bits between Aliceand Bob, where the pos-
sibilities are over the input instance

����� and the randomized variables during step 3.
(See Chapter 3 of [42] and references therein for a discussion on this ‘worst-case versus
average-case’ complexity of randomized protocols.) Thecommunication complexityof
a distributed function

�
is the minimum complexity over all protocols� that solve

�
.

Typical for the approach to communication complexity in this thesis is that we
do not take into account the amount of correlated states thatthe parties need to use
to perform the protocol (the number of distributed� states required in the first step).
In the next section we will briefly look at some alternative models and discuss their
relation to our ‘entanglement model of quantum communication’. With this discussion
I will also explain why the results in this thesis are not phrased in such ‘qubit models’.

Section 4.10 Other Quantum Communication Models

Quantum communication is often understood as the transfer of information with qubits
instead of classical bits. This approach has indeed been taken by the very first re-
searchers of the field (Andrew Yao[69] and Ilan Kremer[41]).They considered the
‘qubit model’ where Alice and Bob are not allowed to share entanglement during step 2,
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but where the communication is done by quantum bits. A third possibility is the natural
combination of the two models that deals with protocols where both initial entangle-
ment and communication with qubits are allowed.

With the teleportation procedure that transfers one qubit at the cost of two classical
bits and an entangled pair, the following reduction should be evident.

Any protocol that uses� qubits of communication and� entangled pairs
can be perfectly simulated by a qubit protocol that uses� �� qubits, or
an entanglement protocol with��� entangled pairs and�� classical bits
of communication.

From this it follows that the entanglement model will differwith at most a factor of
two from the other models. What is not clear, however, is how to simulate the entan-
glement model with the qubit model within a constant factor.This is because we do not
know any bound on the amount of entanglement that might be required for a� qubit
communication protocol. If we could prove a theorem that states something along the
lines of “any protocol that uses� qubits of communication, can be implemented with
an a-priori entanglement of�� �-qubit pairs”, then it would be clear that with

�
� � ���

qubits of communication in the qubit model, the same procedure could be executed.
Currently, such a theorem, or a counterexample to it, is still lacking. We are thus faced
with the distinct choice of analyzing quantum communication with or without prior
entanglement. And in the entanglement case we have to make the additional decision
if we allow communication with quantum bits or or if we restrict ourself to classical
information transfer. In this thesis the latter option is chosen, and here I will briefly
explain why.

If we want to compare the complexity of classical and quantumprotocols, then
we first have to agree on the measure that we use for our comparison. It is only with
classical bits that we can express the complexity for both models in the same units.
Otherwise, it is very tempting to ‘explain’ all of the differences between quantum and
classical communication with a reference to the uncountable continuum of different
quantum bits compared to the two possibilities for a classical bit. The entanglement
model makes it immediately clear that something more subtleand interesting is go-
ing on. Another advantage of this entanglement based approach is that it allows us to
study the relationship between nonlocality and communication complexitywithout an
explicit reference to the theory of quantum physics.This will be done in Chapter 9 on
‘Superstrong Correlations’. There is also the additional complication with qubit com-
munication if more than two parties are involved: the no-cloning theorem[67] makes it
impossible to send an unknown qubit to more than one party at the same time.

Section 4.11 Multiparty Communication Complexity

It is natural to generalize the two-party model to the setting where three or more partic-
ipants are involved. As we will use this ‘multiparty scenario’ for several of our results,
we discuss here the few choices that have to be made for such anextension.

For � parties�� � � � � ��� with their respective inputs�� � � � � ���, we look at the
protocols that try to evaluate decision problems

�
��� �� � ����

� ��� ��on Alice’s
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side (who is labeled��). Almost all characteristics of the analysis for the two-party
scenario translate directly to this setting. It is about theinitial ‘information sharing’ and
the communication by the participants that we have to make some additional choices.
From now on we will always assume that

1. Initially, every party�� only knows its value��.
2. A bit that is sent by one party becomes known to all the others at the cost of one

bit of communication.

Because of the second characteristic, this setting is also known as the ‘broadcast model’.
(A well-known alternative for this is the ‘number on the forehead model’ in which a
participant�� initially knows every value�� excepthis own input��.)

Section 4.12 Assumptions throughout this Thesis

We have now come to the end of the introductory chapters of this thesis. But before we
continue with the actual analysis of quantum communicationcomplexity, I will sum-
marize below the assumptions that are understood to hold forthe following chapters.

� The communication complexity is measured in classical bits.

� The amount of initial entanglement or classical correlations is ignored in the
complexity analysis.

� The final stage of a proper protocol is reached when the first party, Alice, knows
the function value

�
(with high probability).

� The complexity is determined by the worst case behavior of both the input dis-
tribution � and the randomized measurement outcomes during the execution of
the protocol.

� The protocols for ‘promise problems’ have to be well defined for illegal inputs.

� In the multiparty setting, the ‘broadcast model’ is assumed, where initially each
party�� only knows his or her input value�� and where every communicated bit
becomes known to all parties.

� Measurements are always done in the standard basis����� ����.
� The names of the first three parties are Alice, Bob and Carol.

Despite this listing, we will reiterate our assumptions when it is especially relevant for a
better understanding of our results. Before investigatingthe differences between quan-
tum and classical communication complexity, we conclude with a very brief historical
overview.
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Section 4.13 History and References

Two-party communication complexity as described here was introduced by Andrew
Yao in the influential 1979 paper “Some complexity questionsrelated to distributive
computing”[68]. The recent book “Communication Complexity” by Eyal Kushilevitz
and Noam Nisan[42] gives a thorough and up-to-date overviewof this field of research.

Quantum communication complexity was first mentioned by, again, Yao in the ar-
ticle “Quantum Circuit Complexity”[69], where he used communication complexity
as a method to derive lower bounds for quantum computation. Already in 1995, Ilan
Kremer, a student of Noam Nisan, wrote an entire Master’s thesis about quantum com-
munication complexity. Both Kremer and Yao use the qubit communication model
where the parties communicate with qubits rather than with classical bits. Neither au-
thors showed an improvement over the classical scenario. Richard Cleve was the first
to establish such a separation (of one bit) in a three-party setting in 1997. This result, in
the entanglement communication setting, was published together with Harry Buhrman
in the article “Substituting Quantum Entanglement for Communication”.[23]

Shortly after this unexpected observation, several other results appeared. Most no-
table are the generalization of the original protocol of Cleve to the�-party setting,
thereby obtaining an unbounded difference of� ��� � versus� bits between classical
and quantum communication[19]; the proof that the quantum communication com-
plexity of the INNER PRODUCT function cannot substantially be improved with the
use of entanglement[24]; and—most recently—the square-root and even exponential
separations in the two-party scenario[1, 17, 57].
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Chapter 5

Two Simple Quantum
Communication Protocols

This chapter describes two quantum protocols that have a communication complexity
that is lower than is possible with classical means. The results were published in the
article “Quantum Entanglement and Communication Complexity” by Harry Buhrman,
Richard Cleve and myself.[16] Although both protocols are straightforward applica-
tions of the nonlocality arguments of Chapter 3, they do makean important step from
the correlated outcomes of a set of entangled qubits to a protocol that can be used to
perform reliable distributed computation.

Section 5.1 Reducing Errors with Nonlocality

Consider the two-party function with input size�:
� �����	 �����	� � �� � �� � ��	 � �	��

The table of this function
�

looks like
� ����� �� �� �� ���� � � � ��� � � � �
�� � � � �
�� � � � �

,

where the columns are indexed by���	 and the rows by���	.
Alice wants to estimate the value

� �����with the highest possible correctness prob-
ability, under the restriction that only one bit of communication is allowed. We will
show here that the classical bound on the success rate of

���� can be improved to ap-
proximately

���� if we allow Alice and Bob to use an entangled pair of qubits. The
quantum protocol that establishes this probability is closely related to Bell’s inequality
and is implemented by the following procedure.
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1. Before Alice and Bob receive their inputs� and�, they share the entangled qubit
pair��� � ��	 ����� � �����.

2. Bob performs the rotation
����� � on�� if he has�	 � �
; otherwise, he applies


����� � to ��.

3. After this rotation, Bob measures his entangled qubit in the standard basis, yield-
ing an outcome

� � ��� ��.
4. The same procedure holds for Alice. First, if�	 � �

, apply
����� �; if �	 � �
then apply
����� � to ��. Then, measure the rotated qubit in the standard basis.
The bit that is the result of Alice’s observation is labeled�.

5. The one bit of communication from Bob to Alice is the paritybit
��� � ��.

6. Having received the bit from Bob, Alice now finishes the protocol by estimating
the value

� ����� with the binary value�� � �
� ��� � ��.

From the analysis of Bell’s inequality in Section 3.3, we know that the probability for
�
� �

to equal�	 � �	 is approximately
�����, and hence that the correctness ratio of

the above protocol will be the same:
������� � �� � �

� � � � �����	 �����	�� � ����� � � �
(Note that this success rate is independent of the distributed� and� values.)

Such a correctness ratio cannot be obtained by a classical protocol as we will see
now.

Section 5.2 Limitations of Classical Protocols

Section 4.5 taught us that a probabilistic protocol can be viewed as a mixture of deter-
ministic protocols. Hence, it is sufficient to prove a lower bound on the error for all
deterministic procedures in order to prove the same bound for randomized protocols.
We will do this here for the uniform input distribution�

����� � ��� .
For a deterministic protocol, we can define the set�� that contains the values���	

for which Bob broadcasts the bit value “
�
” to Alice, and similarly the set�� for the

communicated value “�”. (With �� ��� � ��� ��	 and�� ��� � ��.) One of these
two sets will at least contain two strings and without loss ofgenerality we assume this
set to be��. By inspecting the function table, we can conclude immediately that if
Alice receives a zero from Bob, she will make a mistake at least ��� of the time. (If,
for example,�� � �������, then Alice can only guess

�
’s value if she has�	 � �.)

Furthermore, if�� contains three strings, then at least one out of three announcements
by Alice is wrong if she receives “

�
” from Bob. (As an example for�� � ������� ���:

�’s most successful guess will be
�����	�, which fails �� of the time. The degenerate

case where
��� � � � does not convey any information to Alice who therefore will have

to make a blind guess with
���

probability of success.)
This shows that for the three possible partitions by�� and��, the error probability

will be at least�� :
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�
���� �� ����� � �����: In both cases�� and��, Alice will make an error with���� probability.

�
���� �� ����� � ��� ��: The case�� occurs

�
� of the time with error rate�� , hence

the overall expected probability of error is
�
� � �� � �� .

�
���� �� ����� � �����: Alice makes a mistake

���
of the time.

We have thus established the result that any deterministic,one bit protocol will
have a success ratio of at most

�
� (for the uniform distribution over� and�). From our

previous result about probabilistic procedures (see Section 4.7), this implies that any
classical protocol is bounded by this value. Hence we can indeed conclude that Alice
and Bob have an advantage of

���
versus

���
if they use a pair of entangled qubits.

Section 5.3 An Exact Three-Party Quantum Protocol

The previous quantum protocol decreased the error probability by the use of entan-
glement but still left us with a ‘flawed’ procedure. Here we will define a three-party
problem that has an errorless quantum protocol. This will bein sharp contrast to the
classical setting where Alice, Bob and Carol have an error probability of at least���.
The example of this section was the first published quantum communication protocol
(see Cleveet al. in [23] and [16]), and was inspired by Mermin’s clarification[46] of
the nonlocality proof by Greenberger, Horne and Zeilinger[30].

The three parties�, � and� receive their input�, � and� � ��� ������, with the
promise that the sum��� � � is an even number. The task for Alice is to decide after
two bits of communication whether����� ��� � � �

or ����� ��� � � �. As
with the nonlocality proof of Section 3.4,�,� and� initially share the three qubit state������ � ��	 ������ � ������. Next, depending on their input, each party performs a
phase rotation on his or her entangled qubit. Alice rotates�� with PHASE

���	 �, Bob
applies PHASE

���	 �, and Carol acts with PHASE
���	 � on her��. After these three

independent actions, the joint state has become�
Phased����

�������� � PHASE
���	 � �PHASE

���	 � �PHASE
���	 � ������

� ��	 ������ � � �� ������	�� ������ �

and hence by the promise on the input values (ignoring normalization from now on):

�
Phased����

�������� � � ����� � ����� if � � � � � � � ��� ������ � ����� if � � � � � � ���� � �
Before measuring the bit values of�, all parties rotate their individual qubits with a
Hadamard transform (the global transformation�����), resulting in the final state

�
Final

�������� � � ����� � ����� � ����� � ����� if � � � � � � � ��� ������� � ����� � ����� � ����� if � � � � � � ���� �
for the two cases. This shows that after the standard measurement (yielding the out-
comes�,

�
and�), the decision problem is answered by the parity bit

�
�
� �� �� as this
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will be “
�
” if ����� � � ��� � and “�” otherwise. It is therefore sufficient for Bob

and Carol to broadcast their outcomes
�

and� to Alice who then is able to announce
the final answer with���� reliability.

Section 5.4 Impossibility of a Two Bit Classical Protocol

Again we will use the approach where we analyze the error rateof all deterministic, two
bit protocols to obtain a bound for all possible probabilistic procedures. (We assume
a uniform distribution over all

�� input cases.) Although there is a promise on the
values�, � and�, the inputs for two parties (ignoring the third) can be any ofthe ��
combinations of��� ������ � ��� ������. From this observation it follows that Alice
has to receive information from both Bob and Carol (and henceone bit from each) and
that the protocol has to specify beforehand if� or � broadcasts the first bit. Without
loss of generality we assume that this will be Bob.

The set�� (��) corresponds to the values of� for which Bob broadcasts a “zero”
(“one”) to Carol and Alice. Carol can make her procedure dependent on the bit

�
that

she receives from Bob, and hence she will use the sets��� and��� if
� � �

, and the sets
��� and��� otherwise. After Carol announces her bit� to the other parties, Alice can
infer that the two input values of her partners obey

����� � �� ���

�
.

The cases where
��� � � �

or � (
��� � � �

or �) imply immediately that there are
two values�� and�	 together in�� (��) such that�� � � � �	. Hence, for one of
those values the deterministic protocol will always make a mistake in its calculation
of � � � � � ��� �. Under the uniform distribution this error will happen��� of
the time. The protocol where�� or �� � ����� suffers from the same deficit as
the above scenarios, and hence has an equivalent error rate.This leaves us with the
case where the sets of Bob are of the form�� � ���

��� � �� (with �� � ��� ������
and addition is modulo�). The line of reasoning that we applied to the sets� also
holds for the sets of Carol; hence, we can also assume that every � set is of this form
��

�
� ���

�
���

�
� ��with ��

�
� ��� ������. Therefore, for every combination of

�
and�,

the input values of Bob and Carol obey
����� � ���

��� � �� � ���

�
���

�
� ��. Hence

there is a critical ambiguity for Alice between the cases� � � � �� � ��

�
��� � and� � � � �� � ��

�
� ���� �. As we are dealing with deterministic protocols, one of

these cases will always be resolved incorrectly, thus againgiving a��� error rate.
The upper bound of

���
correctness was derived for all possible deterministic

protocols, and hence any probabilistic protocol will have to obey the same bound. This
concludes the proof that the “mod four” problem cannot be solved classically with an
error rate of less than

����. The quantum protocol obtained a significant improvement
over this with its errorless protocol.

We can obtain a classical procedure without error if we allowBob to communicate
one bit more, for he can then broadcast the exact value� to Alice and Carol. This, in
combination with the most significant bit of� (that is:�� � ��� �� and�� � �����),
is sufficient for Alice to determine the outcome����� ��� � (using the promise on
the input values). The result of this section can therefore also be restated as “The three-
party entanglement allowed Alice, Bob and Carol to save one bit of communication”.

The next chapter will generalize this three-party problem to a distributed function
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for � parties. This will give us an unbounded difference in terms of communication
complexity between the quantum and the classical settings.
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Chapter 6

Multiparty Quantum
Communication Complexity

The three-party problem of the previous chapter can be generalized to a� party dis-
tributed computation. In this chapter we will show how this leads to a quantum proto-
col that gives a reliable answer after only� � �bits of communication, whereas in the
classical setting the parties would require of the order of� ��� � bits. This result was
published in the October 1999 issue ofPhysical Review Aunder the title “Multiparty
Quantum Communication Complexity”, with co-authors HarryBuhrman, Peter Høyer
and Alain Tapp.[19]

Section 6.1 Multiparty Problem and Its Quantum Complexity

In the � party scenario, every participant�� receives a real number�� � �����, with
the joint promise that the total sum�� �� is a natural number. The task for Alice (��)
is to determine whether this sum is an even or an odd number: the calculation of the
function value

Odd?
��� � � � � ���� � ��	�

�� ��� ��
Our first result will be that if the parties share a� qubit entangled state, this problem
can be solved with a protocol where each party communicates only one bit to Alice.
This is shown by the following procedure which therefore hasa total communication
complexity of� � �bits.

Section 6.2 The Quantum Protocol

Let the parties�� � � � � ��� initially share the entangled state������ � ��	 ��� � � ��� � �� � � � ��� �
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where each party�� possesses the qubit��. Depending on their input value��, a phase
rotation PHASE

����� is applied to this qubit��. Just as for the three-party scenario,
this leads to essentially two different possibilities (ignoring normalization)

�
Phased����� � PHASE

����� � � � � �PHASE
��
�
��������� �� � � ��� � ����� �� �� � � � ��

�
��
�

�� � � ��� � �� � � � �� if �� �� is even,

�� � � ��� � �� � � � �� if �� �� is odd.

Hence, locally applying the Hadamard transform on all� sites results in a superposi-
tion of bit strings with an even (odd) Hamming weight, if the summation�� �� equals
an even (odd) number. The continuation of the protocol should now be obvious: every
party measures his or her qubit�� in the standard basis and (except Alice) broadcasts
the outcome�� to��. She concludes by calculating the total parity�� �� ��� � of the
measurement outcomes, which directly gives the correct answer to the original ques-
tion: “Is �� �� even or odd?” A protocol with less than� � � bits of communication
is impossible as this implies the exclusion of one of the parties, which cannot give an
errorless procedure.

The core of this chapter is the proof that in the classical case, ��� ��� �� bits of
communication are required. This is far from trivial, as we will see in the next sections:
a case-by-case analysis (as we did in the three-party case) is no longer possible.

Section 6.3 Bounds for Promise Functions

In the introductory chapter, “Communication Complexity”,we discussed how a deter-
ministic communication protocol corresponds to a tree where the leaves label the final
decisions, and the depth of the tree equals the communication complexity of the pro-
tocol. What follows is a general method for obtaining lower bounds on deterministic
protocols that we will use in the next section for our “even versus odd” problem.

First we remind ourselves that a protocol has to be well defined for all inputs��� � � � ���, even if they do not obey the promise of the function
�

�� �� � ��� ��.
This means that for every instance��� � � � ���, the protocol has to follow one uniquely
determined path from the root to a ‘decision leaf’. Because our tree is binary, this
implies that with depth�, the number of leaves is at most��. Hence, if we have a
minimum of � leaves, then this corresponds to a communication complexity of at least
“depth��” � ������ � � bits. This gives us a good reason to look at the number of
leaves that is required for a deterministic and exact protocol.

For different input combinations, a protocol can end up in the same decision leaf.
Assume now that we know of two such combinations

��� � � � � ���� and
���� � � � � � ����

that both lead to the same ‘path down the decision tree’ to a leaf�. For a given protocol,
the direction that the protocol takes at a specific branch is solely determined by the
input of the then speaking party��. Note now that by our assumption, these directions
are the same for both�� and ���. This means that we can combine the� and �� values
and still take the same path down to�. In other words, every element of the Cartesian
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product set��� � ���� � � � � � ���
� ���� gives the same path down the tree. We will

therefore call the subset
 of inputs that lead to the same leaf arectangle,as they will
always be of the form
 ��� � � � � ���, with �� �� for every

�
.

If we want our deterministic protocol to be exact, then the elements of a specific
rectangle
 that are allowed by the promise must all have the same function value

�
.

We can assume that every leaf contains at least one allowed input for it would otherwise
be possible to ‘trim down’ the decision tree—by removing this vacuous leaf—without
changing the effectiveness of the protocol. These two characteristics are summarized
by saying that the rectangles have to bemonochromatic.

We thus have collected some facts about the leaves of a decision tree that we can use
in the following standard method for proving bounds on deterministic communication
protocols. (See also Section 1.2 in [42].)

Assume a (promise)�-party decision problem
�

�� �� � ��� �� where there is
a total of

�� �� possible input states (both proper and improper in the case of promise
problems).

1. Show that for the function
�

the maximum volume for a monochromatic rectangle
is bounded by some limit�.

2. Realize that this bound tells us that there have to be at least
��� �
� ‘rectangles-as-

leaves’ in the decision tree.

3. Conclude that a deterministic protocol will therefore needat least� ��� �� �
���� � � �bits of communication if it wants to be errorless.

This is the approach that we will now apply to our “Odd?” function.

Section 6.4 The Lower Bound for the Classical Protocol

Before we start our lower bound proof, we will rephrase and restrict the Odd?-problem
to the ‘finite and integer input’ version that we already encountered in Section 5.3.
This is the situation where we are only interested in values of � up to� bits and where
we (implicitly) multiply every number with���� such that every�� is viewed as an
element of

�	�. We therefore have the new promise that�� �� � � ��� ����, for
which the parties try to determine whether

��	�
�� � � � ��� �� (“even”), or

���� ��� �� (“odd”)?

It should be clear that the original Odd?-function isat leastas difficult to solve as this
problem: as� gets bigger the problem becomes harder and only the limitingcase� �
� corresponds to the continuous version with� � ����� rather than� � � �	��� �� ��	��. It turns out however, that for our current purposes the lower bound� 	 ��� �
suffices (in combination with� 	 �). We will now prove the��� ��� �� lower bound
for this restricted problem.

Let 
 be a�-dimensional rectangle that corresponds to a leaf in the decision tree,
hence
 � 
� � � � � �
� � ��	�. With modulo�� arithmetic, we define the sum of
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two sets��� � �	� as� � � � �� � ��
� � �� � � ��

. We use this set addition
and the ‘sides’
�� � � � �
� to define a sequence of� � � sets

�� by:
�� � ��� and�� � ���� � 
� for

� � �� � � � ��. Obviously, for every combination�� � � ��� in the
rectangle
, the corresponding value�� �� is an element of

�
� � 
� � � � ��
�. The

requirement that
 is monochromatic tells us thateither
� � �

� or ���� � �
�, but not

both. This puts a bound on the size of
�
� and hence on the volume of the rectangle


as we will see with the help of some group theory.
Assume without loss of generality that
 is a zero-rectangle, and hence that

� � �
�

and���� �� �
�. one: � � ���. Now we are at the place where we have to use an

application ofKneser’s addition theoremfor groups[39, 43], which states:

For every pair of subsets��� � �	� there exists a subgroup� of
�	�

such that��� �� � ��� and
���� � 	 ������ �� ���� �

�
�
.

We apply this theorem to the cases where� � ���� and� � 
� (and hence
�� �

� �� with
� � �� � � � ��), which gives us� groups�� that obey

�
� � ���� �
� �
��� � � � � �
�� ���� �
� ��� �
��� � � � � �
�� �

� ��� �
This readily shows that for every

�
the only possible�� is the trivial subgroup�� �

���, for if �� is a bigger subgroup, then�������� � �� � �
� and

�
� would not

correspond to a monochromatic rectangle (remember that
� � �

�). By the second part
of Kneser’s theorem we therefore know that

��� � 	 ������ � �
� �� � for all
�
, which

sums up to

��
�
� 	 �� � � ��	�

�
� ��
The exclusion of the element���� for the set

�
� gives us

��
�
� � �� � �, leading to

��	�
�
� � � �� � �� �

for the sides of the rectangle
, and hence for its maximum volume�

�
 � � ��
�	�

�
� � � ��� � �� �
�

�� �
The last equation shows us an upper bound� on a monochromatic rectangle for an

exact�-party solution to the Odd?-problem (with input size�). The decision tree of
this protocol has to cover a total of��� inputs and hence needs at least

	��
� leaves. This

gives the tree a minimum depth of� �������� ��� � � � ��� ���, by the assumptions� 	 ��� � and� 	 �.
The method of the previous section now concludes our proof that every classical

and exact� party protocol for the Odd?-function requires at least� ��� � � � � � ���� ��� �� bits of communication.
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Section 6.5 Conclusion

We just saw a difference between classical and quantum communication of the order of
� ��� � for � parties. This assures us that the quantum protocol is more efficienteven if
we want to take into account the distribution of the entangled qubitsduring the initial
stage of the protocol. If the cost of transmitting�qubit equals� classical bits, then the
quantum complexity still remains linear in�. For large enough� (i.e. ��� � � � � �

)
the resources that the classical procedure requires are still more than the costs

��� ���
in the quantum scenario.
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Chapter 7

Quantum Whispers

Probabilities in quantum mechanics depend quadratically on the amplitudes of a state.
This phenomenon lies at the heart of the so called ‘quantum Zeno effect’. In this
chapter, we will use this effect to establish a difference between classical and quantum
communication in the probabilistic model. We will show how the error probability of
the one-bit quantum protocol will always be lower than that of the classical approach.
This result is extended to the setting where each party, in a sequence of many parties,
is only allowed to communicate one bit to its neighbor (akin to the game of ‘Chinese
Whispering’). It is argued that for this multiparty problem, there is no reliable classical
solution, whereas with entanglement it can be solved easily. The results of this chapter
were published in the article “Quantum communication usinga nonlocal Zeno effect”
by Lucien Hardy and myself.[34]

Section 7.1 Introduction

In this chapter, we will employ the ‘quantum Zeno effect’ to construct a new quantum
communication procedure. This effect relies on the quadratic, rather than linear, rela-
tion between the amplitudes and the probabilities of a quantum state. Several authors
have used this phenomenon to obtain proofs of nonlocality that are different from the
ones that we encountered in the previous chapters of this thesis.[15, 33, 62]

First, we will define a two-party problem Jump?
����� for which prior entanglement

enables us to significantly reduce the error over the classical scenario. After that, a
multiparty version, “Quantum Whispers”, of the same problem is introduced. For this
task we exhibit a reliable quantum protocol and argue that without entanglement no
such solution exists.

Section 7.2 The Two-Party Problem

The “jump or no jump?” question that we will discuss in this chapter is a typical
example of a promise problem. In the two-party setting Aliceand Bob receive their
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‘‘no jump’’ ‘‘jump’’

x x

yy

Figure 7.1: Explanation of the communication problem. “No jump” means that �
equals� or is adjacent to it; “jump” refers to the situation where� is opposite� or
adjacent to that opposite position.

input� and� � ��� �� � � � ��� � �� under the promise that� �� � ������������
�. The natural number� is a free parameter of the problem but has to be thought of
as ‘big’. Alice is allowed to communicate one bit to Bob, who then has to try to answer
if the pair��� makes a jump of size� or not:

Jump?
����� � � “no jump” if � � � � ���������,

“jump” if � � � � �� � ��� �� � ��.
(The subtraction is performed modulo��.) See Figure 7.1 for a clarification of this
setting.

For both the classical and the quantum solution of this problem, it is inevitable that
Bob sometimes makes a mistake. It will be the difference in the minimum error rate
that separates quantum from classical communication.

Section 7.3 The Quantum Protocol

Alice and Bob start in the setting where they share an entangled qubit pair
����� ���	 �����������. Depending on their input values they will perform a rotation
 to their

local qubits. Alice applies
���	� � to her��, and Bob rotates his�� with 
� ��	� �. As
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a result of these two actions, the joint state is now of the form



���	� � �


���	� � ����� � ��	 � �� �����	�	� � ���� �
�

��	 � �� �����	�	� � ���� �
��	 �� �����	�	� � ���� �
��	 �� �����	�	� � �����

After the rotations, when both parties measure their qubit in the standard basis, the
parity of the two outcomes� and

�
is strongly correlated with the difference between�

and�:

������ � � � ����� � ��	 �����	�	� � �
������ � � � ����� � ��	 �����	�	� � �

By the periodicity of the trigonometric functions, the parity
�
�
� �� will give a reliable

indication of the “jump versus no jump” question. In the casewhere� and� do not
make a jump, we have

��	 �����	�	� � � ��� �	 � �	 �� ��� �� �

and hence

������ � � � ��
no jump between� and�� 	 �� � �	� �	 �

������ � � � ��no jump between� and�� 
� �	� �	 �

Conversely, in the case where there is a jump between� and� we have

��	 �����	�	� � � ��� �	 � �	 �� ��� �� �

and consequently

������ � � � ��jump between� and�� 	 �� � �	� �	 �
������ � � � ��

jump between� and�� 
� �	� �	 �

The above analysis suggests the protocol where Alice sends her measurement out-
come� to Bob, who then calculates the parity

�
�
� ��. By doing so, the error rate of

Bob’s estimation will be bounded by the quadratic expression

���
���� 
����� �

Next, we will show that anyclassicalprotocol will have a error probability of the
order

�� �
�
�.
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y

x?

Figure 7.2:Given that Bob knows his�, there are six possibilities for Alice’s value�.
Here we have chosen� such that for some allowed values�, Alice will send “one”
(black) and for some other values “zero” (white).

Section 7.4 Best Possible Classical Protocol

As in all of the previous proofs, we start by assuming that Alice and Bob use a deter-
ministic protocol. Furthermore, we use the uniform distribution over the allowed input
values. This is where each combination

����� � ������ ��� ������ ����� ��� �����
� ���� ������ �� ������ ����has equal probability ��	� . (Alice’s input� ranges
from

�
to �� � �.)

Let
�� (

��) be the set of� values for which Alice communicates a “zero” (“one”)
to Bob. If one of the sets

�
is empty, Alice does not convey any information to Bob,

who then has to make a blind guess on the “jump versus no jump” question, leading to
an error rate of

���
. Hence we will assume that both

�� and
�� are not empty. This

implies that sometimes Bob will have a value� such that
�� � �� � �� and� � ��.

(The probability that this happens will be calculated below.) Figure 7.2 shows us how
Bob sometimes receives a “zero” from Alice (when� � � � �) in this scenario, and
sometimes a “one” (� � �). We know that

�� � �� � �� and� � ��, but for the other
four possible� values it is still unspecified to which set

�
they belong (hence we have

a total of�� � �� different cases). We continue with our assumptions by letting the
three “jump” values

�� �� � ��, �� �� � and
�� �� � �� be members of

��, and
for the the remaining “no jump” input:

�� � �� � ��. What should Bob conclude if he
receives a “zero” from Alice? Figure 7.3 shows us that in

�
out of � cases, Alice’s�

value corresponds to a “jump”, whereas only the� � ���case is a “no jump”. Hence,
Bob optimizes his answer by saying that there was indeed a jump between� and�. By
the assumption of a uniform distribution over the values�, this means that Bob will be
incorrect��� of the time if he receives a “zero” from Alice in combination with this
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y

x?

Figure 7.3:A specific coloring of the four grey dots in Figure 7.2. For this example,
the analysis in the text shows that Alice and Bob have an errorprobability of �� when
trying to decide if� and� make a jump or not.

�. If Bob receives a “one” from Alice, then he knows that either� � � or � � � � �,
and hence he can state that there was no jump without the risk of making a mistake.
The above shows that the total probability of error for the setting of Figure 7.3 is�� (the
case

����� � �������). It is straightforward to go through the other��possible cases
of Figure 7.2, and to conclude that the minimum error probability is indeed �� .

For any nontrivial protocol with
��� �, ���� 	 � the scenario of Figure 7.2 will occur

for at least� of the possible�� values of�. Accordingly, the minimum error-rate for
a deterministic protocol is bounded by

�������������� 	 		� � �� �
We can thus conclude that any classical, probabilistic procedure for deciding the jump/
no jump question will be incorrect at least��� of the times, which is obviously linear
in �
� .
The error rate of the quantum protocol is limited by

���
���� � �����
�

whereas for classical protocol it always holds that

���
����
� 	 ��� �
We have thus proven that (for big enough�) the quantum protocol will always be
more reliable than any possible classical procedure. In thenext section, we will try
to amplify the difference between the quantum and classicalsettings by looking at a
multiparty scenario.
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Section 7.5 Multiparty Communication Problem

Imagine the above two-party problem as the first step of a multiparty problem. In this
scenario we consider a concatenation of jump/no jump questions for a line-up of	
parties that are only allowed to communicate one bit to theirnext neighbor. This setting
is reminiscent of the game “Chinese Whispers”, where a message passes through a row
of whispering people. Hence the name “Quantum Whispers”.

Formally the problem is defined as follows. Take	 parties��� � � ��� , each have
two input values

��� ���� except for the first party who only receives an��, and the last
person�� with his �

�. The promise on the input is the same that we used for the
jump versus no jump problem:

���� ��� � ������ ��� � ��� �� � ����� �� �

for all � � �  	 (note that�� and�� are uncorrelated). After having received their
respective inputs, each party�� is allowed to communicate one bit�� to his or her
neighbor����. After these	 � � bits of communication, the rightmost participant
�� has to decide whether there was an even or an odd number of jumps among the	 � �pairs

��� ������.
We are interested in the error rate in the case where	 is of the same order as�

(that is,	 � �� with � � �����. The quantum solution to the quantum whispers
problem will be a straightforward application of the two-party procedure for each cou-
ple

��� ������. For big enough�, this will give us a reliable quantum protocol. We
then continue by arguing that in the classical setting such areliable protocol does not
exist. But it should be stressed that a formal proof of this claim is still lacking.

Section 7.6 The Quantum Whispers Protocol

Before receiving their input values, each pair
��� ������ shares an entangled state������� � ��	 ����� � �����. (This notation as to distinguish the qubit�� that is en-

tangled with the system of���� from �� that is correlated with the qubit���� of
����.)

The first two parties start by performing the same rotations,on their respective
qubits�� and�	, as was described in the section on the two-party setting.

The standard measurement on both sides yields the classicalbits �� and
�	 (of

which �� will be sent to�	 by the first party). From earlier investigations, we know
that the parity

�
����	� indicates with�� ����� certainty whether or not there is a jump

between�� and�	.
These rotations and measurements are done by all	 � � couples

��� ������ on
their qubits�� and���� (the rotations depending on the respective input values��
and����). The estimations of the jump/no jump answers are the classical parity bits�
�� � �����, and hence the question “is there an even or odd number of jumps?” can be

estimated by the total parity�����	� �
�� � �����. Therefore, after�� has sent her�� to

her neighbor,�	 continues by communicating the bit
�
����	��	� to the third person

in line. This procedure of sending the parity of the receivedbit and the two outcomes
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�� and
�� to ���� is repeated until�� is reached. The bit that this rightmost party

receives from���� corresponds to the previously mentioned sum�� ��� � �����,
minus his own outcome

�
�. Hence, by taking the parity of the received bit and

�
�,

he will effectively estimate the odd/even jumps questions by 	 � � repetitions of the
two-party protocol. This allows an easy analysis of the expected error, as we will see
below.

Section 7.7 Error of the Quantum Whispers Protocol

In the description of the quantum whispers approach to solving the odd/even jumps
problem, it was mentioned how it is equivalent with	 � � applications of the two-
party solution. We know that the error rate of this procedureis bounded from above
by ��  ����� . Hence, the probability of success� � ��� of the multiparty protocol is
the sum of the probabilities corresponding to an even numberof mistakes among the	 � �guesses. The lower bound on this probability is calculated by

�� ��� �

	���
�	� � 	 � �

� � � �	
��	�	� ��� �	

��	�����	� �
For some constant� � �

� and a large enough�, this can be approximated by only
considering the

 � �
case; it hence has a success probability of at least

�� ��� �
��� �	

��	���� � ��
�	�
�� �

This shows that the	 � �� party version of the quantum whispers protocol has a
maximum error rate of the order

�� �
�
�. In the case of large�, this yields a reliable

quantum protocol.

Section 7.8 Possible Classical Whispers

Here we will argue that there does not exist a reliable classical protocol for the even/odd
jumps problem (again for large� and� � �

� � ��).
We start by noting that the “jump” versus “no jump” problem isindependent for

each
��� ������ pair because there is no correlation between�� and��. The parity of

the number of jumps relies critically on all the	��answers to the two-party problem
which are independent of each other. This strongly suggeststhat it is necessary to solve
the jump/no jump problem for all pairs

��� ������. Because we only allow a single bit
of communication between the parties�� and����, this will always induce an error-
rate of at least ��� per pair. (See the result of Section 7.4.) With the number of pairs	 � � � �� � �, the probability of an odd number of such errors (leading to an
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incorrect estimation of the parity) is bounded from below by

��� 	 	�����
�	� � 	 � �

� � � � � �
��

�	������ �
��

���	��	
� �

� �
�
�
��� ����

���

� �
� �

����

� (assuming big�) �
Under the assumptions of� � ��, the error probability��� is effectively

���
. This

tells us that the answer of�� is as successful as the outcome of a random coin toss.
The above argument for the unreliability of classical protocols is not water-tight,

as we have not formally excluded every possible protocol. Such a proof turned out to
be more difficult than expected (as is often the case for lowerbound proofs[29]). This
difficulty is due to the great number of potential	-bit protocols that the	 parties
can use. Consequently, although we have proven that there exists a reliable quantum
protocol, we cannot be����certain that there is no classical procedure that is reliable,
however unlikely this may be.
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Chapter 8

Lower Bounds for Quantum
Communication

In the previous chapters, we have only seen examples where entanglement reduced the
complexity of communication protocols. Here we give our first lower bound for quan-
tum communication. We will show that for the inner product problem, entanglement
does not significantly improve the performance over the classical case. The quantum
and classical scenario are nevertheless not equivalent. This difference is indicated by a
small reduction of error in the� � � case of the inner product problem with only one
bit of communication between the parties. See [24] for the original article by Richard
Cleve, Alain Tapp, Michael Nielsen and myself.

Section 8.1 Introduction

How can we prove lower bounds for quantum communication? Obviously, some of
the methods we use for classical communication fail; otherwise there would be no
difference between the two. Hence, we have to look for ‘impossibilities in quantum
mechanics’ and try to apply them in the setting of distributed computation. The prob-
lem is that, at the moment, we do not have many examples of tasks that are impossible
in a nonlocal world. Instead, our path to understanding entanglement is paved with un-
expected phenomena that do not exist in classical information theory. One of the few
‘no-go’s’ in quantum communication is Holevo’s bound, which tells us that quantum
bits are not any better than classical ones for transferringinformation between parties.
This bound, in combination with a result by Michael Nielsen (see Appendix A), will
indeed be one of the cornerstones for this chapter’s lower bound.

The crucial step in the proof that will follow is to go from theproblem that only
focuses on the single bit of the function

� ����� to the transfer of the whole bit string�. This is done by considering an
�

that is familiar both in communication complexity
and in quantum computation: the inner product function.
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Section 8.2 The Inner Product Problem

For two parties� and� with input strings
��� � � � � ���� and

���� � � � ����, the inner
product function

��
� ��� ��� ���� ��� � ��� �� is defined by

������� �
�

�	�
�� � �� ��� ��

This function is well studied as a classical communication problem. (See [20, 64]
and Section 3.5 in [42].) It is easy to see that for a deterministic protocol,� bits
of communication are required. This intractability of

��
does not disappear in the

probabilistic scenario. If Alice and Bob want to know
������� with a maximum error

of �, then� � ������ ���	� �� bits of communication are still necessary. Hence for a
fixed error rate, the communication complexity is� � ����. Below we will see that
both for the deterministic and probabilistic cases, the situation does not much improve
if the two parties are allowed to use prior entanglement. That is, the inner product
function is also hard in the setting of quantum communication.

In quantum computation, the
��

function is inextricably linked with the Hadamard
transform. This was already mentioned in the section on quantum information, but we
will briefly repeat it here. The one qubit Hadamard transform� is defined by

� ��� � ��	 ���� � ���� and � ��� � ��	 ���� � �����
which also shows that� is its own inverse:�

	 � �.
When we apply a Hadamard to each individual bit of the string� � �� � � ���, we

obtain a superposition of all possible� bit strings� where the information about� is
stored in the phases as the inner product between� and the different�’s:

���� � � � ���� ����� �� ��	� 
��������

�
���

������	 ���� � � � ����� (8.1)

This suggests the following protocol to extract� bits of information�� � � ��� with
the help of the inner product function

�������. We start with the uniform superposition
of all strings� � ��� ��� and an empty output register:

��	� 
�������

�������
Calculating the function values

������� in superposition then yields

��	� 
�������

�������������
We now apply a conditional phase flip (CFLIP) on the output register,

��	� 
�������

�
���

������	 �������������
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after which we inverse the first computation of the function value, thereby giving the
final state

��	� 
�������

�
���

������	 �������
Equation 8.1 shows us that this last state gives us all the� bits of the string�.

We thus see how the quantum calculation of the inner product for a superposition
of � strings results in a protocol where we obtain� bits of information. We will use
this phenomenon in combination with the known quantum limitations on information
transfer to prove our lower bounds on the quantum communication complexity of the
��

function.

Section 8.3 Informal Sketch of Proof

Before we write down the formal proof of the quantum lower bounds, we will first give
an overview of the ideas that lie behind it. Assume that Aliceand Bob can compute the
inner product value

������� of their� bit strings with� classical bits of communica-
tion. Instead of classical inputs, let Alice use the superposition of all possible strings� while Bob fixes his�. The two parties then continue by executing the protocol ‘in
quantum parallel’ that now uses� quantum bits of communication. Having finished
this procedure, Alice now has a superposition of strings� entangled with the�� func-
tion values

�������. As we saw in the previous section, this information can easily be
converted into a description of Bob’s� bits �� � � ���. Hence Alice has—with� qubits
of communication—obtained� bits of information. The bounds on quantum informa-
tion transfer tell us that this is only possible if� � �	 , which is tight by the method of
Superdense coding (see Section 2.3).

For the probabilistic bound, we use the same argument by saying: “ � � � the ��
function valuesapproximating

������� � � � into a descriptionstrongly correlatedwith� � � � only possible if� is of the order of�.”
Our main concern for the formal proof will be the conversion of the protocol for

classical inputs into its quantum superposition variant. This reduction provides a new
method of analysis that can also be used for other, future lower bounds in quantum
communication. The formal justification of it will be given in the next section.

Section 8.4 Quantum Parallelizing Communication Protocols

Let Alice and Bob share some initial entanglement��� before they receive their inputs� and�. During the execution of the communication protocol, the two parties will most
likely need some additional ‘working space’ to perform the appropriate computations,
after which Alice writes down the outcome

� �����. Without loss of generality, we
assume these ancillas to be initially set to zero, and hence the whole system starts in
the state

�
begin

������ � �������� � � ���������� � � �������
page 68



8.5. BOUNDS ON EXACT INNER PRODUCT PROTOCOLS

After the protocol is finished and Alice knows the outcome
� �����, both working regis-

ters have probably changed depending on the initial values� and� (as has the entangled
state�); we therefore write:

�
semi-final

������ � ����� �������garbage
����������

Alice can now flip the phase of her state depending on the outcome
� �����. After that,

we can perform the whole protocol in ‘reverse’, thereby removing the garbage and the
outcome as well as restoring the initial entanglement�, but maintaining the function
depended phase

�
���� ����	. This gives us the clean, final state

�
final

������ � �
���� ����	 �������� � � ���������� � � �������

We thus see that any� qubit communication protocol can be transformed in a clean,no
garbage-producing, unitary procedure that requires�� qubits of communication. By
doing so, we enable the application of the protocol in superposition for different values
of �, by which we mean the following.

Assume that instead of one string�, Alice has a uniform superposition input strings:

��	� 
��������

�
begin

������ � ��	� 
��������

�������� � � ���������� � � �������
For this situation, Alice and Bob can perform the same clean protocol described above.
The communication of this ‘quantum parallelized procedure’ is done with the same
number of qubits as in the original schema. Hence, the end result is a �� qubit com-
munication protocol with the final state:

��	� 
��������

�
final

������ � ��	� 
��������

�
���� ����	 �begin

�������

where the information about the function values
� ����� is now stored in the phases

on Alice’s side. This also shows why we required the initial protocol to be clean: it
enabled us to create a superposition of strings

�
���� ����	 ��� without suffering from

any entanglement with Bob’s part.

Section 8.5 Bounds on Exact Inner Product Protocols

In the previous section, we saw how we can clean up a communication procedure while
only doubling its complexity. We use this result in combination with the assumption
that we have an errorless procedure for the calculation of

��
� ��� ��� � ��� ��� �

��� ��, which requires� qubits of communication between Alice and Bob. This gives
us a�� qubit protocol that establishes the evolution (ignoring the workspaces and Bob’s
part as they remain unchanged for clean procedures)

��� �
�� �

���
������	 ����

for all possible��� � ��� ���.
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If we apply the same�� qubit procedure to the initial state where the� register
is the uniform superposition, then the phases of Alice’s final state will contain all the
information about�:

��	� 
��������

��� �
�� ��	� 

��������
�
���

������	 ����
From this it is straightforward for Alice to recover the bits�� � � ��� by using the
Hadamard transform of Equation 8.1 on her qubits. The end result is thus that Bob
has communicated� bits of information to Alice. This puts a lower bound on the value
of �, as we will see now.

Because of the inverse part of the above clean protocol, exactly � of the�� commu-
nicated qubits go from Bob to Alice. Hence, by the result proven in the appendix,� has
to be bigger than��	 �. Translating this back to our original (dirty) procedure, we have
proven that any errorless, quantum protocol needs at least��	 � qubits of communication
for the evaluation of the inner product function

��
� ��� ��� ���� ��� � ��� ��. This

result is also tight as Bob can use superdense coding to send his � bits of information
to Alice.

We will postpone the analysis of protocols with classical bits of communication,
and return to it after we have looked at the quantum bounds forprobabilistic protocols.

Section 8.6 Bounds on Probabilistic Inner Product Protocols

Assume that Alice and Bob have a dirty� qubit communication protocol
�

that com-
putes the

��
function correctly with probability of at least���. We will again look at

what effect the clean protocol
� � �CFLIP �� has on the superposition

�
begin

������ � �������� � � ���������� � � �������
More specifically, we will put a lower bound on the fidelity between the probabilistic
outcome and that of the ideal protocol of the previous section; this will enable us to
calculate the probability that Alice obtains the bit string� after the�� bits of commu-
nication.

We can always assume that for every� and�, the effect of
�

can be written as� �
begin

������ � �
���	 �������������garbage

���������
� � ���� ����������garbage�

����������
with the real valued� limited by�	 � �. By setting

� �
begin

������ � ��������������,
we can rewrite the situation after the CFLIP as

�
���������	 �������������� � �� ������ ���������

with the ‘erroneous part’
�
�������� � �

�
���������	 � ����������garbage�

������. Be-
cause

�� ���� �������� �� �
begin

������ � �
�
���

������	� �
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it follows for the inverse
� �

that� � ������ ��������� � �
�
���

������	�� �begin
������ �����	 �begin�

�������
where

�
begin�

������ is orthogonal to
�
begin

������. Hence, the final state of the pro-
tocol

� � �CFLIP �� equals

��� ��	�����������	 �begin
������ � ������	 �begin�

������� (8.2)

This gives us a lower bound on the inner product between the ideal outcome
�
final

������
and the result,

� � �CFLIP �� �
begin

������, of our probabilistic procedure of

�
final

������� � �CFLIP �� �
begin

������ � �� ��	 � �� ���
For different values�� �� �, the inner product between

�
final

��� ���� and the state of
Equation 8.2 is always zero, and hence we can also apply the above lower bound to the
superposition of states:

�	� 
��������

�
final

������� � �CFLIP �� �
begin

������ � �� ���
This concludes our proof that Alice’s probability of observing the string� after apply-
ing the�-fold Hadamard at the end of the protocol will be at least

������	. By Fano’s
inequality[25], this means that the mutual information between Bob’s� and Alice’s
measurement outcome is at least

�� � ���	� � � bits. By the same reasoning as was
used in the errorless protocol, this is only possible if the amount of communication�
is equal to or bigger than�	 �� � ���	� � �	 . For a fixed error rate, this translates as
� � ����.

Section 8.7 Communication with Classical Bits

The above analysis dealt with the scenario where� and� were allowed to communi-
cate with quantum bits. This is a different setting from thatof the previous chapters,
where only classical communication was allowed. Here we will translate the bounds of
the preceding section to that of our standard model. Essential for this reduction are the
protocols of teleportation and superdense coding, which give a tight relation between
quantum and classical information transfer.

Assume that� and � have an errorless protocol for the computation of
��

�

��� ��� ���� ��� � ��� �� that uses� bits of classical communication. Imagine now
that each party has two�-bit strings (� and�� for Alice, � and�� for Bob) and that they
perform their protocol on both

����� and
��� ���� in parallel. This yields a procedure

where the communication is always done in pairs of bits and after which Alice knows
both

������� and
����� ����, and hence that

������ ����� � ������� � ����� ����.
In other words, we have a��-bit communication protocol for the computation of
��

� ��� ��	� � ��� ��	� � ��� �� that allows superdense coding on the pairs of bits
that are exchanged. Applying this coding method gives a procedure with� quantum
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bits of communication that calculates the inner product forinput size��. By the results
of the previous section, we can now conclude that� 	 �, which is obviously tight.

For the probabilistic setting, we assume a�-bit protocol with error-rate�. By the
same reduction of the above paragraph, this yields a� qubit protocol with a probability
of error bounded from above by��� � �	� for strings��� ���� � ��� ��	�. Again
by the earlier results in this chapter, this gives us a lower bound on the number of
communicated bits according to� 	 �� � ����� �

�	 , which for the limit � � �
implies� 	 � �����.

Section 8.8 Inner Product Problem for Two Bits

The above results on the limitations of quantum communication seem to suggest that
entanglement does not helpat all for the distributed calculation of the inner product
function. This pessimism is not entirely justified as we willsee in the remainder of
the chapter. We will consider the

��
function for input strings of size two, where we

allow only one bit of communication from Bob to Alice. The latter who then has to
guess the value

������	 ����	� as reliably as possible. With classical communication,
this success rate is bounded from above by

���
, whereas in the quantum case the

probability for� to give the right answer can be almost
���

.

Section 8.9 The Classical Case for Two Bits

The function
��

� ��� ��	 ���� ��	 � ��� �� that we consider here is defined by

������	 ����	� � �� � �� � �	 � �	 �
which has the following table

IP
�� �� �� ���� � � � �

�� � � � �
�� � � � �
�� � � � �

.

It is clear that if Alice has� � ��
, she will never make a mistake when inferring

that
������� � �

. This tells us—as we assume a worst case distribution over the
inputs—that we have to focus on the errors that can occur when� �� ��

. Hence, we
start our analysis with the assumption that the values� and� occur according to the
probability distribution� with

�
����� � � �

if � � ��
,��	 otherwise.

(8.3)

It is also obvious that for this distribution�, Alice has to receive some information
from Bob if she wants a probability of success greater than a half (equaling a random
guess). We will therefore look at the deterministic protocols

�
, where Bob starts by
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sending the bit value
� � �

if his � is element of some set�� � ������� ��� ���,
and otherwise the value

� � � if � � ��. (With �� � �� � �� and�� � �� �
������� ��� ���, see the introduction in Section 4.4.) After this, Alice hasto guess
the value of

������� on the basis of her string� and the received bit
�
. By simply

going through all the options for�� and�� (essentially
�
), in combination with the

rational choose for Alice (in the light of the assumed distribution�), we can see that
the following four protocols each have the lowest possible error probability of

�
out of

�� � ����.
��: The two� sets are�� � ���� and�� � ���� ��� ���. Alice’s answer will

simply equal this bit
�
.

�	: If �� � ����and�� � ���� ��� ��� then�’s guess is calculated by NOT
��	�.

��: The final answer is NOT
���� in combination with Bob’s sets�� � ���� and

�� � ������� ���.
��: When Bob uses the sets�� � ���� and�� � ������� ���, Alice answers

“
�� � �” if her � � ��and “

�� � �
” otherwise.

Moreover, if we look at the values� and � for which the above protocols make a
mistake (which happens only when

� � �), then we see that the error probability is
equally distributed over the�� pairs

����� with �
����� �� �

:

Protocol
�� the

�
combinations

����� that
�� answers incorrectly

�� ���� ���, ������� and
���� ���

�	 ���� ���, ������� and
���� ���

�� �������, ���� ��� and
�������

�� �������, ���� ��� and
�������

.

This suggests a probabilistic protocol that uses two publiccoin flips to choose
randomly between

��� � � � ���. The following procedure is indeed the best that Al-
ice and Bob can do in the classical case after having receivedtheir inputs��� �
������� ��� ���:
1: Randomization Alice and Bob determine at random which one of the four deter-

ministic protocols
����	 ��� or

�� they are going to use.

2: Bob’s communication Depending on his input� and the chosen protocol
��, Bob

sends a “zero” or a “one” to Alice. (See the above list of protocol description for
the specifications).

3: Alice’s answer If Alice has� � ��
she concludes “

������� � �
”; otherwise, she

acts in accordance with the protocol
�� that was chosen at the first stage.

This communication protocol makes no mistake if� � ��
and by its randomization

errs with ��� in all the other cases. Therefore, a) there exists no input distribution
�� that causes a higher error rate than�� , and b) the distribution� as defined in Equa-
tion 8.3 reaches the��� bound and is hence an example of a worst case situation. In
other words,

���� is the highest possible correctness ratio in the classical setting. The
next section shows that this can be improved if we allow Aliceand Bob to use prior
entanglement.
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Section 8.10 The Quantum Improvement

Here we will show that there is a one bit quantum protocol thatthat has a correctness
rate of

�����, which improves the classical bound by almost four percent.
The two parties have prior entanglement by the standard pair

����� � ��	 ����� ������. Depending on his input�, Bob first applies an operation�� to his��. After
this, a measurement is performed on the rotated qubit, yielding a classical bit

�
that is

sent to the other party. If the receiver, Alice, has� � ��
, she knows with certainty that

������� � �
without having to interact with Bob. If this is not the case (� �� ��

), she
performs a unitary transformation�� to her�� and measures the qubit in the standard
basis with outcome�. Alice’s ‘guess’ for

������� will now be the parity bit
�
�
� ��.

With the following rotations for� and�, this protocol will have a correctness
probability of �	 � ��

� � ����� for the worst case� �� ��
. (If � � ��

, the correctness
rate is����.) Hence, the quantum protocol is more reliable than any classical proce-
dure for this particular problem. The� and� rotations that establish this separation
are (with

� � �� �� � �	�� � �	���):
��� � ��� 
 �� ��� ����

���
���

��� �� ���
�

��� � ��� 
 �� ��� �
��� � �

�
��� � � �� ���

�
��� � ��� 
 �� ��� ���

���
����

��� �� ���
�

�

and

��� � � � �
� � � ��� � ��� � � ���

��� � �
��� � ��� � � ��������� �

� ��� � ��� � � ��������� �
� �

(In case the reader is wondering about the ratio behind this protocol, the entries of the
above matrices were obtained with the help of a computer program that performed a
numerical search for the optimal solution of the inner product problem. The corre-
sponding analytical expressions were inferred and verifiedby the author of the com-
puter program.)

Section 8.11 Communication Complexity versus Quantum Mechan-
ics

We have reached the stage where we are convinced that quantummechanicssometimes
allows a significant reduction in communication complexity, but also sometimes does
not. “The influence that quantum physics has on the theory of distributed computation
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8.11. COMMUNICATION COMPLEXITY VERSUS QUANTUM MECHANICS

is significant but subtle”, should be the tantalizing conclusion for computer scientists.
But, to paraphrase Dr Johnson[12], “If physics kicks computer science, should physics
not be kicked back?” That is, what can we learn about nonlocality and quantum me-
chanics from the theory of communication complexity?

The next chapter—which will be the last one before the Conclusion of this thesis—
tries to initiate such a ‘back-action’. It will be shown thatthe limits of nonlocality
coincide with the limits of distributed computing and that both of them can be viewed
as a refinement of the ‘no-signaling theorem’.
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Chapter 9

Superstrong Correlations versus
Communication Complexity

How close is the relation between nonlocality and communication with prior entangle-
ment? What are the implications of the no-signaling theoremfor the nonlocal behavior
of physics and communication complexity? In this chapter, we will touch on these and
related questions. We do this by imagining a toy-theory where theCHSH inequality for
locality is maximally violated (stronger than is possible in quantum mechanics) while
still respecting the axiom of no-signaling. It will be shownthat in such a scenario,
the communication complexity of a distributed decision problem becomes a vacuous
concept: it will always be one bit. This approach is inspiredby the work of Popescu
and Rohrlich who, in a series of articles, asked the question: “Why is Nature not more
nonlocal than she is?”

Section 9.1 Nonlocality Revisited

The Clauser, Horne, Shimony and Holt (CHSH ) inequality for classical theories gives
a bound on the strength of correlations between two separated experiments.[22] We
described this nonlocality argument earlier in this thesis, so we will here directly state
it in the form as we will use it in the rest of this chapter.

Imagine two separated parties� and�, each of which can perform one out of two
experiments on a particle that they receive from a common source. There are there-
fore four experimental set-ups that can apply to the combined system:

�	�� �	�� �,�	�� �	�� �, �	�� �	�� � and
�	�� �	�� �. The two possible outcomes of the measure-

ments on each side are labeled “
�
” and “�”, and we will call the�-particle system���.

We repeat the experiment many times such that we have an accurate estimation of all
the possible correlations between the different measurements and their outcomes. As
it is understood that for each trial we will always use the same state-preparation of
���, we drop the conditional part when expressing the probabilities. For example, the
probability that both Alice and Bob measure a “one” when theyuse the measurement
settings	�� and	�� is denoted by

�����	�� �	�� � ��.
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The main result of Bell[6] andCHSH is thatfor any local, hidden variable theory
about� and the measurements	� and	�, the following inequality most hold:

�����	�� �	�� � �� � �����	�� �	�� � �� ������	�� �	�� � �� � �����	�� �	�� � �� � �� (9.1)

We know by now that quantum mechanics violates this bound with


���������

�����	�� �	�� � � � �� � ���� � �����
for the entangled pair of qubits

����� � ��	 ������ �����, thereby proving that the the-
ory of quantum mechanics cannot be phrased as a local theory.This, however, is only
of limited interest. More important is that thus far all experiments have confirmed the
violation of theCHSH inequality (as predicted by quantum physics).[3, 27, 65] This is
the more relevant side of the matter as it is not inconceivable that in the future we will
replace the theory of quantum mechanics by a more accurate ormore general model of
Nature. But no matter its exact formulation, this succeeding model will have to agree
with the experimental results that we have already obtained. And asthe empirical data
by itself rules out a local explanation, any proper future candidate theory will have to
be nonlocal as well. The study of ‘nonlocality-as-such’ should, for the above reasons,
extend to all theories that violate the bound of Equation 9.1, rather than only investi-
gating the version of nonlocality that we encounter in standard quantum mechanics. In
this chapter, we will indeed study nonlocal correlations that are not possible with our
current theory of quantum physics.

Section 9.2 The Question of Popescu and Rohrlich

In a series of articles, Sandu Popescu and Daniel Rohrlich ask the question why Nature
seems to allow a violation of theCHSH inequality with a correlation term of� � ��,
but not with more.[55, 56, 58] (See, for example, the articleby Boris Cirel’son for a
proof that���� is indeed the limit.[21]) They rhetorically ask themselves: “Could the
requirement of relativistic causality restrict the violation to [����] instead of�?”[56]
Such a result would be great step towards a better understanding of Nature for “If so,
then nonlocality and causality would together determine the quantum violation of the
CHSH inequality, and we would be closer to a proof that they determine all of quantum
mechanics.” Unfortunately, this turns out not to be the case. The authors prove this
by constructing a toy-theory where the nonlocality Inequality 9.1 is surpassed by a
correlation value of�. The non-zero probabilities of this super-nonlocal theoryare
simply
��
�

�����	�� 	�� � ��� � �����	�� 	�� � ��� � �	 if �� � ������� ���,
�����	�� 	�� � ��� � �����	�� 	�� � ��� � �	 otherwise.

(9.2)

This leads indeed to the maximum violation


���������

�����	�� �	�� � � � �� � ��
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while the randomization of the outcomes still prevents Alice or Bob from transferring
information to the other party without the use of conventional communication.

So, if causality is still respected with the correlations ofEquation 9.2, why does
Nature not allow it? Are there any (obvious) first principlesthat forbid a violation
stronger than that of quantum mechanics? Or, to put it more dramatically and to the
point,what is so bad about stronger-than-quantum-mechanics nonlocality?Here I will
try to provide a partial answer to this question by pointing out the far-reaching conse-
quences of the toy-model by Popescu and Rohrlich for distributed computing. It will be
shown that the maximum violation of theCHSH inequality leads to a model of Nature
where the notion of communication complexity is vacuous: all decision problems can
be solved deterministically with only one bit of communication.

First, we will find a general way of expressing all possible distributed functions in a
standard format that coincides with the inner product problem for two parties. Then we
will see how, with superstrong correlations, the

��
problem (and hence all problems)

can be solved with the minimal amount of one bit of communication from Bob to Alice.
The concluding section of this chapter is used for a discussion of both this result and
the prospects for continuing this line of investigation.

Section 9.3 Distributed Decision Problems as Inner Products

Any function
�

� ��� ��� � ��� ��� � ��� �� can be expressed as a multi-variable
polynomial with modulo two arithmetic (where�� � � � � �

). This is most easily
seen by the fact that elementary Boolean operations likeAND, OR, NOT or ‘equivalence’
can be calculated with addition and multiplication over

�	:
��
�

� AND � � � � �� � OR � � � � � � � � ��
NOT

��� � �� �� �� � �� � �� � � � �
Just as any Boolean function

�
� ��� ��� � ��� �� can be constructed from those

primitives, so can
�

also be constructed from the elementary���� operations “�”
and “�”. The �-bit equivalence relation EQUIV, for example, thus becomes

EQUIV
����	 ����	� � ��� � ���AND

��	 � �	� � ��� �� � ��� � ��� �	 � �	��
Furthermore, as long as� and� are of finite length, we can rewrite such polynomi-

als

� ��� � � � � ��� ���� � � � ���� � �	��� � � � � ��� ���� � � � ����
as a finite summation of products�� �� ��� ������, where

�
and� are polynomials

in the input strings� and� respectively. Moreover, we can restrict the� functions to
the products of the form���� � ������ , with � one of the�� characteristic vectors� � ��� ���. In total, there are therefore�� different polynomials����� that we have
to consider, and hence the index

�
in the summation is bounded by� � � � ��. This
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gives us a way of representing the function
�

as an inner product problem of input size
��:

� ��� � � ��� ��� � � ���� � 
�
������

�
�
��� �

���	����� (9.3)

�
	�
�	�

�� ��� � � � � ���� ������� � � � ����� (9.4)

For the�-bit EQUIV function, for example, this is shown by

EQUIV
����	 ����	� �

��� �� � ��� � ��� �	 � �	�
�

��� �� � �	 � ���	�� ��� �	� � �� � ��� ��� � �	 � ���	
�

�

�	�
�� ��� ��	� ��� �����	��

with the�� � � polynomials on each side:

� �� ��� ��	� �������	�
� �� �� � �	 � ���	 �
� �� �	 ��� �� �� �	
� � ���	

�

We can view this as an inner product problem because all the bit values
�� ��� will

be known on Alice’s side without any communication from the other party. The same
holds for the bits described by the polynomials� on Bob’s side. Hence, if� and� are
able to compute the

��
function for input sizes of��with the one bit of communication,

then they also are able to calculateanydecision problem
�

� ��� ������� ��� � ��� ��
with a single bit of information exchange. We will see in the next section that this
indeed possible with a maximum violation of theCHSH inequality.

Section 9.4 Inner Product and Nonlocality

Assume a model of Nature where the probabilities of Equation9.2 are applicable, and
hence where the correlation

�����	�� �	�� � � � �� � ����

holds for all��� � ��� ��. In such a world, Alice and Bob (with their bits� and�) can
perform two separated measurements on their super-correlated states which yield the
outcomes� and� that obey� � � � ��. From this, it follows that in the case of the
inner product function

��
�, Alice and Bob can perform� measurements on an equal

number of super-correlated particles in order to obtain—without any communication—
a collection of bit values�� and��, with again�� � �� � ���� for every

�
. By the
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commutativity of addition (modulo two), this allows the regrouping of the bits to the
two separated sides of the communication protocol:

����� � � ��� ��� � � ���� �
�

�	�
�� � �� �

�

�	� �� � �� �
�

�	� ��� �� �
������� ����

�
�

�	� ��� �� �
����� ����

�

Because Bob can construct and add his�� values without requiring any information
from Alice, he can therefore compute the value

� � �� �� ��� � by himself and
broadcast this single bit to Alice. She, on her part, createsthe�� values and finishes
the protocol with the errorless conclusion

������� � ���� �� ��� �.

Section 9.5 Trivial Superstrong Communication Complexity

We just saw how the
��

function has a communication complexity of one bit for every
finite input size in the setting of superstrong correlations. Hence, we can apply the
reduction of Section 9.3 to reach the result that any distributed decision problem

� �����
can be exactly computed with a single bit of communication. Equation 9.3 tells us that
we can rewrite the function

�
to

� ��� � � ��� ��� � � ���� �
	�
�	�

�� ��� � � � � ���� ������� � � � �����
As Bob can compute all the�� values by himself, he and Alice can also remotely and
independently create the� and� values such that�� � �� � �� ��� � ����� for all
� � � � ��. After the appropriate regrouping of the sum, the previous equation then
becomes

� ��� � � ��� ��� � � ���� �
	�
�	� ��� �� �

������� ����
�

	�
�	� ��� �� �

����� ����
�

It should now be clear that Bob can compute the bit
� � �� �� ��� � by himself

and then communicate it to Alice who, just as for the
��

function, concludes with� ����� � ���� �� ��� �.
This finishes the proof that with the help of the superstrong correlations of Equa-

tion 9.2, any distributed function can be decided on Alice’sside without error after only
one bit of communication from Bob. It is true that the amount of resources (the super-
correlated states) grows exponentially with the input size� but this does not effect
the conclusion that the communication complexity—after the inputs are distributed—
is minimal. We will finish this chapter with a short discussion about the implications
of the above result.
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Section 9.6 Discussion

We can now rephrase our original question as, “What is so bad for Nature about super-
efficient distributed computing?” It is not clear if there isa convincing answer to this
question, as it does not seem to conflict with any physical intuition. But trivial com-
munication complexitydoesdisprove the existence of an intrinsic ‘complexity’ for
distributed tasks. Even if we need an exponential amount of prior superstrong en-
tanglement (as is indeed the case in the derivation of Section 9.5), the solution of all
possible distributed functions with a single bit of communication surely does contra-
dict our experiences in computer science. Much as in computability theory, there is
a hierarchy of different ‘classes’ of communication problems.[4] Such hierarchies are
at the core of theoretical computer science, and their ‘collapse’—as happened here by
assuming superstrong correlations—goes against the intuition of most researchers in
the field of complexity theory.

Future investigations along the lines of this chapter can beaimed at obtaining other
implications of stronger-than-quantum-mechanics correlations. What happens, for ex-
ample, if we assume a violation of theCHSH inequality with a factor less than the
four we used here, say with

� �	? This is still stronger than allowed by the the nonlo-
cality of quantum mechanics, but the consequences for communication complexity are
less clear in this scenario. Also, the possible implications for computationalclasses
deserve further research. One can thus investigate how the existence of superstrong
correlations would enhance the power of, say, logarithmic depth circuits. Could it be
the case that this class NC��

�
contains all of P? And even beyond that, what can be

computed in polynomial time under the assumptions of this chapter? The conjecture
that superstrong nonlocality would imply NP�P��

�
, is certainly a tempting thought.
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Chapter 10

Conclusion

In this last, chapter I will describe some of the work on communication complexity
done by other authors. This review is concluded with an outline for future research.
Finally, the possibilities of experiments that implement one of the protocols will be dis-
cussed. We derive some threshold values for the realistic setting of noisy entanglement
and faulty detectors. These criteria for a proper quantum communication protocol refer
directly to some of the loopholes that exist for the experimental verification of Nature’s
nonlocality.

Section 10.1 Other Work on Quantum Communication

Soon after the first publication of a separation between quantum and classical commu-
nication complexity[23], other, more spectacular, results were obtained. Besides the
ones described in this thesis, the following results shouldbe mentioned.

In 1997, Harry Buhrman, Richard Cleve and Avi Wigderson obtained an almost
quadratic separation for the well-known two-party disjointness problem in the random-
ized setting.[17] In the same article, they also showed an exponential difference be-
tween quantum and classical communication for a deterministic, promise problem that
is based the on Deutsch-Jozsa algorithm.[26] The function for the quadratic separation
tells if two sets� �� � ��� � � � ��� are disjoint or not. Hence,

DISJOINT
��� � � ��� ��� � � ���� �

��
�	�NOT

��� � ����
where� and � � ��� ��� are the characteristic vectors for the sets� and

�
. The

authors recognized that this function is a distributed caseof a database search for an
index

�
such that

��� � ��� � �. Hence, by applying Lov Grover’s search algorithm[14,
31, 32] while sending the index register of size����back and forth

����� times, Alice
and Bob can solve this problem with

���� � ����� bits of communication. As it was
already known that a probabilistic solution of the DISJOINT function requires����
bits of communication[38] in the classical setting, this established a near quadratic
separation.
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The exponential difference is possible for the deterministic, promise problem where
the function DDJ (‘distributed Deutsch-Jozsa’) is defined by

������ � � ��� ��� � � ���� � � �
if the string� � � is ‘balanced’,

� if the string� � � is ‘constant’,

where� � � is the bitwiseEXCLUSIVE OR of the � bits
��� � ��� � � � ��� � ���,

and the promise on� and� is that this string is either balanced or constant. For the
quantum solution of this problem, Bob starts by preparing the state of���� qubits��� �� ������ ���, which is then teleported to the other party (requiring� ���� bits of
communication). Alice, on her side, changes this received state to the final superposi-
tion ��� �� ��������� ���, which enables her to decide without error if��� is balanced
or not. The proof that of the order of� bits of communication are necessary without
quantum resources is rather involved and can be found in the original article. The expo-
nential separation by Andris Ambainis, Leonard Schulman, Amnon Ta-Shma, Umesh
Vazirani and Avi Wigderson improves the previous result in that it holds for the more
realistic probabilistic setting.[1] It should be mentioned, however, that the distributed
‘sampling’ problem of this article lies outside the standard communication model: it is
a not a decision problem, but a multi-valued function instead.

The strongest separation that we currently have was established by Ran Raz in
1999.[57] The problem that is analyzed in this article is defined follows. Alice receives
a unit vector�� � �� and two mutually orthogonal subspaces	�, 	� � �� . The input
of Bob consists of a rotation

� � �����. The question that Alice has to answer now
is: “Is

� ���� an element (within some error margin) of	� or of 	�?” The input for
both parties consists of�	 real variables. In the approximating variant, each variable
is described by������� bits, which leads to a total input size of���	 �����. The
restriction on the inputs is the promise that

� ���� will lie in either	� or 	�, but not in
both. Using teleportation, it is reasonably straightforward to design a quantum protocol
with complexity

����� �� for this problem. The significance of Raz’s work lies in the����� lower bound he obtains for the probabilistic, classical procedures.

Section 10.2 Open Problems and Future Research

An important open problem in the theory of quantum communication is the poten-
tial difference between the qubit and the entanglement model of communication (cf.
Section 4.10). We know that every qubit of communication canbe simulated with an
entangled pair and two classical bits of communication, butwhat about the inverse of
this simulation? Is it always the case that� bits of communication in combination with
a potentially unbounded amount of entanglement can be converted into a protocol that
uses

���� qubits of communication but no prior entanglement? If thereexists such a
conversion, then the qubit model and the entanglement modelare effectively the same.
But if this is not the case, then we have to conclude that the quantum complexity of a
distributed function consists of two distinct components:1) the amount of prior entan-
glement, and 2) the number of communicated bits, where the first can be much larger
than the second.
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We already mentioned the almost quadratic reduction in complexity for the DIS-
JOINT function. This result is especially interesting as this function plays a role in
communication complexity comparable to the SATISFIABILITY problem for computa-
tional tasks. In [4], it was shown by Babaiet al. that it is a complete problem for the
communication class co-NP��. Hence, the natural and open question of whether there
exists an

����� �� quantum protocol for the DISJOINT problem is equivalent to asking
“NP�� �BQP��?”, where we already know that NP�� ��BPP��.

This brings us to the most prominent open problem in in the field: Does there exist
an exponential separation between probabilistic classical and quantum communication
for a function without a promise?We know by the work of Bealset al. that in the
black-box model of computation there can only be a polynomial difference between
classical and quantum computers.[5] One wonders if this also holds for communication
problems, and if so, if the ‘lower bounds by polynomials’ methods of this publication
also translates to our setting. Recently, Harry Buhrman andRonald de Wolf have made
a significant first step in this direction[18]. Yet it is stillunknown how far nonlocality
will take us from traditional communication.

Section 10.3 Thresholds for Experimental Implementations

Our last discussion in this thesis will be about the experimental feasibility of simple
quantum communication protocols. Various experimental results have already con-
firmed the nonlocal predictions of quantum mechanics.[3, 27, 65] More recent ideas
like superdense coding or teleportation have also found their way into the laboratory.
(See [11, 13, 28, 44] for some examples.) It is therefore natural to wonder if it is pos-
sible with current technology to implement the protocols ofthis thesis, and what the
criteria are for a ‘successful experiment’.

In communication complexity theory, we compare procedureson the basis of the
amount of information that the parties have to exchange to solve a distributed task. This
has the fortunate consequence that we are not concerned withthe possibility of ‘some
kind of hidden signaling between� and�’, and hence with the criterion of space-like-
separation for the measurements	� and	�. It is perfectly in order for Alice and
Bob, to have received the prior entanglement and the data a long time before the actual
execution of the protocol. The only resource that counts in the context of this thesis
is the number of (quantum) bits that the parties have to communicate. Hence, we can
safely disregard the potential ‘hidden’ communication between the entangled quantum
states. Not because it cannot occur, but because it does not count.

The detector efficiency, on the other hand,doesplay an important role. It increases
the complexity of the quantum protocol if Alice sometimes has to inform Bob that her
photon detection failed and that the experiment has to be repeated. Assume, for exam-
ple, that the error-rate of the detector is so high, that there exists a classical model for
the experiment that gives the same predictions (see [52] foran explanation of this pos-
sibility). Then, by the same token, there also exists a classical procedure that achieves
the same correctness ratio as the quantum protocol. Hence, the existence of such a
‘detector loophole’ indicates that the quantum mechanicalexperiment does not give an
improvement of over the classical lower bound. In the next sections, we derive some
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thresholds for the error-rate of the detectors and the noiseof the entangled states, that
truly separate quantum communication from its classical pendant.

Section 10.4 Thresholds for a One Bit Protocol

Consider the two-party protocol that uses one bit of communication and an entangled
pair

��� � ��	 ����� � �����. (See, for example, the protocols of Chapter 5 or Sec-
tion 8.8.) Let

�
� be the success rate of the quantum procedure under perfect conditions,

which is higher than the classical bound
�
�
. We will answer two questions for this set-

ting: “What is the amount of noise that we can allow for�?” and “What efficiency is
required for the detection or measurement of the qubits?”

Section 10.5 Noisy Entangled States

Let
�� � �� be the probability that Alice and Bob have a random� qubit state rather

than the desired entangled pair�. The density matrix�� of this mixture reads in the
computational basis as

���� � ��� �� �
�
���

�� � � �
� �� � �
� � �� �
� � � ��

�
��� � � �

�
���

�	 � � �	� � � �
� � � ��	 � � �	

�
��� �

The expected probability of success,
� �
�

, for the quantum procedure with this noisy
state is�

�
� � ���	 (under the worst-case assumption that the quantum protocolwith

the completely noisy state corresponds to a coin flip, and hence has an error rate of
���

). By the equation
� �
�
� �

�
, this gives the threshold on the quality of the state��

of

� �
�
�
�

�	�
� �

�	 �
As an aside, it is interesting to combine the�-threshold with the observation in Sec-

tion 2.2 that for�
� �� the state�� is disentangled. If this is the case, then the quantum

protocol can always be simulated by a classical procedure using the decomposition in
tensor-products of the state��. Hence we have also a bound on how much

�
� and

�
�

can differ:
�
� �

�
�

� ��
�
� �.

Chapter 5 gave the example of a function for which
�
� � �	 � ���� and

�
�
� �
� .

These values give us the criterion� � ��	 � ���� for the purity of the state�. This

is definitely feasible for entangled photons, for which� rates close to
���

are already
possible.

Section 10.6 Inexact Measurement Devices

An apparatus that tries to implement a measurement can have two kinds of errors: it
gives a random answer, or it gives no answer at all. (The advantage of the second
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is that the party then at least knows that something went wrong.) The probability of
an incorrect answer can be rephrased as a perfect measurement on a noisy state, the
case which we analyzed in the previous section. A faulty measurement that produces
a random outcome with probability

����� is equivalent to a perfect measurement on
the noisy state��. If we combine such an imperfect measurement device with a noisy
states��, we get a total eta factor of� � � � 
.

Now we will focus on the second scenario, where there is a probability
����

� that
a party is not able to read out the (otherwise perfect) measurement outcome. This gives
the probability�

	
that the protocol is executed without any problems,�� �� � �

� that
one of the parties does not measure an outcome, and the remaining

��� �
�	 thatboth

parties do not obtain a measurement result. When a detectionerror occurs, Alice and
Bob can adopt the strategy that they try to execute the best possible classical procedure
as an alternative. This back-up plan will have a correctnessprobability of

�
�

in the
case that both sides have such an error (the probability

��� �
�	). If only one party has

a problem with his or her measurement, then the protocol willcorrespond again to a
blind guess. The overall success of this approach is thus calculated by� �

�
� �

	 ��� � ��� �
�	 ��

�
� �

��� �
��

leading to the lower bound for the ‘visibility’ of the qubits

� �
��

�
� ��

� � �
�
� � �

For the earlier
�
� � �	 � ���� and

�
�
� �

� , this gives the threshold of� bigger than
��� � � � ����. For photon detections, the detector efficiency threshold is by far the
most problematic as state-of-the-art experiments are still limited by a� of the order of
�� to ���.

Section 10.7 Conclusion

In this thesis we saw how one can translate the nonlocal phenomena of quantum physics
into communication protocols that are more efficient than classical procedures. These
results highlight the differences between classical and quantum information in way
similar to that of quantum computation.

The implementation of a quantum protocol that is truly more efficient than any
classical procedure is problematic because of the detectorinefficiency of our current
measurement devices. But, as for the detector loophole for nonlocality experiments, it
is not inconceivable that in the near future a sufficiently reliable measurement device
can be employed to overcome this barrier.

It is debatable if quantum communication will ever reach thestatus of a ‘commer-
cial application’. But even if it does not, its ideas will still remain a powerful tool to
underline, explain and investigate the differences between a universe that is governed
by classical laws and the one that we are living in.
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Appendix to Holevo’s Bound

‘Holevo’s bound’puts a limit on the amount of classical information that can be trans-
mitted with quantum signals. One consequence of this celebrated result is the observa-
tion that a�-dimensional closed quantum system can carry no more information than a
classical system of the same dimension:��� � bits. More precisely, Holevo’s theorem
establishes an upper bound on the mutual information� �� � �� between the source
Bob and the receiver Alice according to� �� � �� � ����. (See [25, 61] for the notion
of ‘mutual information’.) This bound

���� is calculated as follows.
By � � ���� ������, we indicate a source that transmits its codewords�� with

probability��. The ‘average’ codeword for such a� is thus expressed by� �������.
With this �, thechi quantity of a source is defined by

���� � ���� �� �� � ������
where

�
denotes the Von Neumann entropy of a quantum mechanical mixture.

Before we extend this result, we will first take a closer look at the above theorem
and try to understandwhythe information transfer is bounded by the difference between
the two terms

�������� and�� �������.
Section A.1 Information Transfer with Quantum States

Bob can send information if he is able to change the state of Alice in such a way
that she on her side can detect this change. The bigger the state space of the change
is, the more information can be transfered by it. This is captured by the positive
term “

������ � ��� � ����” in Holevo’s bound, which expresses the randomness���� that Bob can cause on Alice’s side. Here we already see that the information
transfer is fundamentally bounded by the dimension of the system (because

���� �����Dim
����), independently of the number of messages�� that Bob uses. This phe-

nomenon is most clearly at work when we allow the whole continuum of one-qubit
states������ � ���� � � ���. Such a source gives an uncountable infinite set of
possible signals that Alice can receive, yet she will not be able to infer more than
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one bit of information per received signal from it. This is due to the small distin-
guishability between most of the messages: on paper it may seem that

��� � ��� and��� � ��� ���� ���� � ��� ���� ���� are very different, but the physical reality is that they
are very similar. In every possible situation (allowed by quantum mechanics),� will
behave almost the same as

�
. It is therefore very hard for Alice to discover which one

of the states she has received. All this is captured by the small entropy of the equal
mixture

���	 ������ � �	 ����� �� � �������.
The second, negative, term in Holevo’s bound tells us that the randomness

���� has
to be related to the probabilities�� for the different messages, and not the individual
entropies

�����. It is not sufficient for Bob to cause a big random effect on theother
party’s side. For if he wants to convey a message

�
, there also has to be a strong,

detectable correlation between the
�

and its carrier��. Such a correlation is indicated
if the randomness of� disappears when we know the index

�
that Bob has used. But if

the signals�� by themselvesare very random,i.e. their entropies
����� are high, then

this will decreasethe effectiveness of the source� � ���� �����. This justifies the
subtraction of the sum�� �� ������.

Section A.2 Holevo’s Bound versus Superdense Coding

Is superdense coding not a violation of Holevo’s bound? Are we not using one qubit to
transmit two bits of information? No, we are not. It is true that Bob only sends a single
qubit to Alice but this signal is part of a bigger four-dimensional (�-qubit) system that
cancarry the two bits of information. This is again an example where we have to pay
attention to the fact that entangled qubits should be viewedas a single system.

But is it then also possible to come up with a protocol where the parties initially
share� entangled pairs, where after the transmission of one qubit more than two bits of
information has been communicated? The following extension of Holevo’s bound by
Michael Nielsen tells us that this is not possible and that superdense coding is indeed
the best we can do.

Section A.3 Holevo’s Bound in the Presence of Entanglement

How much can the mutual information� �� � �� of Alice increase if she receives one
qubit from Bob? Let� � ���� ������ (with the average state� � �� ����) be the
situation before the communication of the qubit�, and�� � ���� ������ (with �� ��� �����) the situation afterwards. This�� is the joint system of� and �, hence we
can use both the subadditivity rule and the Araki-Lieb inequality[2], which tell us that��� � ����� � ����� � ��� � � ���� for quantum systems

�
and�. In our case�

is Alice’s initial state�� and� is the single qubit�� (with
� � ����� � �), implying

the bound
����� � ����� �� �� ������� (A.1)

� ����� � �� �� �� � ����� � �� � ���� � �� (A.2)
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where the square brackets indicate the application of the subadditivity/Araki-Lieb re-
sult.

Besides the above scenario, other activities during a quantum communication pro-
tocol are: 1) unitary operations on Alice or Bob’s side and 2)the communication of
quantum information from Alice to Bob. The entropy

�
of a quantum system is in-

variant under unitary transformations, and it also known that tracing out a qubit (which
is what effectively happens on Alice’s side when she sends a qubit to Bob) cannot in-
crease the value of

�

. We have thus reached the conclusion that the mutual information
on Alice’s side,� �� � ��, can only increase if she receives a qubit from the other
party, and that this increase per qubit is bounded from aboveby � bits. This bound is
obtained if� and� share initial entanglement and use the superdense coding protocol
from Bob to Alice to send information.

Furthermore we can also analyze the scenario where the parties do not share initial
entanglement. This can be rephrased as the situation where Alice starts with a fixed
pure state�� and hence with

����� � �
. This term

����bounds the mutual information
from above by� �� � �� � ���� and can only increase with one bit when Alice
or Bob sends a qubit to the other party. Therefore, in this setting the total amount
of communication has to be at least� bits if Alice wants to obtain� bits of mutual
information from Bob. This result will be clarified for two standard protocols.

Classical communication from Bob to Alice: Alice starts with a zero register�� and
every time Bob sends her a classical bit of information, the chi factor increases
with one bit as

����� � ���� � � and���������� remains zero. After� bits of
communication, this establishes� �� � �� � �.

Superdense coding from Bob to Alice:First, Alice distributes�	 entangled pairs be-
tween her and Bob (we assume that� is even). This requires�	 qubits of com-
munication from� to � and yields the intermediate situation on her side with���� � ��������� � �	 and hence

� � �
. After that, Bob uses the entangled

pairs for superdense coding, thereby reaching the bound of Equation A.2 and
communicating� bits to Alice.

The main implication of this is that even if Alice is allowed to send out an unlimited
amount of qubits (to create entanglement between her and other parties, for example),
it will still be necessary for� to send��	 � qubits back to� to convey� bits of in-
formation to her. This immediately puts a limit on the usefulness of entanglement for
information transmission: the factor� reduction of superdense coding is the highest
possible.

This result is an expansion of Holevo’s bound, as it encapsulates a more general
setting where two-way communication is allowed between� and� instead of the one
way communication of the earlier theorem.
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