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Abstract

This thesis discusses the connection between the nonlebavior of quantum me-
chanics and the communication complexity of distributeshpatations. The first three
chapters provide an introduction to quantum informaticeotly with an emphasis on
the description of entangled systems. The next chapteslabkow to measure the
complexity of distributed computations. This is expredsgthe ‘communication com-
plexity’, defined as the minimum amount of communicatioruiezd for the evaluation
of a function f (z,y)—a communication necessary because the input stureysdy
are distributed over separated parties. In the theory aftgmacommunication, we try
to use the nonlocal effects of entangled quantum bits toaedommunication com-
plexity. In chapters 5, 6 and 7, such an improvement ovesidascommunication is
indeed established for various functions. However, it #ahown that entanglement
does not lead to a more efficient calculation of the inner pevbdunction. We thus
reach the conclusion that nonlocality sometimes—but neaps—allows a reduction
in communication complexity. This subtle relationshipvbe¢n nonlocality and com-
munication vanishes when we consider ‘superstrong’ caticeis. We demonstrate that
if a violation of the Clauser-Horne-Shimony-Holt ineqdnakvith the maximum factor
of 4 is assumed, all decision problems have the same trivial &ty of a single bit.
The thesis concludes with an overview of the current statgs@antum communication
theory, and a discussion of the experimental feasabilith@kuggested protocols.
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Preface

This is the D.Phil. thesis of Wim van Dam. It contains the wibrét | did as a graduate
student under the supervision of Artur Ekert at the Centr&)i@antum Computation,
University of Oxford.

The main part of this thesis deals with the investigationudmtum communication
protocols that have a smaller complexity than any possilalesical protocol: that is,
gquantum communication complexity. This advantage of quardver classical is made
possible by the nonlocal correlations, which can be estiabd with entangled quantum
bits.

The first four chapters of this thesis are of an introductature. In them, | give
a brief overview of, respectively, quantum informationagtum communication, non-
locality, and communication complexity theory. Chapterifeg an example of two
gquantum communication protocols that have a reduced cotibyplghen compared to
classical procedures. The results of this chapter are ibesicn

¢ “Quantum entanglement and communication complexity”, arrd Buhrman,
Richard Cleve, and Wim van Dam, Technical Report RS-97-4BénBRICS
Research Series, University of Aarhus; quant-ph archaggnt no. 9705033,

where the phrasing of the quantum protocol is due to the auwtttbis thesis.
The 6th chapter generalizes the above protocol to the ranfjisetting. It was
published earlier as a part of

e “Multiparty quantum communication complexity”, by HarryuBrman, Wim
van Dam, Peter Hgyer, and Alain Tagphysical Review Avolume 60, No. 4,
pp. 2737-2741 (1999); quant-ph archive, report no. 9710054

The proof method of the classical lower bound is my main ¢bation to this article.
Together with Lucien Hardy, | published the paper that icdbed in Chapter 7,

¢ “Quantum communication using a nonlocal Zeno effect”, kemcHardy and
Wim van Dam Physical Review A/olume 59, No. 4, pages 2635-2640 (1999);
guant-ph archive, report no. 9805037.

It shows how the quantum Zeno effect of an entangled pair bftgican be used to
reduce the error in a one-bit communication protocol. Thévdgon of the minimal
classical error rate is by my hand.

page 4



Chapter 8 shows that there are distributed functions thatad@llow a reduction
in complexity by the use of entanglement. The analysis oftéh@bit case is my
contribution to this part, with the corresponding publicat

¢ “Quantum entanglement and the communication complexitphefinner prod-
uct function”, by Richard Cleve, Wim van Dam, Michael Nigiseand Alain
Tapp,Proceedings of the 1st NASA International Conference om@uma Com-
puting and Quantum Communicatigns Lecture Notes in Computer Science,
No. 1509, (editor: Colin P. Williams), Springer-Verlag,ges 61-74 (1999);
guant-ph archive, report no. 9708019.

The last chapter before the Conclusion discusses the coasees of superstrong
nonlocality for communication complexity. This work wilebpublished in the near
future as a single author article.
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Section 1.1

Chapter 1

Introducing Quantum
Information and
Communication

In this thesis we investigate the theory of quantum infofamaand communication.
The current interest in this field is fueled by the discovérgttthe use of quantum
mechanical processes provides us with an advantage oveadhitional, classical ways
of manipulating information. In this chapter | will introdea the notion of ‘quantum
information’, and the standard notation as it will be usewdghout the rest of the
thesis.

Modeling Information

The term ‘bit’ stands for ‘binary digit’, which reflects thadt that it can be described
and implemented by a two-level system. Conventionall\séitevo levels are indicated
by the labels “zero” and “one”, or¥” and “1”. If we want to capture more than two
possibilities, more bits are needed: wittbits we have2” different labels.

The abstraction from two-level systems to the séb, 1}* of size2* takes us away
from the physical details of the implementation of a pieceneimory in a computer,
and instead focuses on a more mathematical descriptioriayfiiation. This ‘physics
independent’ approach to standard information theory leas lextremely successful
in the past decades: it enables a general understandingmfutational and commu-
nicational processes that is applicable to all the diffeveays of implementing these
processes. It is for this reason that the Turing machine hafd®mputation gives an
accurate description of both the mechanical computer stgdéy Charles Babbage
and the latest Silicon based Pentium Il processors, degpgir obvious physical dif-
ferences. This does not mean that Turing’s model ignorepltigsical reality of build-
ing a computer, on the contrary. The observation that it eéel unphysical to assume
an infinite or unbounded precision in the components of a edenps expressed by
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Section 1.2

1.2. QUANTUM INFORMATION

Turing’s rule that per time-step only a fixed, finite amountofmputational work can
be done.[63] The proper analysis of algorithms in the thedrgomputational com-
plexity relies critically on the exclusion of computationaodels that are not realistic.
Such models often give the wrong impression that certainpticated tasks are easy.
(A good example of this is the result that the factorizatibintegers can be done in
polynomial time if we assume that addition, multiplicatiand division of arbitrary
big numbers can be done in constant time. (See Chapter Exedcise 40 in [40] and
[60].) There is, however, also a danger with this axiomgitiraof the physical as-
sumptions in information theory: believing that the asstiomns are true. This is what
happened with the traditional view on information, forgotwere the implicit clas-
sical assumptions that ignore the possibilities of quantugehanics. The realization
that quantum physics describes a world where informatidrabes differently than in
classical theory led to the blossoming of several fields—tiwa information, quan-
tum computing, quantum communication, et cetera. In thesithl will focus on the
differences in communication complexity between a cladsiod a quantum model of
communication. Before doing so, it is necessary to definet wieamean by quantum
information and communication.

Quantum Information

Atthe heart of quantum mechanical information theory lressuperposition principle.
Where a classical bit is either in the state “zero” or “onefjumntum bit is allowed to
be in a superposition of the two states. A qubit with the labisltherefore described
in Dirac’s bra-ket notation by the linear combination:

lg) = «|zero”) + 3

uonel!> ,

where for the complex valued amplitudess € C, the normalization restrictioja|? +
|3]? = 1 applies. In this formalism, the state space of a single gsHiuilt up by
the unit vectors in the two-dimensional Hilbert spd¢g. For k qubits, there ar@*
basis states and hence the corresponding superposititinémacombination of a*
possible strings of bits:

g @) =Y aili).

1€{0,1}*

Againitis required that the amplitudes obey the normalization condition, |a;|* =

1. (In Section 1.4 we will see the reason behind this stipoita}i The state space of
k qubits is thek-fold tensor product of the state space of a single qubits Space is
identical with a singl@*-dimensional Hilbert space:

|q1---qk) € H2®"‘®H2:H2k.

For our purposes we will only use finite sets of quantum bitsth&re is no need to
look at infinite-dimensional Hilbert spaces.
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Section 1.3

Section 1.4

1.3. TIME EVOLUTION OF QUANTUM BITS

Time Evolution of Quantum Bits

Quantum mechanics only allows transformations of statasdre linear and respect
the normalization restriction. When acting onmadimensional Hilbert space, these
are then x n complex valued rotation matrices that are norm presening unitary
matrices of Un). Itis easy to show that this corresponds exactly to the requént that
the inverse of/ is the complex conjugat®t of the matrix. (The complex conjugate
is defined byUt[r,c] = (Ule,r])*, whereM['row’, ‘column’] is used to denote the
different matrix entries.)

The effect of a unitary transformatiéhon a state: is exactly described by the cor-
responding rotation of the vectfx) in the appropriate Hilbert space. For this reason,
“U” stands both for the quantum mechanical transformationelbas for the unitary
rotation:

Ulz) = U(Zam’)) = ZaiUﬁ) = ZaiZU[j,iHj).

It follows from the associativity of matrix multiplicatiotihat the effect of two consec-
utive transformatio/; andUs is the same as the single transformatioh - U, ). Just
as matrix multiplication does not commute, so does the astlarsequence of unitary
transformations matter: in genef@U; # U,U>. We can restate this in a more intu-
itive way by saying that it makes a difference if we firstidpand ther/,, or the other
way around. (A convincing example is that of the two actiocadd five” and “multiply
by two”.)

Measurements

When measuring the state) = ). o;|i), the probability of observing the outcome
“i” equals|a;|?. This explains the normalization restriction on the anuplés: the
different probabilities have to add up to one. But what dydsta ‘measurement’ and
an ‘observation’, and how do we describe this mathemayiealhese are thorny issues
that this thesis will leave untouched. Here we will only givBarmal description of the
measurement process and a short explanation of why thislisssproblematic part of
quantum mechanics.

The possible outcomesg™of = correspond to a set of orthogonal vectéps:;) };
of the measuring device. This device can be our own eye or $amaeof machine,
but the crucial point is that ‘measuringimplies ‘interacting withz’. The effect onz
of such a measurement is that the stabapsesaccording to the outcome™ of our
observation. This is described by the transformation:

Zaz|z> ~“outcome i |Z> (1.1)
1

The collapse as described above is a non-unitary transfanma his is typical when
we try to describe the behavior sfas it interacts with a system that lies outside of the
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1.5. LIMITATIONS OF DIRAC’S KET NOTATION

state. (We say that is an ‘open system’.) When we viewand the measurement de-
vice togetherduring the observation, the evolution becomes unitaryragaur current
example is then described by the transformation:

) aili) ® |measurement devige — Y a;li)|outcomen;).

K2 K2

The problem with this last description is that it no longegzdfies the specific outcome
“i” that we seem to observe. It is here where the debate om#dasurement problem
starts and our discussion ends.

For the purposes of this thesis it is more convenient to useethminology of the
collapsing quantum state. We will therefore describe tfecebf a measurement as in
Equation 1.1 for practical reasons. (This does not imply ltheally think that there is
such a collapse, but this issue are not the topic of this testhis thesis we are mainly
interested in the differences between the classical angubhetum mechanical theory
of information. These differences, expressed in proli#dslet cetera, are independent
of the viewpoint that one has on the measurement problem.)

We just described the traditional ‘Von Neumann measuremérdgre we observe
the stater in the canonical basis spanned by the basis veéto@ther, more subtle,
measurement procedures are also possible by choosing andmer-complete basis.
We will postpone the description of these two options thenpaihen we discuss the
density matrix formalism, which is more suitable for the geat theory of interacting
quantum mechanical systems.

section 1.5 Limitations of Dirac’s Ket Notation

The braket notation that we discussed above is tailor-madaé description of closed
quantum mechanical systems. By this we mean the evolutistatés that do not
interact with an exterior environment. When we also wantesider the behavior of
open systems, the ket-notation becomes less suitable wBsislready obvious in the
discussion of the measurement procedure where we had toe@xpea set of unitary
operations with a probabilistic procedure that ‘collapsies quantum state to one of
the basis states. One cannot help but feel uncomfortablet étis sudden change of
rules: is it not possible to deal with open and closed quarsystems in the same way?
Luckily, we find in the formalism of density matrices a pogitanswer to this question.

section 1.6 Density Matrices

An n-dimensional pure state can be expressed as a normalized vegtdrin the
Hilbert spaceH,,. The complex conjugate:)® of this vector is the brdz|, which is
an element of the adjoint spag#,. By taking the direct product between the ket
and the brgz|, we thus obtain an x n complex valued, Hermitian matrix: thiensity
matrix of z.
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1.6. DENSITY MATRICES

As an example, for the stae) = >, a;|i), the density matrix is:

|z) (x| = (Zaim) Za;m = Zaia;mm-

In the case of a single qubit with the ket descriptign= «|0) + ]1), this leads to the
2 x 2 matrix in the standard basis

2 *
o = |l o]

From now on, the density matrix of the statavill be denoted by the same symbol
z, and the fact that a matrix is a density matrix will be indézhby its square brackets.

The great advantage of this formalism is that it also allowesdescription of an
ensemblef pure quantum states. If we have such a statehich is a probabilistic
mixture of the pure statgs;) with probabilitiesp;, then the matrixp is the weighted
linear combination of the corresponding pure states nmestyic

p = Zpt ) (@],
t

with p, > 0and}_, p; = 1.

Every density matrix that can be written as such a convex aoetibn of pure
states is a legal, or ‘allowed’, state, where allowed me&amwed by the laws of
quantum physics”. It follows from linear algebra that théstriction coincides with
the requirement that the matrix is a Hermitian, positiveniskefinite matrix with unit
trace.

The spectral decompositionf a proper density matriy is done in terms of its
eigenvalues; and eigenvectorsy, ), by the equality

po= > Mwwil. (1.2)
t

This shows that we can interpretis the mixturd (A, |w))}+, where the states, are
pure and mutually orthogonal.

The above decomposition gives a convenient way of assigningxture to a given
density matrix. It is important to realize, however, thakesmsity matrix corresponds to
a whole family of possible mixtures. Take the two ensemblés |0)), (3, 1))} and
{(3, %(|0) +11))), (£, 2=(]0) — |1)))}, which have the same density matrix:

20 /3
1
tfroj ool _ 50
200 0] 2[0 1 0 1

171 1 17 1 _1

= = —_ | 2 2

J%%M[—% %]

We shall see that this implies that these two mixtures aristindguishable from each
other; it is therefore more accurate and less confusing hsider them as equivalent
mixtures.
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Section 1.7

1.7. SEPARATED SYSTEMS

The density matrix of @ubit p in the standard basis is always of the form

p o
)

po= a 1—p

with the probabilityp betweend and1 and the ‘off-diagonal termja|? < p(1 — p).
If |a|> = p(1 — p) thenp is a pure state withp) = ,/p|0) + 511 (or |p) = [1) if
p = 0); otherwise the qubit corresponds to a mixture.

Separated Systems

We need the technique of density matrices to be able to destire evolution of an
open system. By ‘open’ we mean that there is a possible ictierebetween the quan-
tum mechanical state and its environment, where the infooman the latter is ignored
(traced out). We already saw how a (pure) qubit changed iptbabilistic mixture
after it interacted with a measurement device outside tié gustem.

This thesis analyses the possibilities of communicatidawben remote parties. An
individual party in this setting is therefore an open systenit interacts with the other
participants. Here we will show how we describe local actiand observations in such
an extended environment.

Let A and B denote two separated parties Alice and Bob, each with tkeeggmal
qubits X4 and X B. The joint2-qubit space ofd and B is the tensor product of the
two subspace®{, ® Hpg, which is a4-level system. The question now is: if there
is a stateX 4P that lives in this joint spacé{, ® Hp, how doesA’s part of X 4B
look like? Or more specifically, how do we calculate the Idzad 2 density matrix
X4 from the globald x 4 state X452 The answer is that this is done by ‘tracing
out’ the environment (her8’s part) of the state. The state space ¥ot? is spanned
by the4-dimensional basi& 4# = {|0407), |04157),|1407),|1415)}, which can be
decomposed as the product of the bases of the two subsystetfis= V4 x VB =
{104,114} x {|0B),|17)}. When we want to considet’s part of X 45, we have to
express this in the basis* while ignoringB’s state spac@{z. This is calculated by

X4 = Tracep(X4P) = (0B|X4B|08) + (1B|x4B|1B).

Conversely, if we want to know the state &'s side, we trace outl’s part of the state
space X P = Trace (X 4P).

The above method is easily extended to the general case. jort atate X 45
(whereV B by itself can represent a multipartite system), the dernsigyrix on A’s
side is calculated by performing a partial trace over a cetefasis for the state space
of #p. If {|b;)}; is such a basis, then this is thus done by the calculation

XA = (bl XAP|by).

k3

The experienced reader must have noticed by now that we usé&#am for mixed
states in this thesis that is perhaps unconventional{f is a (pure) distributed state,
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1.8. VON NEUMANN ENTROPY OF MIXED STATES

then X4 will refer to the (mixed) subsystem af’s side. This means that we allow
the symbolsX, ¢ and even¥ to refer to a mixed state. | realize that this is not in
accordance with most of the literature, but it gives us a nmateral way of denoting
the different parts of a distributed system.

section 1.8 Von Neumann Entropy of Mixed States

The eigenvalues; of a density matrix are always non-negative and sum up to one.
If we decompose a mixture into a linear combination of orthreag pure states, then
the \’s will correspond to the probabilities of the respectivgezivectors. (See Equa-
tion 1.2.) Although the eigenvectors of a density matrix ao¢ always unique, its
eigenvalues are. This allows us to unambiguously define/ttreNeumann entropy
S(p) of a state with spectral decompositipr= >, A¢|ws)(w;| by

S(p) = = Alog, A
t

If we calculate the logarithm of a matrix with the Taylor ergion:log(p) = (p—1I) —
$(p—1)*+ £(p— I)® — - -, this can also be written &(p) = —Trace(plog, p).
The Von Neumann entropy(p) reflects how ‘mixed’ or randomis, where pure states
have zero entropy.

section 1.9 Operations on Mixed States

A unitary transformatio/ maps the statgz) to the new pure staté|z). The latter
reads as density matri|z)(x|UT. In the language of density matrices, the corre-
sponding transformatiofy is therefore calculated by ‘sandwiching’ the matrixbe-
tweenU and its conjugaté’*:

U(la)e)) = Ule)(|U".

If we have a mixed state, thenU acts linearly on the eigenvectorsafThe following
equation shows us that this calculation can be done withaving to decomposg,
and that our sandwich expression therefore also holds feedrstates:

Ulp) = 0(2/\t|wt><wt|>
= S Uil
= > - Ulediwlut
= U(th-|wt><wt|> Ut
= U-p-UT.
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Section 1.10

1.10. OPERATOR SUM REPRESENTATION

It is clear that the positive eigenvalugsg of p remain unchanged, and théttonly
rotates the eigenvectots to the new eigenstaté%(wt).

Unitary operations are an example of completely-positiage preserving maps:
every positive, semidefinite matrix is mapped to (anothes)tive, semidefinite matrix,
and the trace of the matrix remains unaltered. Completéigits in combination with
the preservation of the trace, assures us that the resultrahaformation will be a
proper state if we started with a proper one.

Besides the unitary functions, there are other transfaomsithat are possible in
quantum mechanics. Just as mixed states are composed ctai@® so can a positive
map be a linear combination of matrix multiplications siemito the ones we discussed
above. An example of such a non-unitary mapping is the mqoéimorresponding
to a measurement of a qubit in the standard bgis}. This function consists of two
‘projectors’ Py = |0)(0] and P, = |1)(1| that transform a qubjt into a probabilistic
mixture of the state8 and1. Explicitly:

Plp) = P([Z 1a—*pD
_ poqg 1“_*pD+Pl<[Z 1(1—*pD

_|p» O

a 0 1—p |-
We see that the eigenvalues of the new density matriy amed1 — p with the corre-
sponding eigenvectoit8)(0| and|1)(1|. In general, the eigenvalues pfwill change
under this transformation and hence there it is no unitagraton that can establish

the above mapping. In the next section we will give a formalodiption of all trans-
formations, such as the abof# that are allowed by quantum physics.

Operator Sum Representation

The following requirements for an operatbrare necessary and sufficient férto be
a proper quantum mechanical transformation:

1. The mapping® can be written as a set of matricgg}, } with which it maps a
statep to the linear combinatiol,, Ej, - p - Ej.

2. The set of operatofsF; }; has to obey the identity restriction, E,I -E, =1.
(Note the change of order & andE* in the multiplication.)

These two requirements exactly describe the sebafpletely-positive, trace preserv-
ing maps.Complete-positivity means that we require bdttas well its trivial exten-
sionsE @ I to higher dimensions to be positive. This is a stronger darithan
positivity. An example of a positive but not completely-five map is the partial
transposéd’, which is defined byi'(p) = p”.
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1.10. OPERATOR SUM REPRESENTATION

We have truly extended the set of unitary transformatiolsraeasurements by the
above ‘operator sum’ formalism. An example of this is the piag that erases a qubit
and replaces it with the value zero. This non-unitary fuocis the combination of two

operators
- 10 01
= (o) (o))

and has the same effect on every qubihamely

O (P
= (o o) [0 (0 0)-
(6 o) 2500 0)
i L){):O'Sh[lgp :

We previously argued that a measurement has a non-unit@ct ein a state be-
cause we ignored its interaction with an outside systemnis@surement device). This
lesson holds for all allowed transformations:

Every completely-positive, trace preserving transfoiorafZ of a system
H 4 can be viewed as a part of unitary mappiﬁ’@ on a bigger system
Ha ® Hp. ThatE by itself appears to be non-unitary is due to the fact
that we ignore the spack .

It can be shown that for the extension of the system it is saffitdo assume that the
dimension of the appended spd¢g is twice as large as that &f 4, and that its initial
state is|0 - - - 0). Hence, for every allowed quantum mechanical transfoiondti that
acts on am-dimensional system, there exists a unitary matfixe U(3n) such that

B(z) = Traces [UE(a: @08 .- 0B)(05 .- oB|)UiE}

for all z. This is, in more general terms, the difference that we entryaed between
the Equations 1.1 and 1.2. The non-unitary ‘collapse’ aased with an observation,
or any other kind of interaction, is again a unitary transfation when we incorporate
the measurement device into the description of the event.

The converse of the earlier statement also holds: every imgpipat can be writ-
ten as a traced-out, unitary transformation on a largerdtilbpace is a completely-
positive, trace preserving mapping. The reader is refetoetthe standard book by
Asher Peres[53] and the article by Benjamin Schumacheffs® more extended and
rigorous treatment of this ‘operator sum representation’.

page 17



Section 1.11

1.11. AFEW ELEMENTARY OPERATIONS

A Few Elementary Operations

In quantum computing and communication we look at the pdgib of transforming
information as is allowed by the laws of quantum mechanics.udlally decompose
such quantum algorithms in a series of small elementangstegi consist of one and
two qubit operations. The following unitary gates are so camly used that we will
define them here in the introduction; we can therefore thentlusm throughout the
rest of the thesis without having to specify them.

The Not gate: This is the same gate that we know of in classical computatitinthe
additional characteristic that it respects the superjpositf a qubit:

NoT(al0) + 8[1)) = Bl0) +af1).
Phase Flip: The FLIP gate changes the phase of a qubit conditional on its value:
FLIP(a|0) + BI1)) = «a|0) — B|1).

Phase Rotation: A more general phase rotation is provided by thenBE operation
which has a free variablg that determines the angle of the phase change:

PHASE(¢)(a0) 4+ 8|1)) = «a0) +€95]1).
(Note: ALIP = PHASE(T).)

Hadamard transform: This transformatiodd maps the zero and one state to a super-
position of the two basis states:

H|0) = Z5(10)+[1) and H[1) = 5(|0)—]1)).

The Hadamard is its own inversé{ = I) and is often used in parallel on a
k qubit register. Such &-fold application ofH translates the information of a
classical string into the phases of a full superpositionizenck again:

o) HO s 3T (<)),

yE{O,l}k
where(z, y) is the inner product modut®of thek bit vectorse andy.
Rotations: With the rotationR with an anglep, we mean the unitary one qubit trans-
formation:
_ cos¢ —sing
R(¢) = < sing cos¢ > ‘

Controlled-Flip: The controlled-flip is a two-qubit operation that applies th.ip
gate to the target bit, if the control bit equalls’; otherwise it leaves the target
unchanged:

CRLPlz,y) = (=1)"[z,y),
forall z,y € {0,1}.
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Section 1.12

1.12. NO INFLUENCE-AT-A-DISTANCE

No Influence-at-a-Distance
We conclude this chapter by a brief look at the typical exanobh two qubit entangled

state. Letb? be the pure stat@4?) = 75 (100) + [11)). As a density matrix, this
reads in the standard basis:

‘PAB — |(§AB><(§AB| —

= O ON=
OO OO
OO OO
= O ON=

When ‘viewed’ from either side as a subsystem, this pure ftqtials the maximally
mixed qubit:

The complete, entangled state is therefore fundamenté#fiyrent from the tensor
products of its subsystem@“? # &4 @ ®8. In the next chapters we will see how
different these entangled states are from states that camitben as tensor products.
But before doing that, we will finish our introduction with arplanation why entan-
glementcannotbe used for instantaneous information transfer.

Entanglement between Alice and Bob does not allow Bob taéatly influence
the state of Alice’s system. LeX“® be the joint state (and hencé” the system
Alice’s side). Everything that Bob can do with his paf®, can be described with the
operator-sum representation. That this does not effeceAlisystem can be expressed
by the following equations. In the most general setting, thetemX 48 is a mix-
ture of pure state\/A?), where each state can be written as a bipartite superpositio
|XAB) = 3, au| X/ XB). This gives the following summation with probabilities
and amplitudesy;:

O

= O

XAB

> o XX

t
A A
Zpt Z an-ai*j ) |XtiX£><thXt?|
t ij

Zptatia?j : |X£><th;‘| & |X£><Xt?|-

tij

From this expression we can now calculate the density mafriXlice’s subsystem
X4 with the partial trace over Bob’s part. This shows us tNat is independent of

the local transformations that Bob may have applied to his & . For, if we assume
that this action has the operator sum representdiiofp) = 3, Ei - p - E}; then the
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1.12. NO INFLUENCE-AT-A-DISTANCE

‘new’ state X on Alice’s side equals
X4 = Tracep[la ® Ep(X4P)]
= > paviaj; - XX @ Trace [ By (1XE)(XE])]

1
tij

= Zptatia:j : |X£)(X{;| ® Trace
tij

= Zptanaij : |X£><X£| ® Trace [|X£><X£|]

tij

> EXEN(XE|E]
k

(The last step in the above derivation uses the factThate(A - B) = Trace(B - A)
in combination with the restriction that , E,t - Ey = Ip.) Clearly, the final outcome

X4 does not depend on the remote operafipnof Bob, and hence equals the original
stateX 4.
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Section 2.1

Chapter 2

Quantum Communication

The theory of quantum communication looks at the conseqgefar information
transfer if we allow the settings where we can send qubitsusedentanglement. In
this chapter some of the possibilities and impossibilitéguantum communication
are explored. We pay special attention to the procedurdepdaeting quantum states
with classical signals. Also Holevo’s bound on the amourihfdrmation that can be
transfered with quantum signals is discussed.

Entanglement

At the end of the previous chapter, we encountered a combimaf two entangled
qubits distributed over two partiesandB: |® 45) = %(|00)+|11)). Itis impossible
to write this pure state as a tensor product b. Even if we allow a mixture of tensor
products, such a decomposition remains impossible. Wermyhe%qoo) +11))
is anentangled stateMore explicitly, the definition of entanglement is as follew

A bipartite systen¥ 4 5 is separable if and only if it can be expressed as a
mixture of tensor products:

Uup = Zpi'ai®bia
.

wherep is a probability distribution, andi; andb; are quantum states on
A and B’s side respectively.

A state that i10t separablés entangled.

The condition of entanglement is stronger than that of tiaatl correlations. Two
classical bits that are eithéf or 11 (with a 50%-50% distribution) can be written as
the unentangled mixturg|00) (00| +3|11)(11|. A system overi andB is uncorrelated
if it can be written as a single tensor prodact b with againa andb (mixed) states on
A andB’s side. Itis the difference between th{\%" amplitudes of the entangled state

and the 50%’ probabilities of the classical correlation that plays adal role here.
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2.2. AN EXAMPLE: WERNER STATES

The question of how to decide, with an efficient procedurestiver a mixed state is
entangled or not is still unresolved.[36, 37, 54] Although ave a clear definition of
what it means for a state to be separable, it is still not dlearto search the continuous
space of possible decompositions p; - a; ® b; with an algorithm that always gives a
reliable answer. This is not only due to the finite precisibthe algorithm, but, more
important, also to the fact that we do not know when we can stapsearch for an
unentangled decomposition.

Here we will limit ourselves to an example for the entanglatrad two qubits in
the presence of noise: the Werner states. After that, wérzantvith a description of
the protocols fosuperdense codingndteleportation which highlight the usefulness
of entanglement for purposes of communication.

secton2.2  An Example: Werner States

We will use the family of Werner states[66] to clarify thefdiience between classical
and guantum correlations. The stfe = %(|00) +|11)) is entangled, whereas the
two random bits ar%] not even correlated. Hence, if we consider the one parameter
family @ = X\ - & + % -Ifor0 < A < 1, we cover the whole spectrum from
uncorrelated bitsX = 0), to maximally entangled qubita (= 1). The critical point for
®* to be an entangled state)is= % We will prove this in two parts: the separability
of @ if A < £, and the entanglement & for everyX > .

Define the following six qubit state§() = |0), |¢;°) = [1),|¢F) = %(|O)i|1)),
and|(j) = \%(|0) +i|1)). The reader is invited to check for him or herself that we

can decompos@(/?) into a sum of zeta tensor-products:

<1>(§) -

o= O Owli
O Oolm O
Oalm O O
wim O ool

= (oG +G oG +G G +¢G G+ oG+ el),

hence®(1/3) is separable. From this it follows that for any< 1, ®* is a mixture of
two disentangled state@* = 3 - ®(1/3) 4 1=31 . 1,

The case when is bigger tharé— is analyzed with inseparability criterion of Asher
Peres[54]. This sufficient condition tells us that a bigarstatep*? is not separable if
the ‘partially transposed’ matriéf A® TB) pAB has negative eigenvalues. The reason
for this is the following. If the matrix® represents a valid state, then so does its trans-
poseT'(p?) = (pP)T. Hence, for every disentangled stat® = 3. p; - p/* @ pP,
the partially transposed matrix_; p; -pt @ (pP)T will also correspond to a proper
state. If this is not the case—if the transposed matrix hgstie eigenvalues—then
we can conclude that the original matrix cannot be writtea sasm of tensor products,
and hence that“® is entangled. It is straightforward to verify th&t has negative
eigenvalues under the transformatﬁm@ TB if A > % This concludes our proof that
the mixtured* = \- & + % -Iis entangled if and only it < A < 1. (Another proof
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Section 2.3

2.3. SUPERDENSE CODING

of the entanglement gb* can be given in terms of ‘distillable entanglement’. This is

done in [10], where it is shown how one can create near pegfgeingled states from
an unlimited supply of* pairs, under the assumption that> 1.)

Superdense Coding

The procedure of superdense coding shows us how we can itangnbits of infor-
mation with only one qubit. This result was published by G#mBennett and Stephen
Wiesner in 1992[8], and was one of the first examples of ‘ggitament enhanced com-
munication’.

Take two parties Alice and Bob4(and B) that want to communicate with each
other. More specifically, Alice wants to send two classidéd bf information to Bob
with a minimum amount of effort. The setting is such that tive parties initially
share one entangled pair of qublis 5 = %(|OO) + |11)), and that Alice is allowed
to use qubits for her signal, rather than classical bits. foewing single qubit pro-
tocol establishes th2 bit transmission. (The bits that Alice wants to send arel&be

(z,y). The NoT and R.IP operations are unitary, one qubit transformations, defined

by NoT(a|0) + 8]1)) = 8|0) + a|1) and RLIP(a|0) + B]1)) = a|0) — B|1).)

1. Depending on the andy values, Alice performs the unitary operatiooi¥ -
FLIPY to her qubit® 4 of the entangled pai® 4 5. (The qubit that is the result of
this transformation is indicated By’ .)

2. Next, Alice send her qubit to Bob.

3. Atthis stage, Bob, who now possesses both the @iffiand® 5, measures this
entangled pai’’; in the four-dimensional basis

{|boo> = 2000y + 1), f) = 2(00) - [11)),
bio) = (00 +[10),  [bu) = Zx(01)— [10)).

Itturns out that the label of the outcoriie of this measurement tells Bob exactly

which bitsz andy Alice wanted to convey, as he will always meashyg

The correctness of this protocol is best proven by a caseabg-analyses of all four
possibilitieszy € {00,01,10,11}.

1. If zy = 00, then Alice did not change her qubit and hence the pair thét Bo

possessed before the measurement was infE¥g) = %(|OO) +]11)) =
|boo) -

2. If xzy = 01, then the EIP action by Alice corresponded to the joint transforma-

tion FLIP ® I> on the pair® 4, yielding the pure stat%qoo) —111)) = |bo1).

3. Inasimilar way, does the®ir on Alice’s side (the casey = 10) and the identity
on Bob'’s side give the entangled pair'’;) = |b10).
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2.4. TELEPORTATION

4. The combination of Eip and NOT on® 4 results in the stat@bll,;) = %(|Ol)—

|10)), which can be detected wittD0% reliability, corresponding to the right
answerry = 11.

As the fourb states are mutually orthogonal, no confusion over the an#cis neces-
sary if we assume that Alice and Bob are capable of perfectpubation, transmission
and observation of their qubits.

Superdense coding shows us how one entangled pair and oit@fedimmunica-
tion can be used to transmit two classical bits of infornratibhe obvious question is:
Can we improve this result by either increasing the numbditsftransmitted, or by
reducing the resources needed for this protocol? The ariswio, this is not possible.
In the next section, we will collect some of the evidence Fas answer by looking at
theteleportationprotocol.

Secton2.4  Teleportation

How can we get a qubit across? If we have a perfect quantummehaetween two
parties, then we can simply send the quantum informatian fddo B. But what if we
do not have have this possibility and there is only a clabsktannel at our disposal?
The surprising answer is that the reliable transmissionudiitg is still possible if the
two parties share some entanglement between them. In 1983e€Bennett, Gilles
Brassard, Claude Crépau, Richard Jozsa, Asher Peres hiviloBiters showed how
one entangled pair of qubits and two bits of classical conipation are sufficient to
transmit an unknown qubit between two parties.[9] (Note thiaen the properties of
the qubitare known, a classical description of its parameters can bedoasted over
the classical channel and no entanglement is requireds) prbtocol, which has been
coined ‘teleportation’, is in a sense the complement of sigrese coding, which uses
one entangled pair and one qubit of communication to comueydassical bits of
information. The procedure is as follows.

Let Alice have a qubiy that she wants to convey to Bob. Both parties share the
standard entangled pdi 15) = %(|00) +|11)). The parameters of the qubit are
lg) = a|0) + B|1), but are unknown to the parties. Hence a complete classisarip-
tion of the qubit is impossible to obtain. Instead, Aliceluek ¢ interact with her part
® 4 of the entangled paib 4 5 by means of a measurement on the two qubits. The basis
b of this measurement is equivalent to the one that we useckisuperdense coding

protocol:
lboo) = 5(|00) +[11)), lbor) = 5(l00) —[11)),
o) = Z5(101) + [10)), i) = Zs(l01) - [10)).

After this,q and® 4 are ‘collapsed’ according to the outcoig, and Bob’s qubit
is no longer entangled with the system of Alice. Insteadnkis®?/ is correlated with
the initial qubitg and the measurement outcomein the following way:
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Section 2.5

2.5. INFORMATION VERSUS INFORMATION REPRESENTATION

outcomery | Alice’s 2 qubits | Bob's qubit|®7’)
00 boo Ck|0> + ﬂ|1>
01 b01 Oé|0> - ,8|1>
10 b10 ,8|0>+0é|1>
11 b11 ,8|0> —Oé|1>

It is straightforward to verify that for every combinatieg € {0, 1} it holds that
NoT” - FLIPY |®%) = «a|0)+3|1) = |g). (2.1)

After the measurement, Alice therefore broadcasts the tassical bitsz andy to
Bob who then corrects his qubilt; according to Equation 2.1. This completes the
teleportation procedure as Bob has now obtained a qubit tviéhsame parameters
a|0) 4+ B|1), while on Alice’s side no trace of the original qulgtis left. It is an
important aside that during the protocol no informationwhpis obtained: all four
measurement outcomeg are equally likely and independent of the amplitudesnd
5. We also do not ‘copy’ the qubit as Alice loses all her information abogp{see the
next section for an explanation of why this is important).

There seems to be a close connection between superdensg aaditeleportation:
both use the same measurement basis, transformationsgradignts. This similarity
can be used to prove that the two procedures are optimal @sgect to their resources.
But before establishing this result, we need to convinceaues of a some important
upper bounds on the transfer of information with quantumhmaaal means.

Information versus Information Representation

Thinking about qubits as states with complex valued pararaét sometimes mislead-
ing. The uncountably many differemtathematical expressiong0) + 5|1) € H for a
qubit, suggest that a single qubit contains an infinite arhotimformation, which is
not the case. If we have a single copy of a qgbthen only a small amount of informa-
tion about its amplitudes can be obtained via a measurerAdtet. this, the quantum
stateg has changed according to the observed outcome and no mormatfon about
the original amplitudea andg is accessible.

Furthermore, th@o-cloning theorentells us that it is also impossible to copy an
unknown quantum statgin order to obtain the tensor produck ¢.[67] This prevents
us from creating a large set of identigal, which would enable us to estimateand
with arbitrary accuracy.

It is often claimed that the above are typical features ohtua information, but
this is a misconception. To see this, it is instructive tdireahat the same theorems
also hold for classical, probabilistic information. It impossible to infer more than
one bit of information from the mixture = p|0)(0| + (1 — p)|1)(1], although for
every0 < p < 1 this probabilistic bitp is different. Nor is it possible to reliably
clone the unknown stateto p @ p. The conclusion should therefore be that in both
cases of probabilities and probability amplitudes, the asa complex values of the
statedescriptionare highly redundant when compared to the amount of acdessib
information in the state itself.
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2.6. HOLEVO'S BOUND AND AN APPENDIX TO IT

It is the combination of superpositions with the phenomeaoiimterferencethat
makes the crucial difference between classical and quairtformation. The possi-
bility of the superpositions%(m) + 1)) and%@(|0) — |1)) to evolve to the different
pure statef)) and|1) (after a Hadamard transform), somehow suggests that aupnant
mechanical superposition is more ‘real’ than the probstiilicombination of two bit
values. It seems as if for a qulit0) + 3|1), both states are really present, whereas
in the probabilistic case, the mixtup0)(0| + (1 — p)|1)(1] ‘in reality’ has already
decided which binary value it represents. But this does hmwais to confuse a quan-
tum mechanical superposition with its deterministic diggitm as a density matrix on
a piece of paper. Such confusion leads too easily to an diragg®n of the inherent
complexity of a single quantum state.

section2.6  Holevo’s Bound and an Appendix to It

A more accurate analysis on the limitations of qubits toycatassical information is
provided by Alexander Holevo's theorem on quantum souB8&sind an addendum to
this result by Michael Nielsen (see the original [24] anddppendix of thesis).

For the purpose of this thesis we will focus here on the latiat the reader is
encouraged to familiarize him or herself with Holevo’s deésis well as with a recent
generalization of this theorem by Ashwin Nayak[48].

Nielsen’s result reads as follows. If Alice wants to transinbits of information
to Bob andA and B start as unentangled systems, then this can only be donetvith
leastk (quantum) bits of communication between the two partiess Tan be further
specified as a lower bound on the amount of communication Abce to Bob (being
kap qubits), and on the total amount of communicatibpng + kpa. (Wherekp 4 is
the number of qubits that Bob sends to Alice during the pridocThe bounds are in
accordance with what we already know to be possible withslguese coding:

e For the communication from Alice to Bola, g > [%1.
e For the total amount of communicatiohig + kpa > k.

We can reach Nielsen’s bounds if we let Bob distribtuge, (with kg4 < L%J) entan-
gled pairs by sendingg 4 qubits to Alice, who then usdsg 4 qubits for superdense
coding andk — 2kp 4 qubits for traditional communication. For every alloweduea
of kp 4, this protocol indeed usdsig = k — kpa = [%1 (quantum) bits from Alice
to Bob, andk 45 + k4 = k qubits in total.

section 2.7 Optimality of Superdense Coding and Teleportation

A direct consequence of Nielsen’s bound is that when Alicedsé qubits to Bob,
she can only convegk classical bits of information. This, in combination witheth
protocols for superdense coding and teleportation, give$dllowing useful limits:

1. If Alice and Bob share initial entanglement and Alice sehdlassicalbits, then
only & bits of information can be transmitted from Alice to Bob.
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2.7. OPTIMALITY OF SUPERDENSE CODING AND TELEPORTATION

2. Superdense coding cannot be used to transmit more thacdlaasical bits per
qubit.

3. Itis impossible to teleport a qubit with less than two sleal bits of communi-
cation from Alice to Bob.

These three results are easily proven by the strong sityilaetween superdense cod-
ing and teleportation. Respectively:

1. By running two such protocols in parallel, Alice would lBea(using superdense
coding) to replace he2k classical bits witht qubits. Hence we would have a
protocol withk,p = k that transmits more tha2k bits of information from
Alice to Bob. This is impossible.

2. This is a specific instance of Nielsen'’s result.

3. Assume that strictly less thanbits are necessary. For big enoulyhit should
then be possible to telepa + 1 qubits with2V classical bits. Hence, if we
would use theV + 1 qubits as part of a superdense coding procedure, we would
transmit more tha@ NV + 2 bits with2 NV bits of classical information. This is not
possible by the first result.

The preceding sections seems to suggest that the diffebeteeen quantum and
probabilistic bits is ‘a factor of two’ and that teleportatiand superdense coding sum-
marize everything there is to know about (errorless) quardommunication. The fact
that there are many more pages to follow in this thesis itegctat this is not the case.
In the next chapter we will touch on a much discussed featuga@ntum mechanics:
nonlocality. We will see that there is a fundamental differe between the classical
and the quantum theory of information after all, and thaiyiglefinitionthat there is
no classical explanation of the ‘nonlocal’ correlationattare possible with entangled
qubits.
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Chapter 3

Nonlocality

In this chapter the issue of nonlocality is discussed. We labhow local hidden
variable theories put a limit on the correlations that thay describe. The predictions
of quantum mechanics violate these bounds, which tellsatstie theory of quantum
physics does not have a local, probabilistic model. Spetiehtion is paid to the
so-called ‘loopholes’ of experiments that try to verify thenlocality of Nature.

section3.1  Bell's Inequality

It was in 1964 that John Bell gave a new impulse to the disonssih the foundations
of quantum mechanics with his celebrated inequality oflibcfb, 7] Ever since then,
other such inequalities have been derived, correspondiperienents have been per-
formed, and heated debates are still being held about the iexglications of it all. It
is the opinion of this author that the most important thingitmerstand about Bell's
inequality is that does not try to say anything about the the@b quantum physics.
Instead, it puts a general bound on all possible classmedy Imodels for Nature. Af-
ter the derivation of this bound there are two kinds of (gas$iviolations that draw
our attention. The first one is thmathematical facthat conventional quantum me-
chanics gives predictions that are not possible to desuritiea classical model. The
experimental verificatiomf the violation of the inequalities is the second and most
important aspect of Bell's result. It is because of this dicimy between theory and
experiment that the nonlocality of Nature can be verifiretbpendentlyf the validity
of our current theory of quantum mechanics.

section3.2 Classical or Hidden Variables Models

Crucial to a proper understanding of quantum nonlocalithédefinition of what is
meant withclassical locality.In this thesis we adopt the (arguably conventional) inter-
pretation of the terms ‘local, realistic theory’ and ‘hiddeariable model’, which both
refer to the same set of classical assumptions about a sy$teanoid any unnecessary
confusion, we will define these terms below.
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3.2. CLASSICAL OR HIDDEN VARIABLES MODELS

When measuring a physical systefm we observe certain outcomes with certain
probabilities. Without loss of generality we assume heegg tie always have binary
outcomes “yes” 1) or “no” (0). The probability of obtaining the answer “yes” when
performing the measuremeht on systemX is denoted byProb(M|X). A range of
different measuremenfd, M’ ... onthe same system leads to a corresponding range
of probabilitiesProb(M|X), Prob(M'|X), ... We speak of @eterministic systerY
if for each measuremen/,, the outcome is completely predetermined. In this case,
Prob(M,|X) is always an element g0, 1}; and hence, withn different measurement
settings (. = |{ M, }.|), there ar@™ different deterministic systems.

A probabilistic systemX is a mixture of deterministic systeni§; (indexed byi),
with the probability distributiomp: “X = {(p;, X;)};". A measuremenf/ on such
a mixture X will therefore give the answer “yes” with probabilifprob(M|X) =
> pi - Prob(M|X;). (Note that for the distributiom, it holds that) ", p; = 1 and
p; > 0.) Just as the outcomd&&ob(M|X) € {0,1} for deterministic systems are
predetermined, so are the probabilifiteb (17| X ) completely specified in advance by
the distributiorp. This is the ‘realistic’ part of traditional theories: eyaharacteristic
that one can measure about a system is already describagdlis in that system
before the actual measurement.

Consider now a deterministic bipartite systéff'? that is distributed over Alice
(whose subsystem is label&d') and Bob (with hisX #). A model for X 4’s behavior
is considered ‘local’ if nothing outside the measuremetiirsp /4 and the statef 4
can influence the outcome of this specific experiment. Thiamaehat even though
X4 was once part of a larger systelir'?, X4 by itself contains all the information
about the way it will ‘react’ to the measuremevit*. For two different measurements
M;* and M3' there aret deterministic subsystems:. The same applies for exper-
iments done by Bob on his paif”. From this it follows that we havé6 possible
statesX4# = (X7, XP) if X“P has to give a local and deterministic description
for the combinations of separated experimedtg?, MP), (M, MB), (M5, MB)
and (M3', M.P). Note that when we drop the locality requirement, each enyeent
has four possible outcomes, leading to much mdte= 64, different deterministic
models.

A probabilistic bipartite system can again be describedrasaurep of determin-
istic states: X% = {(p;, (X;*, XP))}i;. In such a scenario the probabilities for a
measurememt/4 are calculated by

Prob(MA|X4%) = > pj;-Prob(M*|X}),
ij
and similarly for Bob’s side by
Prob(MP|X4P) = 3 "p;; - Prob(MP|XP).
i.j
The locality restriction does of course not forbid the existe of correlations be-

tween the two parts ak 4%, It is very well possible to construct a distributiprsuch
that

Prob(M# - MB|XAB) #£ Prob(M#|X4B). Prob(MB|X4B),
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If there is a local, realistic theory for a system, then thaawor of this X is
completely specified by its underlying distribution. Suclthaory is therefore also
called a ‘hidden variable model’, where the variables ardeustood to be defining
functionp. Bell's inequality gives us a limit to what is possible witysgems that admit
such a classical description.

section3.3  Two-Party Nonlocality

| will present here the variant of Bell's inequality as it walsrased by John Clauser,
Michael Horne, Abner Shimony and Richard Holt in 1969: thesHinequality.[22]
The traditional labeling with spin directions is replaceittvan equivalent description
in bit values as this is how we will use the result later in thesis.

Consider two separated partidsand B who both receive a subsysted” and
X B, Each side chooses to perform one out of two experimadgs:.or M{* on Alice’s
side, andMP or ME for Bob’s part. This procedure is repeated many times such
that all four possible measurement settings can be examiffedare interested in the
correlated {4 = MP) and anti-correlated(* # M?P) outcomes for those four
possibilities. By using binary values in combination witledulo two arithmetic (with
1@ 1 = 0), we can rewrite these (anti)-correlations as

0 if the outcomes\/4 andM® are correlated,

A B
M=o M o { 1 if the outcomes/4 andM B are anti-correlated.

After a sufficient number of experimental runs, Alice and Bblould be able to esti-
mate the overall likelihood that the outcom¥g! @ Mf equalse -y forz,y € {0,1}.

If the experimental settingsy are chosen at random on both sides, this correlation
equals

i Z Prob(M2 & Mf = zy)

z,Y
= 1Prob(Mg' = MP) + iProb(Mg' = MP) +
LProb(M;' = M) + 1Prob(M{* # MP).

CorrBeu

Assume now that the staf€4? is a deterministic one, and hence that all occurring
probabilities aré@% or 100%. Inspection of tha 6 possible system& 4Z shows that
the valueCorrge will always be bounded byorrl, < 3. (Take, for example,
Prob(M{') = Prob(MP) = Prob(MP) = 1 andProb(M{') = 0, thenCorr =
1(1+140+1) = 2) Allowing the system to be probabilistic (with 42 =
{(pi, X4B)};) does not change these bounds@mrg,;; as the expected value is a
weighted sum of the deterministic cases:

16

prob /v AB _ det AB

Corrggy (X ) = Zpi‘COHBen(Xi )s
i=1

with 3. p; = 1. The conclusion is therefore that for every syst&m? that can be
described by a hidden variable mogethe restriction Corr§® < 3" holds.
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The theory of quantum mechanics surpasses the above boakeliriEtead ok 42
an entangled pair of qubit@4?) = %(m()) —|11)). Let the measuremenid, and
M, be the projection on the respective vector (for both sides):

| Mp) = sin (%) |0) + cos (1”—6) |1) and |M;) =sin (?—g) |0) — cos (?i—g) |1).

It does not involve much mathematics to verify that for thetting, the expected cor-
relations have become:

+ Y2

o=

Prob(Mg' = MP), Prob(Mg' = MP)
Prob(M{* = MP), Prob(M{ # MP)
leading to the combined suiiorry™, = 1 + ¥2 ~ 0.853. This shows that the
theory of quantum mechanics cannot be captured by a classatiel that uses local
hidden variables. A more detailed analysis of what the atuegredients of the above

argument are will be done after the following inequality foore than two parties is
discussed.

Three-Party Nonlocality

The following nonlocality proof involves three parties aadenerally considered more
‘convincing’ than the results of the previous section. Itswatroduced by David
Mermin[45, 46] as a rephrasing of the original four-partaeple by Daniel Green-
berger, Michael Horne and Anton Zeilinger[30].

We will label the partiesd, B andC, and the systems they receixe?, X? and
X respectively. As in the previous example, we allow the pgréints to use one
out of two measurement settingd/§ and M;). This time we are interested in the
correlation term

Corrguz = 1Prob(Mg' @ MP ® M = 0) + 1Prob(Mg' @ MP @ M{ =1) +
IProb(M;' ® M§ @ M{ = 1) + 1Prob(M;' @ MY @ ME = 1),

which is again estimated with the outcomes of many diffeesipierimental runs.

The scenario wher& 48¢ is a deterministic system bounds the possible value of
Corr from above by%, as can easily be shown. Assume a local, deterministicrayste
X that obtains a correlation ratio strictly bigger th%nFor this to be possibleY has
to fulfill the first three clauses of th@orrguz expression, and hence has to obey:

Prob(Mg'|X) @ Prob(MEZ|X) @ Prob(M{|X) = 0
Prob(M{'|X) @ Prob(ME|X) & Prob(MC|X) =
Prob(M{!|X) @ Prob(MZ|X) @ Prob(M{|X) = 1.

By adding these three equalities we can now infer that

Prob(M{|X) @ Prob(ME|X) @ Prob(M{|X) = 0.
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(We used here the fact that all probabilities are zero or enkthusProb(M|X) &
Prob(M|X) = 0 for any M.) This conclusion contradicts the fourth clause of the
GHz-term, proving that for this systeforryy, = 2.

This bound immediately implies that all probabilistic, téh variable models for
XABCg pehavior have to obey the same bound:

Corry®, < 3, (3.1)

By using a three qubit entangled state we can go beyond thisdind, in fact, reach
the maximum possible value

am  _
Corrdy, = 1

Below we will see how the theory of quantum mechanics esthe$ this correlation
factor.

Distribute the three entangled qubjs42¢) = %(|OOO) + |111)) over the par-
ties A, B andC. All three positions use the same projectors for their twesiiae
experiments:

[Mo) = —5(|0) = 1)) and [M1) = 5(|0) —i[1)).

With this set-up, the four correlation values are indee@allal to one:
Prob(M§ © MP © M§ =0), Prob(Mg' @ MP & ME =1)
Prob(M{! ® MP & ME =1), Prob(M{*® MP & M§ =1)

This adds up to the total valueorrgyz = 1, which violates the classical bound of
Equation 3.1.

What do nonlocality proofs tell us about the difference eswthe classical and
the quantum theory of information? We now know that it is stmes impossible to
mimic the joint behavior of entangled but spatially sepadlaqubits with a classical
system in the same setting. This impossibility disappdasilet go of some of the
assumptions in the description of the experiment. In the sestion we will try to get
a better understanding of such ‘locality loopholes’ as Wilsgive us a clearer insight
into the subtleties of the above results.

Locality Loopholes

When is a classical systei“? able to simulate the predictions of quantum mechan-
ics? A partial answer is that this simulation is possible whigs systemX4 has
knowledge about the settinf.? on Bob’s side, or vice versa. This knowledge can
be obtained in different ways, each leading to a potentigtmle for an experimental
verification of Nature’s nonlocality:

No-signaling requirement: It should be impossible foX“ to broadcast any infor-
mation to Bob's side about the measurement seftijjthat it has encountered.
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The no-signaling requirement is fulfilled if both measuremsd/+ andM ? are
space-like separated events in space-time. Speciamisiaiien tells us then that
no information can travel between the two acts of measuréeniote that this
space-like separation is only a method to establish thegrmaling condition.
It would be equally valid if we were able to prohibit the tréersof information
betweend andB by other means.

Unpredictable measurement settings:The transfer of information between the two
parties is unnecessary if the measurement settings arenkioctive systemg 4
andX P fromthe start. Itis straightforward to reproduce the stats of quantum
mechanics if the four different experimental settidgs' /.2 occur in a regular
pattern that can be predicted by the syst&m” before it separates into two
subsystems. The choice on both sides should therefore be ataendom and
independently of each other. (The independence can agaésthblished by
making the two decisions at space-like separated events.)

Besides the aforementioned two restrictions, there igd,thiore practical, way for
a model to mask its classical foundations: the detectorieffiy loophole. In practice
it will almost never be the case that every signal can be teddry the measurement
apparatus. As an example, with current technology, thectleteof both the polariza-
tions of entangled photons succeeds with a success pritpabless than one percent.
In such situations it is possible to come up with a classicatlehwhere the photons
only ‘reveal’ themselves at/4 and M P if the setting of the devices is in accordance
with a scheme that was agreed upon befSreand X # parted. When one of the pho-
tons encounters an undesired setting, this particle thideshitself from the detector,
resulting in just one of the many unsuccessful polarizat@asurements. Such (ad-
mittedly contrived) ‘conspiracy theories’ are able to gavcal explanation for all the
performed nonlocality experiments to date.[52]

The reader might wonder what the practical merits are ofetlaesdemic objec-
tions to the acceptance of nonlocality as a feature of Natiter all, if our quantum
communication protocol works as desired, why contemplageihs and outs of the
model that describes it? The surprising counter argumetitisocritique is that the
above conditions translate directly into the requireménmt@ quantum protocol that
truly outperforms the classical ways of processing infdiama This is the exciting
idea behind quantum communication as | will discuss it is thesis: to use Nature’s
nonlocality to save on the amount of communication that isessary in certain set-
tings.

In the next chapters, we will see how the above argumentstabedoundations
of quantum mechanics can be transformed into procedureeetthace the complexity
of distributed calculations. But before we are able to ds,thiwill be necessary to
introduce a notion from computer science: communicationplexity.
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Chapter 4

Communication Complexity

In this chapter we introduce the notionammunication complexityt is first defined
in the traditional, classical sense after which we expaia the quantum case. Also
the generalization to multiple parties is made. Speciahditin is paid to the notion
of probabilistic protocols and how they can be viewed as unéd of deterministic
communication procedures.

Introduction

Consider two remote parties Alice and Bob each in posses$idata that is unknown
to the other person. If Alice has a natural numbeand Bob hag, how many bits does
Bob have to send to Alice such that she will be able to detegrifim + y is even or
odd? Clearly this can be done with a single bit of informatismlice (who knows:)

is only interested in whether or not Bohjds even or odd. But what if Alice wants to
decide ifx + y is prime? Intuitively one expects that in order to deterntimg decision
problem, Alice and Bob will have to exchange more informatioan the previous one
bit, and that this amount of communication will depend onsizes|z| and|y| of the
input strings. But how will it depend on the input size? Whathie most efficient
protocol? And given this optimal solution, how do we provattthere does not exist
a better procedure? The theorya@immunication complexityies to answer questions
like these.

Two-Party Communication Complexity

The setting for communication problems where there are waperative parties who
want to compute a joint decision problem is as follows.

Alice and Bob are given two stringsandy respectively, both of length. They
want to compute a Boolean functignon these two input strings, hence for a given
the functionf will be of the formf,, : {0,1}"x{0,1}" — {0, 1}. The communication
complexity of this function is the minimal amount of commeation between the two
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4.3. SOME OBSERVATIONS ABOUT COMMUNICATION COMPLEXITY

parties that is necessary for Alice to calculate the binatye/f, (z,y). More precisely,
the complexity of the distributed tagkis expressed by the relation between the input
sizen and the amount of communication necessary for the evatuafig,, (x, y) for

the worst case input strings andy. The following observations should clarify this
definition.

Some Observations about Communication Complexity

The trivial example of the#+y even or odd?” problem in the beginning of this chapter
is one of the simple cases where the communication complisx@ionstant and hence
independent of the input size. The version where Alice toedetermine the primality
of z + y has the obvious upper boundef{which holds forany f,,), because Bob can
always send all hig bits to Alice who then finishes the computation ¥ y prime?”
on her side. This underlines the fact that tteemputational difficultyof determining
the function RRIME (or any other functiorf) does not play a role here.

Because of the worst case assumption, the following linea$oning is incorrect:
“The sumz + y will be even (and hence composit&)% of the time. This can be
checked with a single bit of communication; therefore, therage communication
complexity of the RIME,, problem will be less or equal t§.” Instead, we should
conclude that the complexity ofRPME is going to be determined by the valuesaof
andy for which their sum is not divisible by two.

The fact that Bob does not have to know the answer after theguwbdoes not have
any significant consequences: it will only require one addél bit of communication
for Alice to tell the final answef (x, y) to Bob.

Formal Definition of Deterministic Communication

A deterministic protocaD fully determines for every possible inplt, y) which party

is going to communicate which bit at what stage of the prdtoéd the start of the
procedure, the parties are unaware of each others inpaieftine, who is going to
communicate the first bit has to be ‘input independent’ (agwlde pre-determined). If
we assume that this is Alice, then she has to act accordivgatdécision setsi, and
Ay inthat she sends a “zero” to Bob if and only if her inpu¢ Ay, and a “one” if and
only if z € A,. Because we require the protocol to be unambiguous anddeétied
for everyz, it follows that 4o N A; is emptyandthat A U A; covers the whole set of
possible inputs for Alice. For the second bit, the situati@eomes more complicated
as we now have the two situations where the first communidztadas zero or one.
We will make this distinction by putting the relevant histaf communication in the
upper indices of the decision sets. Hence, we could havedberigtion in the form
of the two couplegAY, A?) and (B}, Bi), which would tell us that depending on the
first bit, Alice or Bob announces the second bit. More spedificif the first value
was zero, then Alice continues according to the s&tsind A9. Otherwise, Bob uses
his decision set$3} and B}. Again, each couple of sets obeys the above-mentioned
restrictions for a deterministic protocol. In general, wdl sompletely specify what
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happens after Alice and Bob have communicated the strieg{0,1}* by either a
pair (A§, AS) if Alice has to communicate the next bit, GBS, B) if it is Bob’s turn.
Notice that it is not possible to have a combination4sf and B¢ as this makes it
ambiguous who is going to communicate. At the end of the jpaitih is Alice who
has to determine the function valyiéz, y). Similarly, we can represent this with two
decision sets fod, as long as we understand that this time the lower index deribe
final decision and is no longer part of the communication.

We can visualize a deterministic protocol as a decision Wwhere the nodes are
labeled by the strings that express the ‘communication so far’ and the branches by
the respective decision sed§, A{, et cetera. Figure 4.1 shows such a tree for a simple
three bit communication protocol, which we shall use forftiilowing example.

Imagine a two-party protocdD where both Alice and Bob receive two bits, -,

Y192 € {0,1}?) that is described by:

1. If Alice hasz; = 0, then she sends a “zero” to Bob, who then knows that the
protocol has ended.

2. Otherwise, Bob will receive the valué™from Alice, telling him that he has to
communicate back both his input valugsandys-.

3. After the communication has ended, Alice calculates titeamme of the proto-
col: D(x,y) is the bit valuer; - (y1 ® z2y2). She is able to do this either because
xz; = 0, or on the basis of her knowledge of Bob’s two input bifsandy- (in
combination with her own input; z-).

A description such as the one above easily becomes unclekrf@r protocols.
It is for this reason that we use the formalism of decisios.s&he three steps of the
above example are thus summarized by the pairs of sets:

1. Alice’s sets4, = {00,01} andA; = {10,11}.

2. Bobs first bit with B} = {00,01} and B! = {10,11}; his second bit:B° =
B}! = {00,10} andB{® = B}' = {01,11}.

3. And the final conclusion of Alice by the table:

A9 = {00,01,10,11} and A% = {}
A = {00,01,10,11} Ao =y
AT = {00,01,10} Al — (11}
Al = 00,01} Allo - — 110,11}
A = {00,01,11} Al = 10},

Notice that the ‘completeness requirement’ for the unig§r BS = {00,01,10,11}
sometimes leads to a redundancy in the sets as they covesiapes that do not apply
to them. (For example, the fact thaty> = 00 is an element of33!, which only is
used wheny; = 1.) By the tree construction we also see that the string; of the
final conclusion sets for Alice form a complete, self-detimg code such that ng is
the prefix of another string;, and any sufficiently long bit string starts with one of the
wordsc;.
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SalCH

Figure 4.1: The decision tree of a simple deterministic communicatiarogol for

two parties. Alice starts by sending one bit to Bob. If thishiais value zero, then the
procedure has ended and Bob does not communicate anythiXligé& Otherwise (the
right part of the tree), Bob has to send back two bits of infation before Alice is able
to determine the outcome of the procedure. Notice that ttsetlsat Alice uses for this
conclusion are not shown here. (See the main text for a futikked out example of

this tree.)
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The two important characteristics of decision trees anid fe¢s that we mentioned
earlier will be repeated here formallffor a deterministic protocol that calculates a
functionf : X x X — {0, 1}, the decision sets have to obey the following:

1. Every occurring node € {0, 1}* in the tree either contains a p&id§, AS) or
(Bg, BY).

2. For every paif X§, X¥) it holds thatX§ N X{ = {} andX§ U X{ = X.

3. All the ‘leaves’ (or end nodes) of the tree atgpairs as these contain the con-
clusion of Alice after she has completed the communicatiith Bob.

The amount of communication before Alice’s conclusion esponds exactly with
the lengthc| of the stringe that labels the leave$®. The worst case assumption tells us
that the communication complexity of a protocol is the lostgessible: that appears
in a leaf. This is identical with the depth of the decisiorefreninus one. Our tree-
example for the calculation of the function - (y; @ z2y2) therefore has complexity
3, despite the fact that for the case = 0, it only requires one bit of communication.

section 45  Probabilistic Protocols

We speak of a probabilistic solution if the parties use aquoltthat gives Alice the
correct answef (z, y) with high probabilityfor all combinationgz, ). The minimum
correctness ratid — ¢ (a protocol with probability of errat) will in general influence
the amount of communication that is necessary to obtain ehéidence level. With
¢ = 0 we obviously return to the deterministic case.

An important aspect of the definition lies in the phrase “lbcambinations z, y)”
which I will clarify here. Imagine a deterministic protocbl that is successful for all
possible input combinatior(s, y) except one. At first glance this may seem a reliable
solution of the problem. But the worst-case assumptios ted| in fact, that with this
protocol D, we should expect the valuesandy for which the procedure fails. This
teaches us that if there is an input on which a deterministcgdure makes an error,
then this protocol has to be considered useless (the £gqualsl). For a successful
probabilistic approach, we need to add randomness as ong ofgredients.

The reason that our deterministic protocol failed was bsedis errors were also
deterministic and hence predictable by the worst-caseilalision . that specifically
‘aims’ at the weak spots of proposed solutions. We counisritia randomizing the
errors ourselves in the sense that we try to ‘spread out’ afigeg(x, y) for which we
are likely to make a mistake. Such an approach requires AlckBob to share some
random bits on the basis of which they execute their otherdéterministic protocol.
The following example should be instructive.

Assume that Alice and Bob try to calculate the distributenttionf : N x N —
{0,1} (whereN stands for the set of input valu¢s, ... . n}). Imagine that for each
(4,7) € N x N there exists an efficient deterministic proto€); that works correctly
except for the one combinatide = i,y = j). Thatis, every protocaD can make a
mistake, but the protocols differ wherethey err. This allowsd and B to adopt the
following strategy:
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1. Alice receives;, Bob receives hig € N.

2. Both parties agreat randomon a pair(i, j) that determines which one of thé
protocolsD they are going to execute.

3. Alice and Bob perform the deterministic protoda);.

(Note that the random bit2{ogn in total) are usedeforethe actual communica-
tion procedure.) Unlike the earlier non-randomized apphno#his protocol is highly
successful, as we can easily see. Given any combin&tigy), Alice and Bob have
probabilitynl—2 that they ended up executing the flawed protd@g), for this specific
input. We have the remaining probability bf- # that the two parties performed one
of then? — 1 procedure® that leads to the right answgtz, y). For reasonably large
n, this will occur with high probability. As it is impossiblef the distribution of the
input values to ‘anticipate’ the protocdl;; that A and B are going to perform, it is
also impossible to force an error rate higher thannlehehat holds for this probabilistic
solution.

A few more words about the random bits that the parties userbeate give our
final characterization of probabilistic communication tols. The randomization
that we saw in the last example wasared randomnessioth parties could agree on the
random number§, j) without having to communicate this specification to eaclenth
This is also called the ‘public coin model’ of communicatiand can be viewed as
the situation where Alice and Bob share an unlimited amofiokassically correlated
states

Ppublic coin = %|00><00| + %|11><11|

A more restricted model of randomized communication is the where the parties
only have ‘private coins’. In this model, shared randomress only be achieved
after one party has communicated some of his or her coin Bifiset other participant.
Hence, in this ‘private coin’ model we have to take into actdhe amount of shared
randomness that the parties have to send to each other feuticessful execution of
their randomized procedure. In this thesis, we will alwagsume the ‘public coin’
model for reasons that will be explained in Section 4.10.

Another issue is that of the moment of randomization in thequol. If we know
beforehand the outcomes of all the random coin flips thataeitiur during a protocol,
then we can again view the procedure as a deterministic omel b&cause there is
nothing during the protocol that can influence the outcome odin flip, we might as
well observe all of them before we start with the proced@ré\s long as we establish
our randomizatiorafter we received the: andy values, the input distribution cannot
‘anticipate’ any weaknesses specific for the outcomes ofdlreflips.

It is for the above reasons that we can assume, without logeradrality, that the
probabilistic protocoP is executed according to the three steps previously shown:

1. The parties receive their respective inputs.

2. With the help of public coin flips, Alice and Bob agree on adem numbei
(according to some fixed distributioar).
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3. The deterministic protocdD; is executed.

This can be summarized by the statement that the probabdisicedureP is a mixture
of deterministic protocolsP = {(;, D;)};, and that on the input strings:, y), it
outputs the corresponding probabilistic Bitz, y) = >, 7 - Di(z, y).

The quest for the optimal probabilistic protocol for a fuootf can be approached
in two ways:

Given a desired success rédte- €, how many bits of communication are required?
Or alternatively:
What is the minimum error ratethat can be obtained wit bits of communication?

Although both kinds of questions will be asked in the comihgputers, we will here
investigate problems of the second kind. The next sectidinsivbw us how we can
employ some standard techniques from game theory for olysisaf communication
complexity.

An Application of Von Neumann’s Min-Max Theorem

Consider again the setting that we described before we etidedrevious section.
Alice and Bob want to calculate the distributed functipn {0,1}™ x {0,1}" —
{0, 1} with only m bits of communication between them. Our task is to optintizgrt
randomized protocol in that we want the highest possibleessratiol — ¢ for this
limited amount of communicatiom. What do we do if every deterministic protocol
(with & = 0) requires more tham bits of communication?

As we now know, every probabilistic protocél can be expressed as a mixture
{(m:, D;)}i, wherer is the defining probability distribution over the setalf the de-
terministic protocol9D;. (Typically, we will haver; = 0 for many unreliable proto-
cols D;.) Our second relevant distribution is the functjothat defines the probability
u(z,y) that Alice and Bob receive the input pdir,y). Given the distributionsr
(defining the protocoP) andu we calculate the error rate by

exu = p_ul@.y) Prob(P(z,y) # f(z.y))

whered is the ‘difference function’ withj(:, j) = 0if i = j andd(i,j) = 1 other-
wise. The worst case assumption for the input distributeEmmmow be expressed as the
maximization of the error over afl’s:

Er = MaXEqy.
u

But we, in the meantime, are looking for the protod®dlthat minimizegthe error, and
hence we are trying to reach the minimum of this maximum ewhbich is

mine; = minmaxée,, = minmax Z w(x,y) - - (f(z,v), Di(x,v)),
b T o

T oW )
z,y,1
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wheref is the problem in question, and dll; are deterministic protocols. This is the
situation from the viewpoint of Alice and Bob.

Nature, with her worst case behavior, on the other hand, fnike highest possi-
ble error for each protocd?. This corresponds to an expression that is almost identical
to the previous one,

m‘z}xsm = m!z}xmﬁin Exlus
except for the changed order of the two optimizations.

This puts us in the situation where we have to analyze two ictinfy strategies:
the minimization ofz by Alice and Bob, and the maximization of the same term by
Nature. It is therefore legitimate to ask if the whole sejtia properly defined; for
it is not inconceivable that the chain of arguments “Alicel 8ob use protocoP”,
“Nature reacts by using the worst possible distributidn“knowing this specificy,
the two parties change to a bettBt”, “Nature counters with a new'”, et cetera,
has no well-defined end. Luckily, Andrew Yao’s usage of VoruhMann’s Min-Max
theorem assures us that this is not the case, as there is gpfiketd 7, ) for this
problem. (See the article [68] and the references [47, 4% B[0for an introduction to
game theory.)

It turns out that the above setting is an example of a ‘zero;$wo player game’.
Let the first player be the duo Alice & Bob with their protodd] and the opposing one
Nature with her strategy. We can rephrase the conflicting goals for the participants
by stating that Nature tries to maximize the ereprwhereas Alice and Bob try to
maximize the negated term-£". This indeed makes it a zero sum game (for two
players), and hence Von Neumann'’s celebrated Min-Max greapplies. This result
states that in the just-described setting there is alwaysed fioint(x, 1) (a solution
of the game), such that the correspondinghe uniquevalueof the game) solves the
equation

maxminer, = minmaxey,.
wooow T n

As this defines a@addle pointboth parties know that any variation in their strategy
(m for A and B, andu for Nature) is not going to do them any good because, for the
solution of the game, it holds that

For any alternative protocot’, we obtain an error that cannot be smaller.

All other input distributiong:’ give an error that cannot be bigger.

In short,e ./, > ex|, @ndey ), < er,, forall 7’ andy’.
(Note that it is very well possible that several solutionsefor a game, but all of them
will share the same valug) The above two characteristics in combination with the
decomposition of a probabilistic protocol as a mixture dedeinistic ones, also gives

us a technique to easily ‘recognize’ the fixed-point solutib a setting. This will be
explained in the next section.
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Section 4.7

4.7. PROVING PROBABILISTIC BOUNDS

Proving Probabilistic Bounds

We now know that for every probabilistic communicationiseft there is a solution in
the form of an ideal protocdP, a worst case input distributignand the resulting error
rates. But how do we determine such a solution? As stated earlibisrthesis, we are
mainly interested in the setting where we try to minimize ¢her under a restriction
on the amount of communication. In this setting, a relevaababilistic protocolP
will have to be a mixturg (;, D;)}; of deterministic procedureB; that all obey this
limitation on the information transfer between Alice andBelence, if we can exhibit
a specific input distributiop and an error rat& for which every allowedieterministic
protocolD; obeys

ED;|u > E,

then we can immediately conclude that gmpbabilistic protocol P will obey this
boundE as well. And because is the maximum o€/, overall distributionsy, we
now also know that is a lower bound on the value In mathematical terms, this
reasoning can be summarized by

e > Eu = m}nswm = leinzm “ep;lp > E.

Conversely, if we can prove for the sarfighe existence of a protocél that obeys
exu < E for every input distribution: and hence, < E, then we can conclude that
€ = min; e, < E. (The proof of this £ < E” is usually done by showing that for
every pair(zx, y), the error probability of the protocd? is limited by Prob(P(x,y) #
f(z.y)) < E)

The combination of the two bounds shows that indeed FE, and the solution
for this value is obtained by the distributionsand i that we used in the proof. In
practice, it will almost always be the case that we simplyggsg a distribution: for
which it is easy to verify that evergeterministicprotocol has an error rate of at least
e. After that lower bound, we then continue by describing aptilistic protocol with
Prob(P(z,y) # f(x,y)) < e for every input pair(z,y). This is sufficient to prove
that (7, u) is a solution of the communication game with vakue (It is typical for
the worst-case distribution that it will be zero for any coupléz,y) for which the
protocol performs above average.)

Some readers might find it unsatisfying that we just ‘statandu without giving
a method for deriving such solutions. Such a derivation issjiile because the Min-
Max expression fot is a linear equation, which can be solved in a straightfodweaay.
But this is only possible if we are willing to deal with excegsamounts of data and
variables. In this thesis, we try to avoid such an approadh@dy gives a solution,
but not much insight and understanding. Instead, the réadevited to honestly try
out all the possible deterministic protocols when this ggasted, and to see for him or
herself that the error rate is indeed the minimuas stated. This dirty ‘work by hand’
is likely to give some insight in both the kind of instand¢esy) that are ‘problematic’
for Alice and Bob, and the set of optimal deterministic pomtis that are used in the
probabilistic mixtureP. (This, at least, was my personal experience when | obtained
the results.)
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Section 4.9

4.8. RELATIONS AND PROBLEMS WITH A PROMISE

Relations and Problems with a Promise

We can extend the setting of distributed decision problehtiseoformf : X x Y —
{0, 1} to the broader notion @€lations. Problems of this kind are described by a subset
R C X xY x Z, where Alice’s input is an element€ X and Bob ay € Y. The
task for the two parties is to determine a value Z such that(z,y, z) € R with the
minimum amount of communication required. A function is katien for which every
combinationz andy has a uniquely defined= f(z,y) such thaiz,y, f(z,y)) € R,
and a decision problem is a function with= {0, 1}. (Note that for a general relation
it is possible that there exist values #fandy with no corresponding such that
(z,y,2) € R. Inthis case, the input combinatidm, y) is illegal as there is no correct
answerz to the problem.)

In the next chapters, we will use relations to describe theatled promise prob-
lems. These are distributed functiorfs: X x Y — {0, 1} for which we are only
interested in the protocol’s behavior osabsetS of the possible inputX x Y. The
promise is therefore that Alice and Bob only receivendy such tha{z,y) € S. The
standard way of describing such a promise problem is to ezpt@s a relatiod ;|5
which is a conventional decision problefron the proper inputs, but a trivial relation
on the inputs that lie outside. Hence,

(z,y) € Sandz = f(z,y), or
(z.y) ¢S,

which shows that, provided that the communication protbed a well-defined out-
come, evenyP(z, y) for the improper inputéz, y) ¢ S will be a correct outcome with
(z,y, P(x,y)) € Ry s. The protocol therefore hasi@0% success rate on those in-
puts, and hence it follows from the worst-case assumptiahAlice and Bob do not
have to expect such trivial cases. This is equivalent to tiginal setting where the
distributionp(z, y) is only non-zero for proper values ¢f,y) € S, with the differ-
ence, however, that we still require the protoébto behave properly oall possible
input values.

(z,9,2) € Rys ifand only if {

Quantum Communication with Entanglement

It may come as a small surprise that we will not devote a sépatapter to the def-
inition of the model for quantum communication, but aftez fireceding section and
chapters this turns out to be unnecessary. In Section 4.5awehat the crucial in-
gredient for probabilistic communication protocols is taedomness that the parties
can share. This randomness can be described as a ‘publidlipbivith the density
matrix:

Peoin = 3(00)(00] + 3|11)(11].

Besides the supply of these shared random bits, everytliagsadentical to the setting
of deterministic protocols.
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Section 4.10

4.10. OTHER QUANTUM COMMUNICATION MODELS

In short, we could say that the same holds for the differeeteden quantum and
classical communication, with the exception that we replhe classical correlations
of the statep..i, With the nonlocal correlations of entangled qubits of therfo

pest = 5[00)(00] + 1/00){11| + F[11)(00] + F[11)(11].

In order to enable Alice and Bob to process their qubits, ve® dlave to ex-
pand their set of local transformations with the unitary rapiens; our main inter-
est however—the communication—is still done with claddiits. The four different
stages of a quantum communication protocol are thus:

1. Alice and Bob share a sufficient amount of public coigs, and entangled
qubitspent. They also agree on the proto@@lthat they are going to use.

2. The parties receive their input valuesindy with probability u(x, y), whereu
is the worst case distribution for the protocpl

3. The protocol) is executed byl and B according to their inputs andy.
4. Alice announces the (probabilistic) outcofér, y).

Obviously, we could replace the coin flips in step 2 by moreegled qubits as they
behave exactly like..in When measured in the standard basis. Nevertheless, we will
refrain from this, as it would advocate the usage of ‘quantesources’ where it is not
necessary.

The amount of classical bits of communication during thedtiphase of the pro-
tocol Q does not only depend on the péir, y), but also on the randomized measure-
ment outcomes on the probabilistic states (classical ontyua) during the protocol.

It is customary to define the overall communication compjeaf a protocoly) as the
highest possible amount of communicated bits between AliceBob, where the pos-
sibilities are over the input instan¢e, y) andthe randomized variables during step 3.
(See Chapter 3 of [42] and references therein for a discussithis ‘worst-case versus
average-case’ complexity of randomized protocols.) ddramunication complexitf

a distributed functiory is the minimum complexity over all protocal$ that solvef.

Typical for the approach to communication complexity instiiesis is that we
do not take into account the amount of correlated statestlieaparties need to use
to perform the protocol (the number of distributedtates required in the first step).
In the next section we will briefly look at some alternativedets and discuss their
relation to our ‘entanglement model of quantum communacatiwith this discussion
I will also explain why the results in this thesis are not @ein such ‘qubit models’.

Other Quantum Communication Models

Quantum communication is often understood as the trantfefaymation with qubits

instead of classical bits. This approach has indeed be@m thk the very first re-
searchers of the field (Andrew Yao[69] and llan Kremer[41They considered the
‘gqubitmodel’ where Alice and Bob are not allowed to shareaagtement during step 2,
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Section 4.11

4.11. MULTIPARTY COMMUNICATION COMPLEXITY

but where the communication is done by quantum bits. A thisbsbility is the natural
combination of the two models that deals with protocols whaoth initial entangle-
ment and communication with qubits are allowed.

With the teleportation procedure that transfers one qubiteacost of two classical
bits and an entangled pair, the following reduction sho@@tident.

Any protocol that uses qubits of communication ang entangled pairs
can be perfectly simulated by a qubit protocol that useis m qubits, or
an entanglement protocol wittHm entangled pairs andk classical bits
of communication.

From this it follows that the entanglement model will diffigith at most a factor of
two from the other models. What is not clear, however, is hmsimulate the entan-
glement model with the qubit model within a constant facidris is because we do not
know any bound on the amount of entanglement that might beinedyfor ak qubit
communication protocol. If we could prove a theorem thatestaomething along the
lines of “any protocol that usds qubits of communication, can be implemented with
an a-priori entanglement aft 2-qubit pairs”, then it would be clear that with + 1)k
qubits of communication in the qubit model, the same prooedould be executed.
Currently, such a theorem, or a counterexample to it, idatking. We are thus faced
with the distinct choice of analyzing quantum communiaatidgth or without prior
entanglement. And in the entanglement case we have to malattitional decision
if we allow communication with quantum bits or or if we restrourself to classical
information transfer. In this thesis the latter option i®sén, and here | will briefly
explain why.

If we want to compare the complexity of classical and quanpsotocols, then
we first have to agree on the measure that we use for our cospparit is only with
classical bits that we can express the complexity for botldetsin the same units.
Otherwise, it is very tempting to ‘explain’ all of the diffences between quantum and
classical communication with a reference to the uncouatabhtinuum of different
quantum bits compared to the two possibilities for a claddd. The entanglement
model makes it immediately clear that something more sudttd interesting is go-
ing on. Another advantage of this entanglement based apipiedhat it allows us to
study the relationship between nonlocality and commuitnatomplexitywithout an
explicit reference to the theory of quantum physitisis will be done in Chapter 9 on
‘Superstrong Correlations’. There is also the additiomahplication with qubit com-
munication if more than two parties are involved: the noaglg theorem[67] makes it
impossible to send an unknown qubit to more than one partyeatame time.

Multiparty Communication Complexity

Itis natural to generalize the two-party model to the sgttitere three or more partic-
ipants are involved. As we will use this ‘multiparty scewafor several of our results,
we discuss here the few choices that have to be made for susti@msion.

For k partiesAy, ... , A, with their respective inputs,, ... ,z;, we look at the
protocols that try to evaluate decision problefmsX; x - - - x X}, — {0,1} on Alice’s
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4.12. ASSUMPTIONS THROUGHOUT THIS THESIS

side (who is labeled!;). Almost all characteristics of the analysis for the twatpa
scenario translate directly to this setting. Itis aboufittigal ‘information sharing’ and
the communication by the participants that we have to makeesadditional choices.
From now on we will always assume that

1. Initially, every partyA; only knows its valuer;.

2. A bitthat is sent by one party becomes known to all the sthethe cost of one
bit of communication.

Because of the second characteristic, this setting is aleok as the ‘broadcast model'.
(A well-known alternative for this is the ‘number on the foead model’ in which a
participantd; initially knows every valuer; excepthis own inputz;.)

Assumptions throughout this Thesis

We have now come to the end of the introductory chapters stitigisis. But before we
continue with the actual analysis of quantum communicatimmplexity, | will sum-
marize below the assumptions that are understood to hottiédiollowing chapters.

e The communication complexity is measured in classical bits

e The amount of initial entanglement or classical corretaics ignored in the
complexity analysis.

¢ The final stage of a proper protocol is reached when the firgy,plice, knows
the function valuef (with high probability).

e The complexity is determined by the worst case behavior i bte input dis-
tribution p and the randomized measurement outcomes during the exeaiti
the protocol.

e The protocols for ‘promise problems’ have to be well definedifegal inputs.

¢ In the multiparty setting, the ‘broadcast model’ is assumdtkre initially each
party A; only knows his or her input value; and where every communicated bit
becomes known to all parties.

e Measurements are always done in the standard p5ig1)}.
e The names of the first three parties are Alice, Bob and Carol.

Despite this listing, we will reiterate our assumptions wités especially relevant for a
better understanding of our results. Before investigatiegdifferences between quan-
tum and classical communication complexity, we concludé wivery brief historical
overview.



4.13. HISTORY AND REFERENCES

section 4.13  History and References

Two-party communication complexity as described here wa®duced by Andrew
Yao in the influential 1979 paper “Some complexity questiceiated to distributive
computing’[68]. The recent book “Communication Complgkiby Eyal Kushilevitz
and Noam Nisan[42] gives a thorough and up-to-date overafahis field of research.

Quantum communication complexity was first mentioned bgjragyao in the ar-
ticle “Quantum Circuit Complexity”’[69], where he used conmmnication complexity
as a method to derive lower bounds for quantum computatidready in 1995, llan
Kremer, a student of Noam Nisan, wrote an entire Mastersistehout quantum com-
munication complexity. Both Kremer and Yao use the qubit mamication model
where the parties communicate with qubits rather than wéhsical bits. Neither au-
thors showed an improvement over the classical scenarahaRi Cleve was the first
to establish such a separation (of one bit) in a three-patting in 1997. This result, in
the entanglement communication setting, was publisheetieg with Harry Buhrman
in the article “Substituting Quantum Entanglement for Cammimation”.[23]

Shortly after this unexpected observation, several oemrlts appeared. Most no-
table are the generalization of the original protocol ofw€léo thek-party setting,
thereby obtaining an unbounded differencé:dbg & versusk bits between classical
and quantum communication[19]; the proof that the quantomrmunication com-
plexity of the INNER PRODUCT function cannot substantially be improved with the
use of entanglement[24]; and—most recently—the squaseand even exponential
separations in the two-party scenario[1, 17, 57].
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Section 5.1

Chapter 5

Two Simple Quantum
Communication Protocols

This chapter describes two quantum protocols that have ancornication complexity
that is lower than is possible with classical means. Theltestere published in the
article “Quantum Entanglement and Communication Complékiy Harry Buhrman,
Richard Cleve and myself.[16] Although both protocols araightforward applica-
tions of the nonlocality arguments of Chapter 3, they do nekénportant step from
the correlated outcomes of a set of entangled qubits to agwbthat can be used to
perform reliable distributed computation.

Reducing Errors with Nonlocality
Consider the two-party function with input si2e
f@1,22,91.92) = 21 @Y1 @ (22 92)-

The table of this functiorf looks like

flz,y) | 00 01 10 11
00 0 0 1 1
01 0 1 1 0],
10 1 1 0 0
11 1 0 0 1

where the columns are indexed Byz, and the rows by, y-.

Alice wants to estimate the valyéz, v) with the highest possible correctness prob-
ability, under the restriction that only one bit of commuation is allowed. We will
show here that the classical bound on the success rét&®otan be improved to ap-
proximately0.85 if we allow Alice and Bob to use an entangled pair of qubitseTh
quantum protocol that establishes this probability iselpselated to Bell's inequality
and is implemented by the following procedure.
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5.2. LIMITATIONS OF CLASSICAL PROTOCOLS

1. Before Alice and Bob receive their input@andy, they share the entangled qubit
paird,p = %(|00) — [11)).

2. Bob performs the rotatioR( 75 ) on @ if he hasy, = 0; otherwise, he applies
R(3%) to ®p.

3. After this rotation, Bob measures his entangled qubhéstandard basis, yield-
ing an outcome € {0, 1}.

4. The same procedure holds for Alice. Firstzif = 0, apply R(35); if 22 = 1
then appIyR(?i—g) to ®p. Then, measure the rotated qubit in the standard basis.
The bit that is the result of Alice’s observation is labeted

5. The one bit of communication from Bob to Alice is the pabity(y; & b).

6. Having received the bit from Bob, Alice now finishes thetpowml by estimating
the valuef (z, y) with the binary valuer; ® a @ (y; @ b).

From the analysis of Bell's inequality in Section 3.3, we knthat the probability for
a @ b to equalz, - y» is approximately85.3%, and hence that the correctness ratio of
the above protocol will be the same:

Prob(z1 @ y1 ®a® b= f(x1,22,91,y2)) = 0.853...

(Note that this success rate is independent of the dis&iibtiandy values.)
Such a correctness ratio cannot be obtained by a classm@alcpt as we will see
now.

section5.2  Limitations of Classical Protocols

Section 4.5 taught us that a probabilistic protocol can beved as a mixture of deter-
ministic protocols. Hence, it is sufficient to prove a loweubd on the error for all

deterministic procedures in order to prove the same bounchfalomized protocols.
We will do this here for the uniform input distributign(z, y) = +-.

For a deterministic protocol, we can define theBgthat contains the valuegy-
for which Bob broadcasts the bit valug™to Alice, and similarly the seB; for the
communicated valuel®. (With B, U B; = {0,1}? andBo N B; = {}.) One of these
two sets will at least contain two strings and without losgeferality we assume this
set to beBj. By inspecting the function table, we can conclude immedtijathat if
Alice receives a zero from Bob, she will make a mistake att[28% of the time. (If,
for example,B, = {00,01}, then Alice can only guesg's value if she hag, = 1.)
Furthermore, ifB, contains three strings, then at least one out of three arueouents
by Alice is wrong if she received)” from Bob. (As an example foB, = {00, 01, 10}:
A’s most successful guess will ge; & =), which fails% of the time. The degenerate
case wher¢B,| = 4 does not convey any information to Alice who therefore wil/k
to make a blind guess witi0% probability of success.)

This shows that for the three possible partitiondlyand B, , the error probability
will be at least;:
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Section 5.3

5.3. AN EXACT THREE-PARTY QUANTUM PROTOCOL

¢ (|Bol,|B1]) = (2,2): In both casedB, and By, Alice will make an error with
0.25 probability.

e (|Bo|,|B1]) = (3,1): The caseB, occurs? of the time with error raté, hence

the overall expected probability of error§s & = 1.

e (|Bol,|B1l|) = (4,0): Alice makes a mistaks0% of the time.

We have thus established the result that any deterministie, bit protocol will
have a success ratio of at m@s(for the uniform distribution ovet andy). From our
previous result about probabilistic procedures (see @eeti7), this implies that any
classical protocol is bounded by this value. Hence we caedddonclude that Alice
and Bob have an advantage8sf% versusr5% if they use a pair of entangled qubits.

An Exact Three-Party Quantum Protocol

The previous quantum protocol decreased the error pratyabyl the use of entan-
glement but still left us with a ‘flawed’ procedure. Here wdlwefine a three-party
problem that has an errorless quantum protocol. This willhbgharp contrast to the
classical setting where Alice, Bob and Carol have an errobgbility of at leas25%.
The example of this section was the first published quantumneonication protocol
(see Cleveet al. in [23] and [16]), and was inspired by Mermin’s clarificatjdf] of
the nonlocality proof by Greenberger, Horne and Zeiling@}[

The three partiesl, B andC receive their inpuk, y andz € {0,1, 2, 3}, with the
promise that the sum+ y + z is an even number. The task for Alice is to decide after
two bits of communication whether+y + z mod 4 = 0 orz + y + z mod 4 = 2. As
with the nonlocality proof of Section 3.4, B andC initially share the three qubit state
[P apc) = %(|000) +|111)). Next, depending on their input, each party performs a
phase rotation on his or her entangled qubit. Alice rotdtgswith PHASE(ZT), Bob
applies PFIASE(%"), and Carol acts with IRASE(Z) on her¥ . After these three
independent actions, the joint state has become

|Phasedl spc(z,y,2)) = PHASE(ZF) ® PHASE (%) @ PHASE (4F) | ¥ 450)
= L (|000> + e%<w+y+Z>ﬂi|111)) ,
and hence by the promise on the input values (ignoring nézatain from now on):

{ |000) + [111)  fz+y+2 = 0mod 4

|Phased? 45 (2,9, 2)) 000) — [111) ifz+y+2z=2mod4 °

Before measuring the bit values &, all parties rotate their individual qubits with a
Hadamard transform (the global transformatiém® H @ H), resulting in the final state

IFinal(z, . 2)) { |000) +]011) + [101) + [110) if # +y + 2 = 0 mod 4,

|001) + |010) + |100) + |111) if 2+ 5+ z = 2 mod 4

for the two cases. This shows that after the standard measutdyielding the out-
comes, b andc), the decision problem is answered by the parity(&ib b @ ¢) as this
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5.4. IMPOSSIBILITY OF A TWO BIT CLASSICAL PROTOCOL

will be “0”if z+y+ 2z = 0 mod 4 and “1” otherwise. It is therefore sufficient for Bob
and Carol to broadcast their outconteandc to Alice who then is able to announce
the final answer witH00% reliability.

Impossibility of a Two Bit Classical Protocol

Again we will use the approach where we analyze the erroofatt deterministic, two
bit protocols to obtain a bound for all possible probah#igtrocedures. (We assume
a uniform distribution over alB2 input cases.) Although there is a promise on the
valuesz, y andz, the inputs for two parties (ignoring the third) can be anyref16
combinations 0f0, 1,2, 3} x {0,1,2,3}. From this observation it follows that Alice
has to receive information from both Bob and Carol (and hemeebit from each) and
that the protocol has to specify beforehand@ibr C' broadcasts the first bit. Without
loss of generality we assume that this will be Bob.

The setB, (B;) corresponds to the valuesgfor which Bob broadcasts a “zero”
(“one”) to Carol and Alice. Carol can make her procedure delpat on the bib that
she receives from Bob, and hence she will use the@gandC?Y if b = 0, and the sets
C} andC/ otherwise. After Carol announces her bito the other parties, Alice can
infer that the two input values of her partners olfgyz) € B, x C°.

The cases wherd,| = 3 or4 (|Bo| = 0 or 1) imply immediately that there are
two valuesy; andy- together inB,y (B;) such thaty; + 2 = y». Hence, for one of
those values the deterministic protocol will always makeistaike in its calculation
of x + y + 2 mod 4. Under the uniform distribution this error will happ&i% of
the time. The protocol wher8, or B; = {0,2} suffers from the same deficit as
the above scenarios, and hence has an equivalent errorTiaiteleaves us with the
case where the sets of Bob are of the fdBn= {3, 8, + 1} (with 3, € {0,1,2,3}
and addition is moduld). The line of reasoning that we applied to the sBtalso
holds for the sets of Carol; hence, we can also assume that @veet is of this form
Cl = {75 4+ 1} with~? € {0, 1,2, 3}. Therefore, for every combination bfandc,
the input values of Bob and Carol ob@y, z) € {fs, 3 + 1} x {7£,7% + 1}. Hence
there is a critical ambiguity for Alice between the cages z = 3, + 7% mod 4 and
y+2 = By +7° + 2mod 4. As we are dealing with deterministic protocols, one of
these cases will always be resolved incorrectly, thus agjging a25% error rate.

The upper bound of5% correctness was derived for all possible deterministic
protocols, and hence any probabilistic protocol will havelbey the same bound. This
concludes the proof that the “mod four” problem cannot beesbklassically with an
error rate of less that.25. The quantum protocol obtained a significant improvement
over this with its errorless protocol.

We can obtain a classical procedure without error if we alBmb to communicate
one bit more, for he can then broadcast the exact valioeAlice and Carol. This, in
combination with the most significant bit ef(that is: Cy = {0,1} andCy = {2, 3}),
is sufficient for Alice to determine the outcome-y + z mod 4 (using the promise on
the input values). The result of this section can therefts@lae restated as “The three-
party entanglement allowed Alice, Bob and Carol to save dn&flsommunication”.

The next chapter will generalize this three-party problera distributed function

page 51



5.4. IMPOSSIBILITY OF A TWO BIT CLASSICAL PROTOCOL

for k parties. This will give us an unbounded difference in terrhsammunication
complexity between the quantum and the classical settings.
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Section 6.1

Section 6.2

Chapter 6

Multiparty Quantum
Communication Complexity

The three-party problem of the previous chapter can be géped to ak party dis-
tributed computation. In this chapter we will show how ttdads to a quantum proto-
col that gives a reliable answer after okly- 1 bits of communication, whereas in the
classical setting the parties would require of the ordétlog k bits. This result was
published in the October 1999 issueRifysical Review Ainder the title “Multiparty
Quantum Communication Complexity”, with co-authors HaBwyhrman, Peter Hayer
and Alain Tapp.[19]

Multiparty Problem and Its Quantum Complexity

In the k party scenario, every participadt receives a real numbey; € [0, 2), with
the joint promise that the total suli, z; is a natural number. The task for Alice{)
is to determine whether this sum is an even or an odd numbercéltulation of the
function value

k
Oodd?zy,...,zr) = Zmimon.
i=1

Our first result will be that if the parties sharéaubit entangled state, this problem
can be solved with a protocol where each party communicatiysome bit to Alice.
This is shown by the following procedure which therefore &astal communication
complexity ofk — 1 bits.

The Quantum Protocol

Let the partiesd, ... , Ay initially share the entangled state
[We) = J5(0--0)+[1--1),
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6.3. BOUNDS FOR PROMISE FUNCTIONS

where each partyl; possesses the quldit. Depending on their input valug, a phase
rotation FHASE(wx;) is applied to this qubift;. Just as for the three-party scenario,
this leads to essentially two different possibilities @ging normalization)

|PhasedP;.;) PHASE(z17) ® - - - @ PHASE(z7)|¥1.k)
= [0---0) 4 el™ X 1---1)

|0---0)+1---1) if Y. x;iseven,

0--0)—[1---1) if 3, z; is odd.

Hence, locally applying the Hadamard transform orkadites results in a superposi-
tion of bit strings with an even (odd) Hamming weight, if theremation) _, z; equals
an even (odd) number. The continuation of the protocol shoalv be obvious: every
party measures his or her quBit in the standard basis and (except Alice) broadcasts
the outcome; to A;. She concludes by calculating the total papity a; mod 2 of the
measurement outcomes, which directly gives the correat@nt® the original ques-
tion: “Is >, z; even or odd?” A protocol with less than— 1 bits of communication
is impossible as this implies the exclusion of one of theipariwhich cannot give an
errorless procedure.

The core of this chapter is the proof that in the classica¢ c@$k log k) bits of
communication are required. This is far from trivial, as wi# gee in the next sections:
a case-by-case analysis (as we did in the three-party case)longer possible.

Bounds for Promise Functions

In the introductory chapter, “Communication Complexityie discussed how a deter-
ministic communication protocol corresponds to a tree witlee leaves label the final
decisions, and the depth of the tree equals the commumicatimplexity of the pro-
tocol. What follows is a general method for obtaining lowetbds on deterministic
protocols that we will use in the next section for our “eversus odd” problem.

First we remind ourselves that a protocol has to be well déffiee all inputs
z,...,xx, even if they do not obey the promise of the functipnC X — {0,1}.
This means that for every instanee, . . . , xy, the protocol has to follow one uniquely
determined path from the root to a ‘decision leaf’. Becausetcee is binary, this
implies that with depthi, the number of leaves is at maxt. Hence, if we have a
minimum oft leaves, then this corresponds to a communication complekét least
“depth—1" = log(t) — 1 bits. This gives us a good reason to look at the number of
leaves that is required for a deterministic and exact paitoc

For different input combinations, a protocol can end up mshme decision leaf.
Assume now that we know of two such combinatid¢ns, - - - , zx) and(Z1, - -+ , Tx)
that both lead to the same ‘path down the decision tree’ tafdleFor a given protocol,
the direction that the protocol takes at a specific branclolislys determined by the
input of the then speaking party;. Note now that by our assumption, these directions
are the same for both; andz;. This means that we can combine thandz values
and still take the same path downko In other words, every element of the Cartesian
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product se{zy,%1} x --- x {x, %} gives the same path down the tree. We will
therefore call the subsét of inputs that lead to the same leafextangle,as they will
always be of the fornrR = X; x --- x X, with X; C X for everyi.

If we want our deterministic protocol to be exact, then therednts of a specific
rectangleR that are allowed by the promise must all have the same fumetitue f.
We can assume that every leaf contains at least one alloywatifor it would otherwise
be possible to ‘trim down’ the decision tree—by removingthhcuous leaf—without
changing the effectiveness of the protocol. These two deriatics are summarized
by saying that the rectangles have torhenochromatic.

We thus have collected some facts about the leaves of adletise that we can use
in the following standard method for proving bounds on daterstic communication
protocols. (See also Section 1.2 in [42].)

Assume a (promiseé)-party decision problenf :C X* — {0,1} where there is
a total of | X |* possible input states (both proper and improper in the cdgmamise
problems).

1. Show that for the functiofi the maximum volume for a monochromatic rectangle
is bounded by some limit

k
2. Realize that this bound tells us that there have to be at I@%ét‘rectangles-as—
leaves’ in the decision tree.

3. Conclude that a deterministic protocol will therefore nesideastk log | X| —
log v — 1 bits of communication if it wants to be errorless.

This is the approach that we will now apply to our “Odd?” fuoot

The Lower Bound for the Classical Protocol

Before we start our lower bound proof, we will rephrase arstriet the Odd?-problem
to the ‘finite and integer input’ version that we already amttered in Section 5.3.
This is the situation where we are only interested in valdeswup ton bits and where
we (implicitly) multiply every number witl2”~! such that every; is viewed as an
element ofZ,~». We therefore have the new promise that z; = 0 mod 2n—1 for
which the parties try to determine whether

Ek: o 0 mod 2™ (“even”), or
lx’ T 1 2" 'mod 2" (“odd”)?
=

It should be clear that the original Odd?-functiomtdeastas difficult to solve as this
problem: as: gets bigger the problem becomes harder and only the limitasgn —
oo corresponds to the continuous version witke [0, 2) rather thane € {5L+|q €
Zan}. It turns out however, that for our current purposes the tdweeindn > log k
suffices (in combination witlk > 2). We will now prove thed (klog k) lower bound
for this restricted problem.

Let R be ak-dimensional rectangle that corresponds to a leaf in thesidectree,
henceR = Ry x -+ x Ry C Z5%.. With modulo2” arithmetic, we define the sum of
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two setsA, B C Zq» asA+ B = {a + bla € A,b € B}. We use this set addition
and the ‘sidesR;,... , R to define a sequence &f+ 1 setsS; by: S, = {0} and
S; = Si—1 + R;fori = 1,... k. Obviously, for every combinatiom, - - - xj, in the
rectangler, the corresponding valde, z; is an elementof, = Ry +- -+ Ry,. The
requirement thakz is monochromatic tells us thetther0 € Sy, or 27! € S;, but not
both. This puts a bound on the size$)f and hence on the volume of the rectangle
as we will see with the help of some group theory.

Assume without loss of generality thAtis a zero-rectangle, and hence that Sy,
and2"~! ¢ S;. one: H = {0}. Now we are at the place where we have to use an
application ofKneser’s addition theorerior groups[39, 43], which states:

For every pair of subsetd, B C Z~ there exists a subgrou@ of Z =
suchthatd + B+ G = A+ Band|A+ B| > |A+ G|+ |B+G|—|G|.

We apply this theorem to the cases where= S;_; andB = R; (and hence5; =
A+ Bwithi=1,...,k), which gives us: groupsG; that obey

S = Si1+Ri+Riya+---+ Ry
= Si—1+Ri+Gi+Ri+1+---+Rk

This readily shows that for evetiythe only possible&r; is the trivial subgroufs; =
{0}, for if G, is a bigger subgroup, thef,2" !} C G; C S, andS; would not
correspond to a monochromatic rectangle (remembebftka$; ). By the second part
of Kneser’s theorem we therefore know théf| > |S;—1| + |R;| — 1 for all 4, which
sums up to

k
ISk > 1—k+Z|Ri|-

=1
The exclusion of the elemedt—* for the setS;, gives ugSi| < 2" — 1, leading to

k
SR < 2"—2+k

i=1

for the sides of the rectangl®, and hence for its maximum volurse

k k
2" -2+ k
o= < (22
i=1

The last equation shows us an upper boumesh a monochromatic rectangle for an
exactk-party solution to the Odd?-problem (with input sizg The decision tree of
this protocol has to cover a total 2#* inputs and hence needs at Ie%\zskt leaves. This
gives the tree a minimum depth bfog(2") — logv > klog k — k, by the assumptions
n > log k andk > 2.

The method of the previous section now concludes our prafdfery classical
and exactt party protocol for the Odd?-function requires at lelakigk — k — 1 €
Q(klog k) bits of communication.
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Conclusion

We just saw a difference between classical and quantum cancation of the order of
klog k for k parties. This assures us that the quantum protocol is mficeeet even if
we want to take into account the distribution of the entadgjabitsduring the initial
stage of the protocol. If the cost of transmittingubit equals: classical bits, then the
quantum complexity still remains linear in For large enoughk (i.e. logk > ¢ + 3)
the resources that the classical procedure requires braste than the costs: + 1)k
in the quantum scenario.
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Chapter 7

Quantum Whispers

Probabilities in quantum mechanics depend quadraticallhe amplitudes of a state.
This phenomenon lies at the heart of the so called ‘quantuno Zffect’. In this
chapter, we will use this effect to establish a differenasveen classical and quantum
communication in the probabilistic model. We will show hawveterror probability of
the one-bit quantum protocol will always be lower than tHahe classical approach.
This result is extended to the setting where each party, égaence of many parties,
is only allowed to communicate one bit to its neighbor (akirtite game of ‘Chinese
Whispering’). It is argued that for this multiparty problethere is no reliable classical
solution, whereas with entanglement it can be solved eaHilg results of this chapter
were published in the article “Quantum communication usimgpnlocal Zeno effect”
by Lucien Hardy and myself.[34]

Introduction

In this chapter, we will employ the ‘quantum Zeno effect’ tnstruct a new quantum
communication procedure. This effect relies on the quagnatther than linear, rela-
tion between the amplitudes and the probabilities of a quargtate. Several authors
have used this phenomenon to obtain proofs of nonlocaléyahe different from the
ones that we encountered in the previous chapters of thasstfib, 33, 62]

First, we will define a two-party problem Jum@?y) for which prior entanglement
enables us to significantly reduce the error over the claksienario. After that, a
multiparty version, “Quantum Whispers”, of the same prabls introduced. For this
task we exhibit a reliable quantum protocol and argue th&towuit entanglement no
such solution exists.

The Two-Party Problem

The “jump or no jump?” question that we will discuss in thisapter is a typical
example of a promise problem. In the two-party setting Abeel Bob receive their
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-~ 7 T~ ~ — T~
o /y .o /y
X - -y
- . P
~_ _ - ~_ _ -
llnojump77 “jumpll

Figure 7.1: Explanation of the communication problem. “No jump” meahattx
equalsy or is adjacent to it; “jump” refers to the situation whete is oppositey or
adjacent to that opposite position.

inputz andy € {0,1,...,2N — 1} under the promise that— y € {—1,0,+1} mod

N. The natural numbeN is a free parameter of the problem but has to be thought of
as ‘big’. Alice is allowed to communicate one bit to Bob, whe has to try to answer

if the pairz, y makes a jump of siz& or not:

“no jump”
“jumpﬂ

ife—ye{-1,0,+1},
Jump?z,y) = { ifx—yejiN—1,N}N+1}.
(The subtraction is performed modudv.) See Figure 7.1 for a clarification of this
setting.
For both the classical and the quantum solution of this mmblt is inevitable that
Bob sometimes makes a mistake. It will be the difference érttinimum error rate
that separates quantum from classical communication.

The Quantum Protocol

Alice and Bob start in the setting where they share an enganglbit pair® 45) =
%(|OO)+|11)). Depending on their input values they will perform a rotatidto their

local qubits. Alice applie®( %) to her® 4, and Bob rotates hié p with R(J5;). As
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a result of these two actions, the joint state is now of thefor
R(3%) ®R($7)10a8) = - cos (E5¢7) 00) +

_ﬁ sm((x s )|01)

\% sin ((I y)”) [10) +

fcos((z yr )|11)

After the rotations, when both parties measure their quibthe standard basis, the
parity of the two outcomes andb is strongly correlated with the difference between
andy:

Prob(a ® b =0lzy) = cos’ (%) ,
Prob(a®b = 1|zy) = sin® (%) .

By the periodicity of the trigonometric functions, the ggria @ b) will give a reliable
indication of the “jump versus no jump” question. In the cageerexz andy do not
make a jump, we have

cos® ((m;ﬁ)”) € {1,5+3cos(%)},

and hence

Prob(a & b = 0no jump betweem andy) > 1— (Z&)°,
Prob(a & b = 1|no jump between andy) < (%)2 )

Conversely, in the case where there is a jump betweamdy we have

sin? (S597) € {15+ eos (%)),
and consequently

Prob(a & b = 1jump between andy) > 1— (3&)°,

Prob(a & b = 0|jump between: andy) < (%)2 )

The above analysis suggests the protocol where Alice serdaéasurement out-
comea to Bob, who then calculates the parity @ b). By doing so, the error rate of
Bob’s estimation will be bounded by the quadratic expressio

™
€quantum < INZ*

Next, we will show that anglassicalprotocol will have a error probability of the
orderQ(+).
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Figure 7.2:Given that Bob knows hig, there are six possibilities for Alice’s value
Here we have chosepsuch that for some allowed values Alice will send “one”
(black) and for some other values “zero” (white).

section 7.4  Best Possible Classical Protocol

As in all of the previous proofs, we start by assuming thaté&knd Bob use a deter-
ministic protocol. Furthermore, we use the uniform disttibn over the allowed input
values. This is where each combinationy) € {(z,z - 1), (z,2), (z, 2+ 1), (z,z +
N-1),(z,2+N), (z,z+ N +1)} has equal probability;. (Alice’s inputz ranges
from0to2N —1.)

Let Sy (S1) be the set of: values for which Alice communicates a “zero” (“one”)
to Bob. If one of the set§ is empty, Alice does not convey any information to Bob,
who then has to make a blind guess on the “jump versus no jugstepn, leading to
an error rate 060%. Hence we will assume that boffy andS; are not empty. This
implies that sometimes Bob will have a valyeuch thatly — 1) € Sg andy € S;.
(The probability that this happens will be calculated beJdwigure 7.2 shows us how
Bob sometimes receives a “zero” from Alice (when= y — 1) in this scenario, and
sometimes a “one” = y). We know thatly — 1) € Sy andy € Sy, but for the other
four possibler values it is still unspecified to which sétthey belong (hence we have
a total of2* = 16 different cases). We continue with our assumptions bynigtthe
three “jump” valuegy + N — 1), (y + N) and(y + N + 1) be members of,, and
for the the remaining “no jump” inpuiy + 1) € S;. What should Bob conclude if he
receives a “zero” from Alice? Figure 7.3 shows us tha3 iout of 4 cases, Alice's
value corresponds to a “jump”, whereas only the y — 1 case is a “no jump”. Hence,
Bob optimizes his answer by saying that there was indeed p petween: andy. By
the assumption of a uniform distribution over the valuethis means that Bob will be
incorrect25% of the time if he receives a “zero” from Alice in combinatiorithvthis
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Figure 7.3:A specific coloring of the four grey dots in Figure 7.2. Forstiexample,
the analysis in the text shows that Alice and Bob have an gmaiability of & when
trying to decide ifr andy make a jump or not.

y. If Bob receives a “one” from Alice, then he knows that either y orz = y + 1,
and hence he can state that there was no jump without thefrislaking a mistake.
The above shows that the total probability of error for thi&irsg of Figure 7.3 isé— (the
case(z,y) = (y—1,y)). Itis straightforward to go through the othit possible cases
of Figure 7.2, and to conclude that the minimum error prolitsi indeed .

For any nontrivial protocol withSy|, |:S1| > 1 the scenario of Figure 7.2 will occur
for at least2 of the possibl@N values ofy. Accordingly, the minimum error-rate for
a deterministic protocol is bounded by

2 1

Edeterministic Z 5N " 6°

We can thus conclude that any classical, probabilisticgnace for deciding the jump/
no jump question will be incorrect at leagg; of the times, which is obviously linear
in .

N

The error rate of the quantum protocol is limited by

2
™
€quantum S AINZ>

whereas for classical protocol it always holds that

1
Eclassical > BN

We have thus proven that (for big enoudh the quantum protocol will always be
more reliable than any possible classical procedure. Iméh section, we will try

to amplify the difference between the quantum and classiettings by looking at a
multiparty scenario.
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7.5. MULTIPARTY COMMUNICATION PROBLEM

Multiparty Communication Problem

Imagine the above two-party problem as the first step of aipauty problem. In this
scenario we consider a concatenation of jump/no jump quesfor a line-up ofA/
parties that are only allowed to communicate one bit to thext neighbor. This setting
is reminiscent of the game “Chinese Whispers”, where a ngegsasses through a row
of whispering people. Hence the name “Quantum Whispers”.

Formally the problem is defined as follows. TakepartiesA,, ... Ay, each have
two input valuegy;, ;) except for the first party who only receives:an and the last
personAj, with hisyas. The promise on the input is the same that we used for the
jump versus no jump problem:

yir1 —xi € {=1,0,1,N—1,N,N + 1} mod 2N,

forall 1 < i < M (note thatr; andy; are uncorrelated). After having received their
respective inputs, each party; is allowed to communicate one hit to his or her
neighborA,;,,. After theseM — 1 bits of communication, the rightmost participant
A has to decide whether there was an even or an odd nhumber o jampng the
M — 1 pairs(z;, yit1)-

We are interested in the error rate in the case wiéris of the same order a¥
(thatis,M = yN with v € O(1)). The quantum solution to the quantum whispers
problem will be a straightforward application of the tworygprocedure for each cou-
ple (A;, A;+1). For big enoughV, this will give us a reliable quantum protocol. We
then continue by arguing that in the classical setting sueHiable protocol does not
exist. But it should be stressed that a formal proof of thasnglis still lacking.

The Quantum Whispers Protocol

Before receiving their input values, each péit;, A;1,) shares an entangled state
|l ) = \/%(|00) + |11)). (This notation as to distinguish the quidit that is en-
tangled with the system afl; ; from &¢ that is correlated with the qubi;,; of
Aiv1.)

The first two parties start by performing the same rotatiamstheir respective
qubits®! and®., as was described in the section on the two-party setting.

The standard measurement on both sides yields the classisal, andb, (of
which a; will be sent toA, by the first party). From earlier investigations, we know
that the parity(a; @ b,) indicates withl — % certainty whether or not there is a jump
betweenz; andys,.

These rotations and measurements are done hy/aHl 1 couples(4;, A; 1) on
their qubits®’ and ®,,, (the rotations depending on the respective input vaitjes
andy;;+1). The estimations of the jump/no jump answers are the clalsparity bits
(a; ®biy1), and hence the question “is there an even or odd number of§@hgan be
estimated by the total pariEf‘i Il(ai @ b;+1). Therefore, afterl; has sent heg; to
her neighborA, continues by communicating the Bit; & b2 & a-) to the third person
in line. This procedure of sending the parity of the receivi#énd the two outcomes
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a; andb; to A; 1, is repeated untild,, is reached. The bit that this rightmost party
receives fromA,,_; corresponds to the previously mentioned spim (a; & bit1),
minus his own outcomé&,,. Hence, by taking the parity of the received bit dng,

he will effectively estimate the odd/even jumps questiongdb — 1 repetitions of the
two-party protocol. This allows an easy analysis of the eigeterror, as we will see
below.

section 7.7 Error of the Quantum Whispers Protocol

In the description of the quantum whispers approach to sglthe odd/even jumps
problem, it was mentioned how it is equivalent with — 1 applications of the two-
party solution. We know that the error rate of this procedsigounded from above
byeq < % Hence, the probability of success- sé” of the multiparty protocol is
the sum of the probabilities corresponding to an even nurbsristakes among the
M — 1 guesses. The lower bound on this probability is calculaged b

2j<M

B 9 N\ 2j 9 \ M—1-2j
I Y M—17 (™ 1- 1 .
a 2j AN? AN?

Jj=0

For some constant = % and a large enough, this can be approximated by only
considering thg = 0 case; it hence has a success probability of at least

2 M—1 T2y
1—eM 1- — ~1——L.
fa 7 < 4N2) AN

This shows that thé/ = ~ N party version of the quantum whispers protocol has a
maximum error rate of the ordé¥(+;). In the case of largéV, this yields a reliable
quantum protocol.

section 7.8 Possible Classical Whispers

Here we will argue that there does not exist a reliable atasprotocol for the even/odd
jumps problem (again for larg¥’ andy = 4% ~ 10).

We start by noting that the “jump” versus “no jump” problenirislependent for
each(z;, y;+1) pair because there is no correlation betweeandy;. The parity of
the number of jumps relies critically on all tli¢ — 1 answers to the two-party problem
which are independent of each other. This strongly sugtfests is necessary to solve
the jump/no jump problem for all paifs;;, y;+1). Because we only allow a single bit
of communication between the partids and A;1, this will always induce an error-
rate of at Ieas% per pair. (See the result of Section 7.4.) With the number of pairs
M —1 = yN — 1, the probability of an odd number of such errors (leadingro a
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incorrect estimation of the parity) is bounded from below by

2j+1iM M1 1\ %+ ) 1\ M-2i-2
— 27 +1 6N 6N

Jj=

1 M-1
e R
> (- 5v)

o
°R
v

)
w2

N = N =

~
~

5 (assuming bigV).
Under the assumptions of ~ 10, the error probability is effectively50%. This
tells us that the answer of,; is as successful as the outcome of a random coin toss.

The above argument for the unreliability of classical peols is not water-tight,
as we have not formally excluded every possible protocothSuproof turned out to
be more difficult than expected (as is often the case for ldeend proofs[29]). This
difficulty is due to the great number of potenti#l-bit protocols that thel/ parties
can use. Consequently, although we have proven that thests exreliable quantum
protocol, we cannot b&00% certain that there is no classical procedure that is redjabl
however unlikely this may be.
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Chapter 8

Lower Bounds for Quantum
Communication

In the previous chapters, we have only seen examples whreggement reduced the
complexity of communication protocols. Here we give ourtfiosver bound for quan-
tum communication. We will show that for the inner produaiplem, entanglement
does not significantly improve the performance over thesidas case. The quantum
and classical scenario are nevertheless not equivaleigtdifference is indicated by a
small reduction of error in the = 2 case of the inner product problem with only one
bit of communication between the parties. See [24] for thegimal article by Richard
Cleve, Alain Tapp, Michael Nielsen and myself.

Introduction

How can we prove lower bounds for quantum communication? i@isly, some of
the methods we use for classical communication fail; otis¥where would be no
difference between the two. Hence, we have to look for ‘insfimbties in quantum
mechanics’ and try to apply them in the setting of distributemputation. The prob-
lem is that, at the moment, we do not have many examples of thakare impossible
in a nonlocal world. Instead, our path to understandingregitanent is paved with un-
expected phenomena that do not exist in classical infoomakieory. One of the few
‘no-go’s’ in quantum communication is Holevo’s bound, whiells us that quantum
bits are not any better than classical ones for transfemiftgmation between parties.
This bound, in combination with a result by Michael Nielssed Appendix A), will
indeed be one of the cornerstones for this chapter’s lowentho

The crucial step in the proof that will follow is to go from tipeoblem that only
focuses on the single bit of the functigitz,y) to the transfer of the whole bit string
y. This is done by considering ghthat is familiar both in communication complexity
and in quantum computation: the inner product function.
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secton8.2  The Inner Product Problem

For two partiesd and B with input strings(z1, ... ,z,) and(y1, ... ,y»), the inner
product functiodP : {0,1}" x {0,1}" — {0, 1} is defined by

n
IP(z,y) = Zml -y; mod 2.
i=1

This function is well studied as a classical communicatibfem. (See [20, 64]
and Section 3.5 in [42].) It is easy to see that for a detestimprotocol,n bits
of communication are required. This intractability ¥ does not disappear in the
probabilistic scenario. If Alice and Bob want to kndR(z, y) with a maximum error
of &, thenn — O(log(;=52)) bits of communication are still necessary. Hence for a
fixed error rate, the communication complexitynis- O(1). Below we will see that
both for the deterministic and probabilistic cases, theasibn does not much improve
if the two parties are allowed to use prior entanglement. t Thathe inner product
function is also hard in the setting of quantum communicatio

In quantum computation, tH& function is inextricably linked with the Hadamard
transform. This was already mentioned in the section onuaimformation, but we
will briefly repeat it here. The one qubit Hadamard transféfiis defined by

H|0) = 25(10) +]1)) and HI1) = —5(]0) - 1)),
which also shows thall is its own inverseH? = 1.

When we apply a Hadamard to each individual bit of the stging 1 - - - y,, we
obtain a superposition of all possihlebit stringsa where the information abouytis
stored in the phases as the inner product betwesnd the different’s:

|y17'-' 7y’n> — H®n — \/12_n Z (_I)IP(I’y)L/Ela"' 7'T’n>' (81)
ze{0,1}"

This suggests the following protocol to extrachits of informationy; - - - y,, with
the help of the inner product functidR (-, ). We start with the uniform superposition
of all stringsz € {0, 1}" and an empty output register:

S > 12)0).

z€{0,1}

Calculating the function valud®(z, y) in superposition then yields

Y [@)P@.y)).

z€{0,1}

We now apply a conditional phase flip (CIF) on the output register,

= Y (F)PEV|)IP(e,y)),
z€{0,1}
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8.3. INFORMAL SKETCH OF PROOF

after which we inverse the first computation of the functiatue, thereby giving the
final state

Y (C)FEm)0).
z€{0,1}

Equation 8.1 shows us that this last state gives us aib thiés of the stringy.

We thus see how the quantum calculation of the inner produa Superposition
of z strings results in a protocol where we obtaitbits of information. We will use
this phenomenon in combination with the known quantum Atighs on information
transfer to prove our lower bounds on the quantum commuaitabmplexity of the
IP function.

Informal Sketch of Proof

Before we write down the formal proof of the quantum lower ibds, we will first give
an overview of the ideas that lie behind it. Assume that Afind Bob can compute the
inner product valugP (z, y) of theirn bit strings withk classical bits of communica-
tion. Instead of classical inputs, let Alice use the supsitpm of all possible strings
z while Bob fixes higy. The two parties then continue by executing the protocol ‘in
quantum parallel’ that now usésquantum bits of communication. Having finished
this procedure, Alice now has a superposition of stringntangled with th™ func-
tion valuesP(z,y). As we saw in the previous section, this information canlgpas
converted into a description of Bobrsbitsy; - - - y,. Hence Alice has—withk qubits

of communication—obtainex bits of information. The bounds on quantum informa-
tion transfer tell us that this is only possiblekif> %, which is tight by the method of
Superdense coding (see Section 2.3).

For the probabilistic bound, we use the same argument bygayi... the 2"
function valuesapproximatindlP(z, y) . .. into a descriptiorstrongly correlatedvith
y ... only possible if% is of the order of..”

Our main concern for the formal proof will be the conversidriree protocol for
classical inputs into its quantum superposition variafiis Feduction provides a new
method of analysis that can also be used for other, futureddeunds in quantum
communication. The formal justification of it will be given the next section.

Quantum Parallelizing Communication Protocols

Let Alice and Bob share some initial entanglem&nts before they receive their inputs
z andy. During the execution of the communication protocol, the parties will most
likely need some additional ‘working space’ to perform tipp@priate computations,
after which Alice writes down the outcomfz,y). Without loss of generality, we
assume these ancillas to be initially set to zero, and hdreg/hole system starts in
the state

lbeginz, y)) = [2)[0)|0---0)[¥ap)[0---0)|y).
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After the protocol is finished and Alice knows the outcofite, y), both working regis-
ters have probably changed depending on the initial val@sly (as has the entangled
state?); we therefore write:

semi-finalz,y)) = |)|f(2,y))|garbageér, y))|y).

Alice can now flip the phase of her state depending on the megdz, y). After that,
we can perform the whole protocol in ‘reverse’, thereby reing the garbage and the
outcome as well as restoring the initial entanglem&nbut maintaining the function
depended phage-1)/(*-¥), This gives us the clean, final state

final(z,y)) = (=1)7“¥[2)[0)0---0)[¥4p)[0---0)]y).

We thus see that arkyqubit communication protocol can be transformed in a claan,
garbage-producing, unitary procedure that requefesjubits of communication. By
doing so, we enable the application of the protocol in supstipn for different values
of z, by which we mean the following.

Assume that instead of one strimgAlice has a uniform superposition input strings:

S D lbeginzy) = A D [2)]0)0---0)[Tap)|0---0)y).

z€{0,1}n z€{0,1}"

For this situation, Alice and Bob can perform the same cleatopol described above.
The communication of this ‘quantum parallelized procedig@lone with the same
number of qubits as in the original schema. Hence, the endtiissa 2k qubit com-
munication protocol with the final state:

Z= Y final(e,y) = S Y (=)7“V|begir(z, y)),

z€{0,1}n z€{0,1}n

where the information about the function valugs:, ) is now stored in the phases
on Alice’s side. This also shows why we required the initiedtpcol to be clean: it
enabled us to create a superposition of strings)/(*-¥)|z) without suffering from
any entanglement with Bob’s part.

Bounds on Exact Inner Product Protocols

In the previous section, we saw how we can clean up a comntigriggocedure while
only doubling its complexity. We use this result in combiaatwith the assumption
that we have an errorless procedure for the calculatidi¥of {0,1}"” x {0,1}" —

{0, 1}, which requires: qubits of communication between Alice and Bob. This gives
us a2k qubit protocol that establishes the evolution (ignoriremorkspaces and Bob'’s
part as they remain unchanged for clean procedures)

)~y (1)),

for all possibler,y € {0,1}".
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8.6. BOUNDS ON PROBABILISTIC INNER PRODUCT PROTOCOLS

If we apply the sam&k qubit procedure to the initial state where thaegister
is the uniform superposition, then the phases of Alice’s| fshate will contain all the
information abouy:

S S [ I S o )
z€{0,1}" z€{0,1}"

From this it is straightforward for Alice to recover the bijs- - -y, by using the
Hadamard transform of Equation 8.1 on her qubits. The endtrissthus that Bob
has communicated bits of information to Alice. This puts a lower bound on théwa
of k, as we will see now.

Because of the inverse part of the above clean protocoltlgxaof the2k commu-
nicated qubits go from Bob to Alice. Hence, by the result prown the appendix; has
to be bigger tharf % ]. Translating this back to our original (dirty) procedures have
proven that any errorless, quantum protocol needs at[l§asjubits of communication
for the evaluation of the inner product functiih : {0,1}" x {0,1}" — {0,1}. This
result is also tight as Bob can use superdense coding to $endits of information
to Alice.

We will postpone the analysis of protocols with classicas loif communication,
and return to it after we have looked at the quantum boundsrfdyabilistic protocols.

Bounds on Probabilistic Inner Product Protocols

Assume that Alice and Bob have a didyqubit communication protocdP that com-
putes thdP function correctly with probability of at leadt— . We will again look at
what effect the clean protocé!’ - CFLIP - P has on the superposition

lbeginz, y)) = [2)[0)|0---0)[¥ap)[0---0)|y).

More specifically, we will put a lower bound on the fidelity iveien the probabilistic
outcome and that of the ideal protocol of the previous sactibis will enable us to
calculate the probability that Alice obtains the bit stripgfter the2k bits of commu-
nication.
We can always assume that for evergndy, the effect ofP can be written as
Plbegin(z,y)) = +/1-8%|z)|IP(z,y))|garbagér,y))|y)
+ Bl)|IP(x,y))|garbagh(x, y))[y),

with the real valued limited by 3? < e. By settingP|begin(z,y)) = |2)|G(z,v))|y),
we can rewrite the situation after the QF as

(=1)FED2) |Gz, y))ly) + 2612)|G' (,y))|y)

with the ‘erroneous partG’(z,y)) = —(—1)"F@¥)|IP(z,y))|garbaglz,y)). Be-
cause

(@[(G'(z,y)|(y|Plbegin(z,y)) = —(-1)FVp,
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it follows for the inverseP? that

PHa)|G'(z,9))ly) = —(=1)"@Y 5" |beginz,y)) + /1 — B2|begin* (z,y)),

where|begin-(z,y)) is orthogonal tdbeginz, y)). Hence, the final state of the pro-
tocol Pt - CFLIP - P equals

(1 —28%)(-1)""=¥)|begin(z,y)) + 28+/1 — B2|begin*(z,y)). (8.2)

This gives us a lower bound on the inner product between ted alitcoméfinal(z, v))
and the resultPt - CFLIP - P|begin(z,y)), of our probabilistic procedure of

(final(z,y)|Pt - CFLIP - P|begin(z,y)) = 1-28%2 > 1-2.

For different values’ # z, the inner product betwesdfinal(z’, y)) and the state of
Equation 8.2 is always zero, and hence we can also apply theeddwver bound to the
superposition of states:

& Y (final(z,y)|P" - CFLIP - Plbegin(z,y)) > 1- 2.
ze{0,1}"

This concludes our proof that Alice’s probability of obsiexythe stringy after apply-
ing then-fold Hadamard at the end of the protocol will be at lgdst 2¢)2. By Fano’s
inequality[25], this means that the mutual informationvetn Bob’sy and Alice’s
measurement outcome is at leébt— 2¢)?n — 1 bits. By the same reasoning as was
used in the errorless protocol, this is only possible if theant of communicatiot

is equal to or bigger thag(1 — 2¢)?n — 1. For a fixed error rate, this translates as
k€ Q(n).

Communication with Classical Bits

The above analysis dealt with the scenario whé@nd B were allowed to communi-
cate with quantum bits. This is a different setting from tbathe previous chapters,
where only classical communication was allowed. Here wktrgihslate the bounds of
the preceding section to that of our standard model. Esdéatithis reduction are the
protocols of teleportation and superdense coding, whieé gitight relation between
quantum and classical information transfer.

Assume that4 and B have an errorless protocol for the computationlBf :
{0,1}™ x {0,1}™ — {0, 1} that uses: bits of classical communication. Imagine now
that each party has twe-bit strings ¢ andz’ for Alice, y andy’ for Bob) and that they
perform their protocol on botl, y) and(z’,y") in parallel. This yields a procedure
where the communication is always done in pairs of bits atet afhich Alice knows
bothIP(z,y) andIP(z',y'), and hence thaP(zz',yy') = IP(z,y) @ IP(z',y").

In other words, we have 2k-bit communication protocol for the computation of
IP : {0,1}?" x {0,1}*" — {0, 1} that allows superdense coding on the pairs of bits
that are exchanged. Applying this coding method gives agatoe withk quantum
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8.8. INNER PRODUCT PROBLEM FOR TWO BITS

bits of communication that calculates the inner producirfput size2n. By the results
of the previous section, we can now conclude that n, which is obviously tight.

For the probabilistic setting, we assumé-ait protocol with error-rate. By the
same reduction of the above paragraph, this yieldlgabit protocol with a probability
of error bounded from above (e — %) for stringszz’,yy' € {0,1}*". Again
by the earlier results in this chapter, this gives us a lowaria on the number of
communicated bits according fo > (1 — 2¢)'n — 1, which for the limite — 0
impliesk > n — O(1).

Inner Product Problem for Two Bits

The above results on the limitations of quantum commurooadeem to suggest that
entanglement does not hedp all for the distributed calculation of the inner product
function. This pessimism is not entirely justified as we w#le in the remainder of
the chapter. We will consider tH&® function for input strings of size two, where we
allow only one bit of communication from Bob to Alice. Thetktwho then has to
guess the valulP(z; 2, y1y2) as reliably as possible. With classical communication,
this success rate is bounded from above7b¥t, whereas in the quantum case the
probability for A to give the right answer can be alIméstx.

The Classical Case for Two Bits
The functionIP : {0,1}* x {0,1}> — {0, 1} that we consider here is defined by

IP(z172,%1Y2) = 2191 D22 Y2,

which has the following table

P {00 01 10 11
600 0 0 O
ory0 1 0 1
10,0 0 1 1
1110 1 1 0

It is clear that if Alice has: = 00, she will never make a mistake when inferring
thatIP(z,y) = 0. This tells us—as we assume a worst case distribution ower th
inputs—that we have to focus on the errors that can occur whgn00. Hence, we
start our analysis with the assumption that the valuesidy occur according to the
probability distributionu with

(8.3)

0 if z =00,
wlz,y) = { v

1 .
15 Otherwise.

It is also obvious that for this distributiqgm, Alice has to receive some information
from Bob if she wants a probability of success greater thaalfa(equaling a random
guess). We will therefore look at the deterministic proteda, where Bob starts by
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sending the bit valué = 0 if his y is element of some sdB, C {00,01,10,11},
and otherwise the value = 1if y € B;. (With BN B, = {} andBy U B, =
{00,01, 10,11}, see the introduction in Section 4.4.) After this, Alice hagguess
the value ofIP(z,y) on the basis of her string and the received bii. By simply
going through all the options faBy, and B; (essentially8), in combination with the
rational choose for Alice (in the light of the assumed disttion 1), we can see that
the following four protocols each have the lowest possiblergprobability of3 out of
12 = 0.25.

D,: The two B sets areB, = {00} andB; = {01,10,11}. Alice’s answer will
simply equal this bib.

D,: If By = {01} andB; = {00,10,11} thenA's guess is calculated byd¥(x-).

Ds: The final answer is NT(z;) in combination with Bob’s set®, = {10} and
B, ={00,01,11}.

D4: When Bob uses the sef3, = {11} and B; = {00,01, 10}, Alice answers
“IP = 1"if her x = 11 and ‘IP = 0" otherwise.

Moreover, if we look at the values andy for which the above protocols make a
mistake (which happens only whén= 1), then we see that the error probability is
equally distributed over th&2 pairs(z, y) with u(z,y) # 0:

ProtocolD; | the3 combinationgz,y) that D; answers incorrectly
D, (01, 10), (10,01) and(11, 11)
D, (01,11), (10,00) and(11, 10)
D (01,00), (10,11) and(11,01)
Dy (01,01), (10,10) and(11, 00)
This suggests a probabilistic protocol that uses two putdia flips to choose
randomly betweerD,, ..., D4. The following procedure is indeed the best that Al-

ice and Bob can do in the classical case after having receheid inputsz,y €
{00,01,10,11}:

1: Randomization Alice and Bob determine at random which one of the four deter-
ministic protocolsD,, D-, D3 or D4 they are going to use.

2: Bob’s communication Depending on his inpuf and the chosen protocdl;, Bob
sends a “zero” or a “one” to Alice. (See the above list of pcotaescription for
the specifications).

3: Alice’s answer If Alice hasz = 00 she concludesIP(z, y) = 07; otherwise, she
acts in accordance with the protodo) that was chosen at the first stage.

This communication protocol makes no mistake it= 00 and by its randomization
errs with25% in all the other cases. Therefore, a) there exists no inmitilliition

p' that causes a higher error rate t@,rand b) the distributiop as defined in Equa-
tion 8.3 reaches th25% bound and is hence an example of a worst case situation. In
other words().75 is the highest possible correctness ratio in the classatdhg. The
next section shows that this can be improved if we allow Ahcel Bob to use prior
entanglement.
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Section 8.11

8.10. THE QUANTUM IMPROVEMENT

The Quantum Improvement

Here we will show that there is a one bit quantum protocol that has a correctness
rate 0f78.9%, which improves the classical bound by almost four percent.

The two parties have prior entanglement by the standardpais) = \L@(|OO) +
|11)). Depending on his inpuf, Bob first applies an operatiaB, to his®z. After
this, a measurement is performed on the rotated qubit,iyiglal classical bib that is
sent to the other party. If the receiver, Alice, has 00, she knows with certainty that
IP(z,y) = 0 without having to interact with Bob. If this is not the case# 00), she
performs a unitary transformatiot, to her® 4 and measures the qubit in the standard
basis with outcome. Alice’s ‘guess’ forIP(x, y) will now be the parity bita ® b).

With the following rotations forA and B, this protocol will have a correctness
probability of% + % ~ 78.9% for the worst case # 00. (If z = 00, the correctness
rate is100%.) Hence, the quantum protocol is more reliable than anysidakproce-
dure for this particular problem. Thé and B rotations that establish this separation

are (with( = e'¥ = /3 4+ 1/=1):

4 o~ o V3EVB V3-VB
o i\ ¢V3-V3 V3+3

we o~ o V3+v3 —V/V3-3
YT AVB-3 VBB

Lo oo V3rVE (V3-VB3
11 NG <5\/3—\/§ \/3_'_\/3 9

and

roe(3 1) (A7)

B _ 1 1 <7\/§ B _ 1 1 Cll\/§
10—%<C11\/§ 1 > 11—7§<<7\/§ 1 >

(In case the reader is wondering about the ratio behind toi®pol, the entries of the
above matrices were obtained with the help of a computerrpmghat performed a
numerical search for the optimal solution of the inner pidwroblem. The corre-
sponding analytical expressions were inferred and verifiethe author of the com-
puter program.)

Communication Complexity versus Quantum Mechan-
IS
We have reached the stage where we are convinced that quargahanicsometimes

allows a significant reduction in communication complexiyt also sometimes does
not. “The influence that quantum physics has on the theorystifilbited computation
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is significant but subtle”, should be the tantalizing cosua for computer scientists.
But, to paraphrase Dr Johnson[12], “If physics kicks cormepatience, should physics
not be kicked back?” That is, what can we learn about nonilycahd quantum me-
chanics from the theory of communication complexity?

The next chapter—which will be the last one before the Caictuof this thesis—
tries to initiate such a ‘back-action’. It will be shown thée limits of nonlocality
coincide with the limits of distributed computing and thatlo of them can be viewed
as a refinement of the ‘no-signaling theorem’.
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Chapter 9

Superstrong Correlations versus
Communication Complexity

How close is the relation between nonlocality and commuigipavith prior entangle-
ment? What are the implications of the no-signaling thedi@rthe nonlocal behavior
of physics and communication complexity? In this chapterwill touch on these and
related questions. We do this by imagining a toy-theory @fleecHsH inequality for
locality is maximally violated (stronger than is possibieguantum mechanics) while
still respecting the axiom of no-signaling. It will be showhat in such a scenario,
the communication complexity of a distributed decisiontjfem becomes a vacuous
concept: it will always be one bit. This approach is inspibgdhe work of Popescu
and Rohrlich who, in a series of articles, asked the questibihy is Nature not more
nonlocal than she is?”

section9.1  Nonlocality Revisited

The Clauser, Horne, Shimony and Halt{SH) inequality for classical theories gives
a bound on the strength of correlations between two segheadeeriments.[22] We
described this nonlocality argument earlier in this thesiswe will here directly state
it in the form as we will use it in the rest of this chapter.

Imagine two separated partidsand B, each of which can perform one out of two
experiments on a particle that they receive from a commoncgouThere are there-
fore four experimental set-ups that can apply to the comtbsystem: (Mg, MP),
(Mg, MP), (M{, ME) and(M{*, MP). The two possible outcomes of the measure-
ments on each side are label&d &nd “1”, and we will call the2-particle systen® 4 5.
We repeat the experiment many times such that we have anaae@stimation of all
the possible correlations between the different measurevaad their outcomes. As
it is understood that for each trial we will always use the sastate-preparation of
® 4 g, we drop the conditional part when expressing the proladsliFor example, the
probability that both Alice and Bob measure a “one” when theg the measurement
settingsM¢' and M P is denoted byProb(Mg! - MP =1).
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9.2. THE QUESTION OF POPESCU AND ROHRLICH

The main result of Bell[6] andHSH s thatfor any local, hidden variable theory
about® and the measurementg“ and M 2, the following inequality most hold:

Prob(Mg' @ MP = 0) + Prob(Mg' & MP =0) +
Prob(M{* ® MZ =0) + Prob(M{!& ME =1) < 3.

We know by now that quantum mechanics violates this bouni wit

> Prob(MPeMP=z-y) =2+V2 ~ 314,
x,ye{O,l}

for the entangled pair of qubit® 45) = %(IOO) +|11)), thereby proving that the the-
ory of quantum mechanics cannot be phrased as a local thElig;. however, is only
of limited interest. More important is that thus far all expgents have confirmed the
violation of thecHsH inequality (as predicted by quantum physics).[3, 27, 65FTh
the more relevant side of the matter as it is not inconce@/Midt in the future we will
replace the theory of quantum mechanics by a more accuratera general model of
Nature. But no matter its exact formulation, this succegdiodel will have to agree
with the experimental results that we have already obtaiAed asthe empirical data
by itself rules out a local explanation, any proper futuredidate theory will have to
be nonlocal as well. The study of ‘nonlocality-as-such’wkdofor the above reasons,
extend to all theories that violate the bound of Equation @ather than only investi-
gating the version of nonlocality that we encounter in staddjuantum mechanics. In
this chapter, we will indeed study nonlocal correlatioret thre not possible with our
current theory of quantum physics.

The Question of Popescu and Rohrlich

In a series of articles, Sandu Popescu and Daniel Rohrlicthasjuestion why Nature
seems to allow a violation of theHsH inequality with a correlation term of + /2,
but not with more.[55, 56, 58] (See, for example, the artipleBoris Cirel'son for a
proof that2++/2 is indeed the limit.[21]) They rhetorically ask themselvé&ould the
requirement of relativistic causality restrict the vigatto [2 + /2] instead of4?”[56]
Such a result would be great step towards a better undenstpofiNature for “If so,
then nonlocality and causality would together determirgegbantum violation of the
CHSHinequality, and we would be closer to a proof that they deiteerall of quantum
mechanics.” Unfortunately, this turns out not to be the caldee authors prove this
by constructing a toy-theory where the nonlocality Inegyé.1 is surpassed by a
correlation value oft. The non-zero probabilities of this super-nonlocal theary
simply

Prob(MMP = 00) = Prob(MZAMP =11) = if zy € {00,01, 10},

(NI

Prob(M{* MP = 01) = Prob(M{'MP =10) = otherwise.

This leads indeed to the maximum violation
Z Prob(M2 & MyB =x-y) = 4,
z,y€{0,1}

(9.1)

(9.2)
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while the randomization of the outcomes still prevents élie Bob from transferring
information to the other party without the use of convergil@ommunication.

So, if causality is still respected with the correlations=ofuation 9.2, why does
Nature not allow it? Are there any (obvious) first principtest forbid a violation
stronger than that of quantum mechanics? Or, to put it mamdfically and to the
point,what is so bad about stronger-than-quantum-mechanicsxwatity? Here | will
try to provide a partial answer to this question by pointing the far-reaching conse-
quences of the toy-model by Popescu and Rohrlich for digeihcomputing. It will be
shown that the maximum violation of tleHsH inequality leads to a model of Nature
where the notion of communication complexity is vacuoukdatision problems can
be solved deterministically with only one bit of communioat

First, we will find a general way of expressing all possibiibuted functions in a
standard format that coincides with the inner product protiior two parties. Then we
will see how, with superstrong correlations, ffizproblem (and hence all problems)
can be solved with the minimal amount of one bit of commuimiceirom Bob to Alice.
The concluding section of this chapter is used for a disounssf both this result and
the prospects for continuing this line of investigation.

section 9.3  Distributed Decision Problems as Inner Products

Any function f : {0,1}" x {0,1}™ — {0,1} can be expressed as a multi-variable
polynomial with modulo two arithmetic (where+ 1 = 2 = 0). This is most easily
seen by the fact that elementary Boolean operationahike, ORr, NOT or ‘equivalence’
can be calculated with addition and multiplication o¥et

TANDY = x-y, TORYy = rx+y+ox-y,
NOT(z) = 1+ =, (zey) =1+x+y.

Just as any Boolean functiof : {0,1}" — {0,1} can be constructed from those
primitives, so canf also be constructed from the elementaryd2 operations 4"
and “”. The 2-bit equivalence relation &1v, for example, thus becomes

EQUlV(iITl.TQ,ylyQ) = (1‘1 f=4 yl)AND(.TQ f=4 y2) = (1 —+ 21 + yl) - (1 + 29 + yz)

Furthermore, as long asandy are of finite length, we can rewrite such polynomi-
als

f(xla"'awnayla"‘ayn) € ZQ[*/Ela--'awnayla"‘ayn]

as a finite summation of producys; P;(z) - Q;(y), whereP and() are polynomials
in the input strings: andy respectively. Moreover, we can restrict tefunctions to
the products of the form)(y) = ij;j, with ¢ one of the2™ characteristic vectors
¢ € {0,1}™. In total, there are therefo2® different polynomialg);(y) that we have
to consider, and hence the inde the summation is bounded ly< i < 2™, This
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gives us a way of representing the functjbas an inner product problem of input size
2™

f($1"'$n,y1"'yn)

> Pela)-IT 5 (93)
j=1

ce{0,1}

on
ZPZ(:El, ,.’En) Qz(yla ,yn) (94)
i=1

For the2-bit EQuIv function, for example, this is shown by

(I4+z14+y) A +z2+y2)
(I4+z+zs+z122) +(L4+22) 91 + (1 +21) - Y2 + Y192

4
= ZPi(xhxz) “Qi(y1,92),
=1

EQUIV(z122, y112)

with the2™ = 4 polynomials on each side:

i Pi(z1,72) Qi(y1,92)
1 1+1‘1+1‘2+1‘1$2 1

2 1+ 29 Y1

3 1+ 2 Y2

4 1 y1y2

We can view this as an inner product problem because all thehiesP; (z) will
be known on Alice’s side without any communication from tlilees party. The same
holds for the bits described by the polynomi@i®n Bob's side. Hence, it andB are
able to compute thEP function for input sizes a2” with the one bit of communication,
then they also are able to calcularydecision problenf : {0,1}"x{0,1}" — {0,1}
with a single bit of information exchange. We will see in thexhsection that this
indeed possible with a maximum violation of theisH inequality.

Inner Product and Nonlocality

Assume a model of Nature where the probabilities of Equéi@rare applicable, and
hence where the correlation

Prob(M;' @ M} =z-y) = 100%

holds for allz, y € {0,1}. In such a world, Alice and Bob (with their bitsandy) can
perform two separated measurements on their super-cededtates which yield the
outcomesy andg that obeya + 5 = zy. From this, it follows that in the case of the
inner product functiodP,,, Alice and Bob can perform measurements on an equal
number of super-correlated particles in order to obtaintheut any communication—
a collection of bit valuesy; and g;, with againa; + 3; = x;y; for everyi. By the
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commutativity of addition (modulo two), this allows the regping of the bits to the
two separated sides of the communication protocol:

n n n n
IP(2y - Tnyy1Yn) = D iy = D ai+Bi = Y o + Y Bi -
i=1 i=1 i=1 i=1

N—— N——
Alice’s side  Bob’s side

Because Bob can construct and add fiisralues without requiring any information
from Alice, he can therefore compute the value= )", ; mod 2 by himself and
broadcast this single bit to Alice. She, on her part, cretites; values and finishes
the protocol with the errorless conclusiin(z,y) = b+ >, a; mod 2.

section 9.5 Trivial Superstrong Communication Complexity

We just saw how th&P function has a communication complexity of one bit for every
finite input size in the setting of superstrong correlatiohfence, we can apply the
reduction of Section 9.3 to reach the result that any disteith decision problerfi(z, y)

can be exactly computed with a single bit of communicaticudion 9.3 tells us that
we can rewrite the functioffi to

on
f@iznyi-oyn) = Y Pil@ ) Qilyr, . yn).
i=1

As Bob can compute all th@; values by himself, he and Alice can also remotely and
independently create the and 8 values such that; + 8; = P;(z) - Q;(y) for all

1 <4 < 2™, After the appropriate regrouping of the sum, the previansagion then
becomes

2" 2"
f@i2p,y1-yn) = Zai + Zﬂi
i=1 =1

N—— N——
Alice’s side Bob’s side

It should now be clear that Bob can compute thebbit )" 3; mod 2 by himself
and then communicate it to Alice who, just as for i function, concludes with
flz,y) =b+ 3, a; mod 2.

This finishes the proof that with the help of the superstromgetations of Equa-
tion 9.2, any distributed function can be decided on Aliséde without error after only
one bit of communication from Bob. It is true that the amouriesources (the super-
correlated states) grows exponentially with the input gizeut this does not effect
the conclusion that the communication complexity—afteritiputs are distributed—
is minimal. We will finish this chapter with a short discussi@bout the implications
of the above result.
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9.6. DISCUSSION

Discussion

We can now rephrase our original question as, “What is so tialditure about super-
efficient distributed computing?” It is not clear if thereagisonvincing answer to this
guestion, as it does not seem to conflict with any physicaition. But trivial com-
munication complexitydoesdisprove the existence of an intrinsic ‘complexity’ for
distributed tasks. Even if we need an exponential amountriof guperstrong en-
tanglement (as is indeed the case in the derivation of Seéti®), the solution of all
possible distributed functions with a single bit of comnuation surely does contra-
dict our experiences in computer science. Much as in corbpityatheory, there is
a hierarchy of different ‘classes’ of communication prab$e[4] Such hierarchies are
at the core of theoretical computer science, and theirapsik’—as happened here by
assuming superstrong correlations—goes against theiamwaf most researchers in
the field of complexity theory.

Future investigations along the lines of this chapter caaitmed at obtaining other
implications of stronger-than-quantum-mechanics cati@hs. What happens, for ex-
ample, if we assume a violation of tteHsH inequality with a factor less than the
four we used here, say wim%? This is still stronger than allowed by the the nonlo-
cality of quantum mechanics, but the consequences for conwation complexity are
less clear in this scenario. Also, the possible implicatifor computationaklasses
deserve further research. One can thus investigate howxtbr@ce of superstrong
correlations would enhance the power of, say, logarithrejati circuits. Could it be
the case that this class N contains all of P? And even beyond that, what can be
computed in polynomial time under the assumptions of thaptér? The conjecture
that superstrong nonlocality would imply NP P;,,, is certainly a tempting thought.
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Chapter 10

Conclusion

In this last, chapter | will describe some of the work on comination complexity
done by other authors. This review is concluded with an vetfor future research.
Finally, the possibilities of experiments that implemen¢®f the protocols will be dis-
cussed. We derive some threshold values for the realidtingef noisy entanglement
and faulty detectors. These criteria for a proper quantumraeonication protocol refer
directly to some of the loopholes that exist for the experitakverification of Nature’s
nonlocality.

Other Work on Quantum Communication

Soon after the first publication of a separation between uaand classical commu-
nication complexity[23], other, more spectacular, resutere obtained. Besides the
ones described in this thesis, the following results shbelchentioned.

In 1997, Harry Buhrman, Richard Cleve and Avi Wigderson otad an almost
guadratic separation for the well-known two-party disfoass problem in the random-
ized setting.[17] In the same article, they also showed groeential difference be-
tween quantum and classical communication for a detertianomise problem that
is based the on Deutsch-Jozsa algorithm.[26] The functiothi quadratic separation
tells if two setsX,Y C {1, ... ,n} are disjoint or not. Hence,

n
DISIONT(: -~y yn) = [ NOT(z: i),
i=1

wherexz andy € {0,1}" are the characteristic vectors for the sadtsandY. The
authors recognized that this function is a distributed edse database search for an
indexi such thatz; - y;) = 1. Hence, by applying Lov Grover's search algorithm[14,
31, 32] while sending the index register of sizg n back and forthO (1/n) times, Alice
and Bob can solve this problem with(,/n - logn) bits of communication. As it was
already known that a probabilistic solution of thesDoINT function requiresd(n)
bits of communication[38] in the classical setting, thisabtished a near quadratic
separation.
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The exponential difference is possible for the determimipromise problem where
the function DDJ (‘distributed Deutsch-Jozsa’) is defingd b

_ 0 ifthe stringz @ y is ‘balanced’,
DDJ(z1 ... Zn, Y1 -+ Yn) = { 1 ifthe stringz @ y is ‘constant,
wherez @ y is the bitwiseEXCLUSIVE OR of the n bits (z1 @ y1,... ,2Zn @ Yn),

and the promise om andy is that this string is either balanced or constant. For the
quantum solution of this problem, Bob starts by preparirg state oflogn qubits
% >, (=1)¥1i), which is then teleported to the other party (requirkigg n bits of
communication). Alice, on her side, changes this receitaie $o the final superposi-
tion ﬁ >, (=1)7:®¥%4), which enables her to decide without errar iby is balanced
or not. The proof that of the order af bits of communication are necessary without
quantum resources is rather involved and can be found irrigimal article. The expo-
nential separation by Andris Ambainis, Leonard Schulmampan Ta-Shma, Umesh
Vazirani and Avi Wigderson improves the previous resultiattit holds for the more
realistic probabilistic setting.[1] It should be mentich&owever, that the distributed
‘sampling’ problem of this article lies outside the stardleaommunication model: it is
a not a decision problem, but a multi-valued function indtea

The strongest separation that we currently have was establiby Ran Raz in
1999.[57] The problem that is analyzed in this article ismiedifollows. Alice receives
a unitvectorr € R™ and two mutually orthogonal subspades, M, C R™. The input
of Bob consists of a rotatiol € SO(n). The question that Alice has to answer now
is: “Is T'(¥) an element (within some error margin) dfy or of M;?” The input for
both parties consists ef? real variables. In the approximating variant, each vaeabl
is described byd(logn) bits, which leads to a total input size 6f(n?logn). The
restriction on the inputs is the promise tldt) will lie in either A/, or My, but notin
both. Using teleportation, it is reasonably straightfamhi@ design a quantum protocol
with complexityO(log n) for this problem. The significance of Raz’s work lies in the
Q(+/n) lower bound he obtains for the probabilistic, classicacpdures.

section 10.2  Open Problems and Future Research

An important open problem in the theory of quantum commuidcais the poten-
tial difference between the qubit and the entanglement nmfdeommunication ¢f.
Section 4.10). We know that every qubit of communication lsarsimulated with an
entangled pair and two classical bits of communication whet about the inverse of
this simulation? Is it always the case thabits of communication in combination with
a potentially unbounded amount of entanglement can be c@avimto a protocol that
usesO(n) qubits of communication but no prior entanglement? If trestists such a
conversion, then the qubit model and the entanglement nawdelffectively the same.
But if this is not the case, then we have to conclude that tleatum complexity of a
distributed function consists of two distinct componenfsthe amount of prior entan-
glement, and 2) the number of communicated bits, where thiectin be much larger
than the second.
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10.3. THRESHOLDS FOR EXPERIMENTAL IMPLEMENTATIONS

We already mentioned the almost quadratic reduction in ¢exitp for the Dis-
JOINT function. This result is especially interesting as thisdiiom plays a role in
communication complexity comparable to thet&FIABILITY problem for computa-
tional tasks. In [4], it was shown by Babei al. that it is a complete problem for the
communication class co-NP Hence, the natural and open question of whether there
exists arD(log n) quantum protocol for the BJOINT problem is equivalent to asking
“NP<c C BQP“?”, where we already know that NPZ BPP.

This brings us to the most prominent open problem in in thdfiebes there exist
an exponential separation between probabilistic cladsioa quantum communication
for a function without a promise?e know by the work of Bealgt al. that in the
black-box model of computation there can only be a polynbdifference between
classical and quantum computers.[5] One wonders if thistaddds for communication
problems, and if so, if the ‘lower bounds by polynomials’ hmads of this publication
also translates to our setting. Recently, Harry BuhrmarRowhld de Wolf have made
a significant first step in this direction[18]. Yet it is stihknown how far nonlocality
will take us from traditional communication.

Thresholds for Experimental Implementations

Our last discussion in this thesis will be about the expenitalefeasibility of simple

gquantum communication protocols. Various experimentsiilte have already con-
firmed the nonlocal predictions of quantum mechanics.[3,65] More recent ideas
like superdense coding or teleportation have also founid wWeey into the laboratory.

(See [11, 13, 28, 44] for some examples.) It is thereforerahta wonder if it is pos-

sible with current technology to implement the protocolgto$ thesis, and what the
criteria are for a ‘successful experiment’.

In communication complexity theory, we compare procedorethe basis of the
amount of information that the parties have to exchangelte sodistributed task. This
has the fortunate consequence that we are not concernetheigiossibility of ‘some
kind of hidden signaling betweet andB’, and hence with the criterion of space-like-
separation for the measurements* and A/ 5. It is perfectly in order for Alice and
Bob, to have received the prior entanglement and the datagdilme before the actual
execution of the protocol. The only resource that counth@dontext of this thesis
is the number of (quantum) bits that the parties have to conicate. Hence, we can
safely disregard the potential ‘hidden’ communicationmestn the entangled quantum
states. Not because it cannot occur, but because it doesut ¢

The detector efficiency, on the other haddesplay an important role. It increases
the complexity of the quantum protocol if Alice sometimes bainform Bob that her
photon detection failed and that the experiment has to beated. Assume, for exam-
ple, that the error-rate of the detector is so high, thatetlesists a classical model for
the experiment that gives the same predictions (see [53f@xplanation of this pos-
sibility). Then, by the same token, there also exists a abkprocedure that achieves
the same correctness ratio as the quantum protocol. Hemeexistence of such a
‘detector loophole’ indicates that the quantum mecharm@gpériment does not give an
improvement of over the classical lower bound. In the negtises, we derive some
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Section 10.4

Section 10.5

Section 10.6

10.4. THRESHOLDS FOR A ONE BIT PROTOCOL

thresholds for the error-rate of the detectors and the rafilee entangled states, that
truly separate quantum communication from its classicatipat.

Thresholds for a One Bit Protocol

Consider the two-party protocol that uses one bit of comiatiin and an entangled
pair |®) = \/%(|00) + |11)). (See, for example, the protocols of Chapter 5 or Sec-
tion 8.8.) LetP, be the success rate of the quantum procedure under perfettioas,
which is higher than the classical bouRd We will answer two questions for this set-
ting: “What is the amount of noise that we can allow #®?” and “What efficiency is
required for the detection or measurement of the qubits?”

Noisy Entangled States

Let (1 — i) be the probability that Alice and Bob have a rand®mubit state rather
than the desired entangled p@ir The density matrixp” of this mixture reads in the
computational basis as

%988 (%)88(%)
o — (1_n). 1 .
®ip = A=m-1 g 5 1 o |+ o 00 0
000 1 Lgo 1L

The expected probability of succedd/, for the quantum procedure with this noisy
state isnP, + 1*7’7 (under the worst-case assumption that the quantum protdgtiol
the completely noisy state corresponds to a coin flip, andéddéas an error rate of
50%). By the equatiorP’]’ = P, this gives the threshold on the quality of the stéite
of

As an aside, it is interesting to combine th¢hreshold with the observation in Sec-
tion 2.2 that fom < % the stateb” is disentangled. If this is the case, then the quantum
protocol can always be simulated by a classical procedung tise decomposition in
tensor-products of the stafle,. Hence we have also a bound on how mii;rand P,
can differ:P, — P. < 2P, — 1.

Chapter 5 gave the example of a function for whigh= % + %\/5 andP, = %.
These values give us the criterign> % ~ 0.71 for the purity of the stat@. This
is definitely feasible for entangled photons, for whighates close t89% are already
possible.

Inexact Measurement Devices

An apparatus that tries to implement a measurement can havkinds of errors: it
gives a random answer, or it gives no answer at all. (The ddgarof the second
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10.7. CONCLUSION

is that the party then at least knows that something went gvjohe probability of
an incorrect answer can be rephrased as a perfect meastm@mamoisy state, the
case which we analyzed in the previous section. A faulty mnessent that produces
a random outcome with probabilify — ) is equivalent to a perfect measurement on
the noisy stat@*. If we combine such an imperfect measurement device withiyno
statesh?, we get a total eta factor gf = 11 - \.

Now we will focus on the second scenario, where there is aghitity (1 — 7) that
a party is not able to read out the (otherwise perfect) measemt outcome. This gives
the probabilityr? that the protocol is executed without any problets1 — 7) that
one of the parties does not measure an outcome, and the iegidin- 7)? thatboth
parties do not obtain a measurement result. When a detemtionoccurs, Alice and
Bob can adopt the strategy that they try to execute the bestlge classical procedure
as an alternative. This back-up plan will have a correctpesbability of P, in the
case that both sides have such an error (the probafilityr)?). If only one party has
a problem with his or her measurement, then the protocolasiltespond again to a
blind guess. The overall success of this approach is thesled¢d by

PT = 7 P+ (1-1)7 - P.+7(1-7),
leading to the lower bound for the ‘visibility’ of the qubits

S 2P. —1
4 P+ P—1
For the earliet’, =  + 1v/2 andP. = 2, this gives the threshold of bigger than
21/2 — 2 ~ 0.83. For photon detections, the detector efficiency threstwlyifar the
most problematic as state-of-the-art experiments aidistited by ar of the order of
10 t0 20%.

Conclusion

In this thesis we saw how one can translate the nonlocal phena of quantum physics
into communication protocols that are more efficient thassical procedures. These
results highlight the differences between classical aremhtum information in way
similar to that of quantum computation.

The implementation of a quantum protocol that is truly mdifecient than any
classical procedure is problematic because of the detewéiiciency of our current
measurement devices. But, as for the detector loopholedidionality experiments, it
is not inconceivable that in the near future a sufficienthatde measurement device
can be employed to overcome this barrier.

It is debatable if quantum communication will ever reachgtedus of a ‘commer-
cial application’. But even if it does not, its ideas willlstemain a powerful tool to
underline, explain and investigate the differences betvegeaniverse that is governed
by classical laws and the one that we are living in.

page 86



Appendix A

Appendix to Holevo’s Bound

‘Holevo’s bound’puts a limit on the amount of classical information that carirans-
mitted with quantum signals. One consequence of this caetdresult is the observa-
tion that ad-dimensional closed quantum system can carry no more irgtomthan a
classical system of the same dimensitisg; d bits. More precisely, Holevo’s theorem
establishes an upper bound on the mutual informafich : B) between the source
Bob and the receiver Alice accordingf0A : B) < x(B). (See [25, 61] for the notion
of ‘mutual information’.) This boung (B) is calculated as follows.

By B = {(pi,pi)}i, We indicate a source that transmits its codewqrdsvith
probabilityp;. The ‘average’ codeword for suchfais thus expressed hy= 3. pip;.
With this p, the chi quantity of a source is defined by

x(B) = S(P)—Zpi's(m),

whereS denotes the Von Neumann entropy of a quantum mechanicalraixt

Before we extend this result, we will first take a closer lobkh& above theorem
and try to understanathythe information transfer is bounded by the difference betwe
the two termsS (" pipi) and) ", piS(p:)-

secion A1  Information Transfer with Quantum States

Bob can send information if he is able to change the state wieAh such a way
that she on her side can detect this change. The bigger tieesgtace of the change
is, the more information can be transfered by it. This is gegat by the positive
term “S(>_,pi - pi) = S(p)” in Holevo's bound, which expresses the randomness
S(p) that Bob can cause on Alice’s side. Here we already see tkeantbrmation
transfer is fundamentally bounded by the dimension of tretesy (becauss(p) <
log(Dim(p))), independently of the number of messaggeshat Bob uses. This phe-
nomenon is most clearly at work when we allow the whole cantin of one-qubit
statesp(a, f) = «|0) + B|1). Such a source gives an uncountable infinite set of
possible signals that Alice can receive, yet she will not bke @& infer more than
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one bit of information per received signal from it. This isedio the small distin-
guishability between most of the messages: on paper it may $eat|¢) = |0) and
1) = cos(145)]0) + sin(55)|1) are very different, but the physical reality is that they
are very similar. In every possible situation (allowed byawm mechanicsy will
behave almost the same-aslt is therefore very hard for Alice to discover which one
of the states she has received. All this is captured by thdl emimopy of the equal
mixture S(1|¢) (4] + 3|¢)(¥|) = 0.00042.

The second, negative, term in Holevo’s bound tells us theatahdomnesS(p) has
to be related to the probabilitigs for the different messages, and not the individual
entropiesS(p;). It is not sufficient for Bob to cause a big random effect ondtteer
party’s side. For if he wants to convey a messagthere also has to be a strong,
detectable correlation between thand its carriep;. Such a correlation is indicated
if the randomness gf disappears when we know the indethat Bob has used. But if
the signals; by themselveare very randomi,e. their entropiesS(p;) are high, then
this will decreasehe effectiveness of the sourde = {(p;, p;)}. This justifies the
subtraction of the su_, p; - S(p;).

secton A2  Holevo’s Bound versus Superdense Coding

Is superdense coding not a violation of Holevo's bound? Aeenat using one qubit to
transmit two bits of information? No, we are not. It is truatBob only sends a single
qubit to Alice but this signal is part of a bigger four-dim@msal 2-qubit) system that
cancarry the two bits of information. This is again an examplesvehwe have to pay
attention to the fact that entangled qubits should be viexgeg single system.

But is it then also possible to come up with a protocol wheeeghrties initially
sharek entangled pairs, where after the transmission of one quiriéithan two bits of
information has been communicated? The following extansfoHolevo’s bound by
Michael Nielsen tells us that this is not possible and thaesdense coding is indeed
the best we can do.

sectionA.3  Holevo’s Bound in the Presence of Entanglement

How much can the mutual informatidifA : B) of Alice increase if she receives one
qubit from Bob? LetB = {(p;,p;)}: (with the average state = ), pip;) be the
situation before the communication of the qufitand B’ = {(p;, p})} (with p' =

> pip;) the situation afterwards. Thijg is the joint system op andg, hence we
can use both the subadditivity rule and the Araki-Lieb iraigy[2], which tell us that
S(P) — S(Q) < S(PQ) < S(P) + S(Q) for quantum system® and@. In our case
P is Alice’s initial statep; and( is the single qubig; (with 0 < S(g;) < 1), implying
the bound

x(B) = S(p’)—Zpi-S(pé) (A1)

IN

[S(p) +1] —Zpi-[s(ﬂ) - 1] = x(B) +2, (A-2)
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where the square brackets indicate the application of thadditivity/Araki-Lieb re-
sult.

Besides the above scenario, other activities during a gganbmmunication pro-
tocol are: 1) unitary operations on Alice or Bob’s side andhi& communication of
guantum information from Alice to Bob. The entrogyof a quantum system is in-
variant under unitary transformations, and it also knovat tracing out a qubit (which
is what effectively happens on Alice’s side when she sendshit tp Bob) cannot in-
crease the value gf. We have thus reached the conclusion that the mutual infisma
on Alice’s side,I(A : B), can only increase if she receives a qubit from the other
party, and that this increase per qubit is bounded from abg\&bits. This bound is
obtained ifA and B share initial entanglement and use the superdense coditarpt
from Bob to Alice to send information.

Furthermore we can also analyze the scenario where thegddinot share initial
entanglement. This can be rephrased as the situation wHiere starts with a fixed
pure state® and hence witl$(p°) = 0. This termS(p) bounds the mutual information
from above byI(A : B) < S(p) and can only increase with one bit when Alice
or Bob sends a qubit to the other party. Therefore, in thisngethe total amount
of communication has to be at leastits if Alice wants to obtaim bits of mutual
information from Bob. This result will be clarified for twoastdard protocols.

Classical communication from Bob to Alice: Alice starts with a zero registef and
every time Bob sends her a classical bit of information, thifactor increases
with one bit asS(p’) = S(p) + 1 and}_, p;S(p;) remains zero. Aften bits of
communication, this establishégA : B) = n.

Superdense coding from Bob to Alice:First, Alice distributes; entangled pairs be-
tween her and Bob (we assume that even). This require§ qubits of com-
munication fromA to B and yields the intermediate situation on her side with
S(p) = >, piS(p:;) = 5 and hencer = 0. After that, Bob uses the entangled
pairs for superdense coding, thereby reaching the boundjoétion A.2 and
communicating bits to Alice.

The main implication of this is that even if Alice is alloweslsend out an unlimited
amount of qubits (to create entanglement between her ared p#nties, for example),
it will still be necessary fo3 to send[ 4| qubits back tod to conveyn bits of in-
formation to her. This immediately puts a limit on the useéds of entanglement for
information transmission: the fact@rreduction of superdense coding is the highest
possible.

This result is an expansion of Holevo’s bound, as it encapssla more general
setting where two-way communication is allowed betwdesnd B instead of the one
way communication of the earlier theorem.
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