CS290A, Spring 2005:

Quantum Information \& Quantum Computation

Wim van Dam
Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

- Who has the book already?
- Office hours: Wednesday 13:30-15:30, otherwise by appointment.
- Midterm: 1/3, Final Project 2/3
- From now on: bring pen \& paper: We will do calculations in class
- Extra notes will be posted before Thursday.
- Questions?

Loose Ends

What about two slit interference of bullets?
The wave length of a bullet is $\lambda \approx \mathrm{h} / \mathrm{mv}$ with Planck's constant $h \approx 6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, and mv the mass \times speed of the bullet. Take $\mathrm{m}=0.004 \mathrm{~kg}$ and $\mathrm{v}=1000 \mathrm{~m} / \mathrm{s}$, then $\lambda \approx 1.65 \times 10^{-34}$ meter.

This means that the distance between the slits has to be of the order of $10^{3} \lambda \approx 10^{-31} \mathrm{~m}$ to have a noticeable effect.

Bed Time Reading

"Painless learning" about quantum physics:
"Introducing Quantum Theory", J.P. McEvoy \& O. Zarate (\$10).
"QED: The Strange Theory of Light and Matter", R.P. Feynman (\$11).

This Week

Mathematics of Quantum Mechanics:

- (Finite) Hilbert space formalism: vectors, lengths, inner products, tensor products.
- Finite dimensional unitary transformations.
- Projection Operators.

Circuit Model of Quantum Computation:

- Small dimensional unitary transformations as elementary quantum gates.
- Examples of important gates.
- Composing quantum gates into quantum circuits.
- Examples of simple circuits.

Quantum Mechanics

A system with D basis states is in a superposition of all these states, which we can label by $\{1, \ldots, \mathrm{D}\}$.

Associated with each state is a complex valued amplitude; the overall state is a vector $\left(\alpha_{1}, \ldots, \alpha_{D}\right) \in \mathbb{C}^{D}$.

The probability of observing state j is $\left|\mathrm{a}_{\mathrm{j}}\right|^{2}$.
When combining states/events you have to add or multiply the amplitudes involved.

Examples of Interference:
Constructive: $\alpha_{1}=1 / 2, \alpha_{2}=1 / 2, \quad$ such that $\left|\alpha_{1}+\alpha_{2}\right|^{2}=1$
Destructive: $\alpha_{1}=1 / 2, \alpha_{2}=-1 / 2$, such that $\left|\alpha_{1}+\alpha_{2}\right|^{2}=0$
(Probabilities are similar but with \mathbb{R} instead of \mathbb{C}.)

Quantum Bits (Qubits)

- A single quantum bit is a linear combination of a two level quantum system: \{"zero", "one"\}.
- Hence we represent that state of a qubit by a two dimensional vector $(\alpha, \beta) \in \mathbb{C}^{2}$.
- When observing the qubit, we see " 0 " with probability $|\alpha|^{2}$, and " 1 " with probability $|\beta|^{2}$.
- Normalization: $|\alpha|^{2}+|\beta|^{2}=1$.
- Examples: "zero" = (1,0), "one" = $(0,1)$, uniform superposition $=(1 / \sqrt{ } 2,1 / \sqrt{ } 2)$ another superposition $=(1 / \sqrt{ } 2, i / \sqrt{ } 2)$

Quantum Registers

- A string of n qubits has 2^{n} different basis states $|\mathrm{x}\rangle$ with $x \in\{0,1\}^{n}$. The state of the quantum register $|\Psi\rangle$ has thus $\mathrm{N}=2^{\mathrm{n}}$ complex amplitudes. In ket notation:

$$
|\Psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle \in \mathbb{C}^{2^{n}}
$$

- $|\Psi\rangle$ is a column vector, with α_{x} in alphabetical order.
- The probability of observing $x \in\{0,1\}^{n}$ is $\left|\alpha_{x}\right|^{2}$.
- The amplitudes have to obey the normalization restriction:

$$
\sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}^{2}\right|=1
$$

- What can we do with such a state?

Measuring is Disturbing

- If we measure the quantum state $|\Psi\rangle$ in the computational basis $\{0,1\}^{\text {n }}$, then we will measure the outcome $x \in\{0,1\}^{n}$ with probability $\left|\alpha_{x}\right|^{2}$.
- For the rest, this outcome is fundamentally random. (Quantum physics predicts probabilities, not events.)
- Afterwards, the state has 'collapsed' according to the observed outcome: $|\Psi\rangle \mapsto|x\rangle$, which is irreversible: all the prior amplitude values α_{y} are lost.

Time Evolution

- Given a quantum register $|\Psi\rangle$, what else can we do besides measuring it? Answer: rotating it by T.
- Remember that $|\Psi\rangle$ is a length one vector and if we change it, the outcome $\left|\psi^{\prime}\right\rangle=T|\psi\rangle$ should also be length one: " T is a norm preserving transformation".
- Experiments show that QM is linear: T has to be linear.
- Hence, if T acts on a D-dimensional state space, then T can be described by a $D \times D$ matrix $T \in \mathbb{C}^{D \times D}$.
- "T is norm-preserving: T is a (unitary) rotation."

Classical Qubit Transformations

- Some simple qubit $(\mathrm{D}=2)$ transformations:
- Identity with Id: $|\Psi\rangle \mapsto|\Psi\rangle$ for all $\Psi: \quad \operatorname{Id}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- NOT gate with NOT: $|0\rangle \mapsto|1\rangle$ and NOT: $|1\rangle \mapsto|0\rangle$; by linearity we have NOT: $\alpha|0\rangle+\beta|1\rangle \mapsto \alpha|1\rangle+\beta|0\rangle$
- Note that NOT is norm-preserving: If $|\psi\rangle$ has norm one, then so has $\mathrm{NOT}|\psi\rangle$

$$
\mathrm{NOT}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Also note: NOT:(|0>+|1>)/ $\sqrt{2} \mapsto(|1\rangle+|0\rangle) / \sqrt{ } 2$: the uniform superposition remains unchanged.

Hadamard Transfrom

- Define the Hadamard transform: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$
- We have for this H :
- Note: $\mathrm{H}^{2}=1 \mathrm{l}$.

It changes classical bits into superpositions and vice versa.

$$
\begin{aligned}
|0\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
|1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) & \mapsto|0\rangle \\
\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) & \mapsto|1\rangle
\end{aligned}
$$

- It sees the difference between the uniform superpositions $(|0\rangle+|1\rangle) / \sqrt{ } 2$ and $(|0\rangle-|1\rangle) / \sqrt{ } 2$.

Hadamard Norm Preserving?

- Is H a proper quantum transformation? Linear: Yes, by definition, it is a matrix. Norm preserving? Hmmm....
- We have: $H: \alpha|0\rangle+\beta|1\rangle \mapsto \frac{(\alpha+\beta)}{\sqrt{2}}|0\rangle+\frac{(\alpha-\beta)}{\sqrt{2}}|1\rangle$
- Q : If $|\alpha|^{2}+|\beta|^{2}=1$, then also $1 / 2|\alpha+\beta|^{2}+1 / 2|\alpha-\beta|^{2}=1$?
- Use complex conjugates*: $|\alpha|^{2}=\alpha \cdot \alpha^{*}$.
- Answer: Yes.

Hadamard as a Quantum Gate

- Often we will apply the H gate to several qubits.
- Take the n-zeros state $|0, \ldots, 0\rangle$ and perform in parallel n Hadamard gates to the zeros, as a circuit:

Starting with the all-zero state and with only n elementary qubit gates we can create a uniform superposition of 2^{n} states.

Typically, a quantum algorithm will start with this state, then it will work in "quantum parallel" on all states at the same time.

$$
\begin{array}{ccc}
|0\rangle & -\mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2 \\
|0\rangle & -\mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2 \\
\vdots & \vdots & \vdots \\
|0\rangle & \mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2
\end{array}
$$

As an equation:

$$
|0, \ldots, 0\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle
$$

Combining Qubits

If we have a qubit $|x\rangle=(|0\rangle+|1\rangle) \sqrt{ } 2$, then 2 qubits $|x\rangle$ give the state $1 / 2(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.

Tensor product notation for combining states $|\mathrm{x}\rangle \in \mathbb{C}^{N}$ and $|\mathrm{y}\rangle \in \mathbb{C}^{\mathrm{M}}:|\mathrm{x}\rangle \otimes|\mathrm{y}\rangle=|\mathrm{x}\rangle|\mathrm{y}\rangle=|\mathrm{x}, \mathrm{y}\rangle \in \mathbb{C}^{\mathrm{NM}}$.

Example for two qubits: $\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right)$

$$
=\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle
$$

Note that we multiply the amplitudes of the states. Also note the exponential growth of the dimensions.

Two Hadamard Gates

What does this circuit

 do on $\{00,01,10,11\}$?

What is the $\mathbb{C}^{4 \times 4}$ rotation matrix of this operation?

What is the effect of n parallel Hadamard gates?
How does the corresponding $2^{n} \times 2^{n}$ matrix look like?

