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Administrivia

• Who has the book already?

• Office hours: Wednesday 13:30–15:30,
otherwise by appointment.

• Midterm: 1/3, Final Project 2/3

• From now on: bring pen & paper: 
We will do calculations in class

• Extra notes will be posted before Thursday.

• Questions?



Loose Ends

What about two slit interference of bullets? 

The wave length of a bullet is λ ≈ h/mv with Planck’s 
constant h ≈ 6.6×10–34 J s, and mv the mass×speed of
the bullet.  Take m = 0.004 kg and v = 1000 m/s, then 
λ ≈ 1.65×10–34 meter. 

This means that the distance between the slits has to be 
of the order of 103 λ ≈ 10–31 m to have a noticeable effect.



Bed Time Reading

“Painless learning” about quantum physics:

“Introducing Quantum Theory”, 
J.P. McEvoy & O. Zarate ($10).

“QED: The Strange Theory of Light and Matter”,
R.P. Feynman ($11).



This Week

Mathematics of Quantum Mechanics:
• (Finite) Hilbert space formalism: vectors, lengths, 

inner products, tensor products. 
• Finite dimensional unitary transformations. 
• Projection Operators.

Circuit Model of Quantum Computation:
• Small dimensional unitary transformations as 

elementary quantum gates.
• Examples of important gates.
• Composing quantum gates into quantum circuits.
• Examples of simple circuits.



Quantum Mechanics

A system with D basis states is in a superposition of 
all these states, which we can label by {1,…,D}.

Associated with each state is a complex valued 
amplitude; the overall state is a vector (α1,…,αD)∈ÂD.

The probability of observing state j is |αj|2.

When combining states/events you have to add or 
multiply the amplitudes involved.  

Examples of Interference:
Constructive:α1=½, α2=½, such that |α1+α2|2 = 1
Destructive: α1=½, α2=–½, such that |α1+α2|2 = 0

(Probabilities are similar but with Ñ instead of Â.)



Quantum Bits (Qubits)

• A single quantum bit is a linear combination of a 
two level quantum system: {“zero”, “one”}.

• Hence we represent that state of a qubit by
a two dimensional vector (α,β)∈Â2.

• When observing the qubit, we see “0” with 
probability |α|2, and “1” with probability |β|2.

• Normalization: |α|2+|β|2=1.

• Examples: “zero” = (1,0), “one” = (0,1), 
uniform superposition = (1/√2,1/√2)
another superposition = (1/√2, i/√2)



Quantum Registers

• A string of n qubits has 2n different basis states |x〉
with x∈{0,1}n. The state of the quantum register |ψ〉
has thus N=2n complex amplitudes.  In ket notation:

• |ψ〉 is a column vector, with αx in alphabetical order.
• The probability of observing x∈{0,1}n is |αx|2.
• The amplitudes have to obey 

the normalization restriction:

• What can we do with such a state?
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Measuring is Disturbing

• If we measure the quantum state |ψ〉 in the 
computational basis {0,1}n, then we will measure 
the outcome x∈{0,1}n with probability |αx|2.

• For the rest, this outcome is fundamentally random.
(Quantum physics predicts probabilities, not events.)

• Afterwards, the state has ‘collapsed’ according to 
the observed outcome: |ψ〉 # |x〉, which is irreversible: 
all the prior amplitude values αy are lost.



Time Evolution

• Given a quantum register |ψ〉, what else can we do 
besides measuring it?  Answer: rotating it by T.

• Remember that |ψ〉 is a length one vector and if we 
change it, the outcome |ψ’〉 = T|ψ〉 should also be 
length one: “T is a norm preserving transformation”.

• Experiments show that QM is linear: T has to be linear.

• Hence, if T acts on a D-dimensional state space, 
then T can be described by a D×D matrix T∈ÂD×D.

• “T is norm-preserving: T is a (unitary) rotation.”



Classical Qubit Transformations

• Some simple qubit (D=2) transformations:

• Identity with Id:|ψ〉#|ψ〉 for all ψ:

• NOT gate with NOT:|0〉#|1〉 and NOT:|1〉#|0〉;
by linearity we have NOT:α|0〉+β|1〉 # α|1〉+β|0〉

• Note that NOT is norm-preserving:
If |ψ〉 has norm one, then so has NOT|ψ〉

• Also note: NOT:(|0〉+|1〉)/√2 # (|1〉+|0〉)/√2:
the uniform superposition remains unchanged.
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Hadamard Transfrom

• Define the Hadamard transform:

• We have for this H:

• Note: H2 = Id.
It changes classical bits
into superpositions
and vice versa.

• It sees the difference between the uniform 
superpositions (|0〉+|1〉)/√2 and (|0〉–|1〉)/√2. 
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Hadamard Norm Preserving?

• Is H a proper quantum transformation?
Linear: Yes, by definition, it is a matrix.
Norm preserving?  Hmmm….

• We have: 

• Q: If |α|2+|β|2 = 1, then also ½|α+β|2 + ½|α–β|2 = 1?

• Use complex conjugates*: |α|2 = α·α*.

• Answer: Yes.
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Hadamard as a Quantum Gate

• Often we will apply the H gate to several qubits.

• Take the n-zeros state |0,…,0〉 and perform in parallel 
n Hadamard gates to the zeros, as a circuit:

H (|0〉+|1〉)/√2|0〉
H (|0〉+|1〉)/√2|0〉

H (|0〉+|1〉)/√2|0〉
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Starting with the all-zero 
state and with only n 
elementary qubit gates 
we can create a uniform 
superposition of 2n states.

Typically, a quantum algorithm
will start with this state, then it 
will work in “quantum parallel”
on all states at the same time.



Combining Qubits

If we have a qubit |x〉 = (|0〉+|1〉)√2, then 2 qubits |x〉
give the state ½(|00〉+|01〉+|10〉+|11〉).

Tensor product notation for combining states |x〉∈ÂN

and |y〉∈ÂM:  |x〉⊗|y〉 = |x〉|y〉 = |x,y〉 ∈ ÂNM.

Example for two qubits: 

Note that we multiply the amplitudes of the states.
Also note the exponential growth of the dimensions.
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Two Hadamard Gates

What does this circuit 
do on {00,01,10,11}?

H

H|x1〉
|x2〉

|?,?〉

What is the Â4×4 rotation matrix of this operation?

What is the effect of n parallel Hadamard gates?

How does the corresponding 2n×2n matrix look like?


