Classical Mechanics, Phys105A, Wim van Dam, UC Santa Barbara Exercises Week 1; due Monday January 22, 11:30 am

Question 1 (Scalar products, vector products, and their meaning, $5+5$ points).
$\triangleright \quad$ (a) Prove the following equality: $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})$.
$\triangleright \quad(b)$ Let the above vectors \mathbf{a}, \mathbf{b} and \mathbf{c} define a three dimensional parallelepiped with vertices $\pm \mathbf{a} \pm \mathbf{b} \pm \mathbf{c}$ (where each $\pm \pm \pm$ combination defines one of the eight vertices). With this in mind, give a geometric interpretation of the above equality, including an interpretation of the vector products $\mathbf{b} \times \mathbf{c}$ and $\mathbf{c} \times \mathbf{a}$.

Question 2 (Basis independence of vector product, 10 points).
$\triangleright \quad$ (a) Prove that the vector product $\mathbf{r} \times \mathbf{s}$ is independent of the basis in which you express \mathbf{r}, \mathbf{s} and $\mathbf{r} \times \mathbf{s}$ (cf. Problem 1.16 for hints how to attack a similar question for the scalar product).

Write the answers to the questions below on a separate set of pages.
Question 3 (Derivative of scalar product, 10 points).
(a) Prove that $\frac{d}{d t}(\mathbf{r} \cdot \mathbf{s})=\mathbf{r} \cdot \frac{\mathrm{ds}}{\mathrm{dt}}+\frac{\mathrm{dr}}{\mathrm{dt}} \cdot \mathbf{s}$.

Question 4 (Some differential equations, $5+5+5$ points). Find the time dependent position x and velocity \dot{x} of a particle of mass m and with initial conditions $\mathbf{x}(t)=\dot{\mathbf{x}}(\mathrm{t})=\mathbf{0}$ at time $\mathrm{t}=0$, subject to the following force functions
(a) $\mathbf{F}=\left(F_{0}+\alpha t\right) \hat{\mathbf{x}}$
$\triangleright \quad(b) \mathbf{F}=\left(F_{0}+\beta x\right) \hat{\mathbf{x}}$ (with $\left.\beta \geq 0\right)$
$\triangleright \quad\left(\right.$ c) $\mathbf{F}=\left(F_{0}+\beta x\right) \hat{\mathbf{x}}($ with $\beta \leq 0)$
Question 5 (A question from Taylor, $5+5+5$ points).

- (a) Problem 1.36a
\triangleright (b) Problem 1.36b
\triangleright (c) Problem 1.36c

