Classical Mechanics, Phys105A, Wim van Dam, UC Santa Barbara Exercises Week 2; due Monday January 29, 11:30 am

Question 1 (Velocity with constant magnitude, $5+5$ points). Let $\mathbf{v}(\mathrm{t})$ be a time dependent vector describing the velocity of a particle moving in a 3 dimensional space. Prove the following two facts regarding the magnitude $v=|\mathbf{v}|$ and the acceleration $\mathrm{d} \mathbf{v} / \mathrm{dt}$.
$\triangleright \quad$ (a) As long as the acceleration $\mathrm{dv} / \mathrm{dt}$ is orthogonal to \mathbf{v}, the magnitude v remains constant.
$\triangleright \quad(b)$ As long as the magnitude v remains constant, the acceleration $\mathrm{dv} / \mathrm{dt}$ has to be orthogonal to \mathbf{v}.
Question 2 (A question from Taylor, $5+5$ points).
\triangleright (a) Problem 1.46a
$\triangleright \quad$ (b) Problem 1.46b
Write the answers to the questions below on a separate set of pages.
Question 3 (Recovering the 'dragless limit', $5+5$ points).
$\triangleright \quad$ (a) Consider the case of linear air resistance, described by the equation $m \ddot{\mathbf{r}}=\mathrm{mg}-\mathrm{bv}$. Prove that the results of Section 2.2 on the velocity and position of the particle coincide with the standard results on the movement of a particle moving in vacuum in the 'dragless limit' $\mathrm{b} \rightarrow 0$.
$\triangleright \quad(b)$ For the case of quadratic air resistance with its equation $m \ddot{r}=m g-c|v| v$, answer the same question for the results on horizontal and vertical motion as derived in Section 2.4 in the dragless limit $c \rightarrow 0$.

Question 4 (Finding general solutions, 10 points).
$\triangleright \quad$ (a) Answer Taylor's Problem 2.12.
Question 5 (A question from Taylor, $5+5$ points).

- (a) Problem 2.54a
- (b) Problem 2.54b

Question 6 (Cubic drag, $5+5$ points). Consider the case of horizontal motion with cubic drag, described by the equation $m d v / d t=-c v^{3}$.
$\triangleright \quad$ (a) Assuming initial speed v_{0}, derive the time dependency of the speed v of the particle.
$\triangleright \quad$ (b) Assuming initial speed v_{0} and initial position $x=0$, derive the time dependency of the position x of the particle.

