Classical Mechanics, Phys105A, Wim van Dam, UC Santa Barbara Exercises Week 2; due Monday January 29, 11:30 am

Question 1 (Velocity with constant magnitude, 5+5 points). Let $\mathbf{v}(t)$ be a time dependent vector describing the velocity of a particle moving in a 3 dimensional space. Prove the following two facts regarding the magnitude $v = |\mathbf{v}|$ and the acceleration $d\mathbf{v}/dt$.

- \triangleright (a) As long as the acceleration dv/dt is orthogonal to v, the magnitude ν remains constant.
- \triangleright (b) As long as the magnitude v remains constant, the acceleration dv/dt has to be orthogonal to v.

Question 2 (A question from Taylor, 5+5 points).

- ▷ (a) Problem 1.46a
- ▷ (b) Problem 1.46b

Write the answers to the questions below on a separate set of pages.

Question 3 (Recovering the 'dragless limit', 5+5 points).

- \triangleright (a) Consider the case of linear air resistance, described by the equation $m\ddot{\mathbf{r}} = m\mathbf{g} \mathbf{b}\mathbf{v}$. Prove that the results of Section 2.2 on the velocity and position of the particle coincide with the standard results on the movement of a particle moving in vacuum in the 'dragless limit' $\mathbf{b} \to \mathbf{0}$.
- \triangleright (b) For the case of quadratic air resistance with its equation $m\ddot{\mathbf{r}} = m\mathbf{g} c|\mathbf{v}|\mathbf{v}$, answer the same question for the results on horizontal and vertical motion as derived in Section 2.4 in the dragless limit $c \rightarrow 0$.

Question 4 (Finding general solutions, 10 points).

 \triangleright (a) Answer Taylor's Problem 2.12.

Question 5 (A question from Taylor, 5+5 points).

- ▷ (a) Problem 2.54a
- \triangleright (b) Problem 2.54b

Question 6 (Cubic drag, 5 + 5 points). Consider the case of horizontal motion with cubic drag, described by the equation $md\nu/dt = -c\nu^3$.

- \triangleright (a) Assuming initial speed v_0 , derive the time dependency of the speed v of the particle.
- \triangleright (b) Assuming initial speed v_0 and initial position x = 0, derive the time dependency of the position x of the particle.