Classical Mechanics, Phys105A, Wim van Dam, UC Santa Barbara Exercises Week 5; due Friday February 23, 11:30 am

Question 1 ($10+10$ points). A Nonconservative Force
Consider a nonconservative force defined over the plane with the following (topological) property for the work done over the closed paths from 1 back to 1 : $W(1 \rightarrow 1)=0$ if the loop does not go around the origin $\mathrm{O}, \mathrm{W}(1 \rightarrow 1)=\mathrm{c}$ if the loop goes around the origin O once in a clockwise fashion, $W(1 \rightarrow 1)=-c$ if the loop goes around the origin O once in an anti-clockwise fashion, and so on. In other words $W(1 \rightarrow 1) / c$ counts how many times the path went around O clockwise.
$\triangleright \quad$ (a) Write down a force \mathbf{F} that has this property. Give arguments why your answer is correct.
$\triangleright \quad(b)$ Locally, in small patches that does not involve the origin, this force is conservative, and we can indeed give a local potential like function $\mathrm{V}(\mathrm{r}, \phi)$ with all the right properties. Yet globally no such potential should exist. What is going on here?
Write the answers to the questions below on a separate set of pages.
Question 2 (15 points). Time of impact under inverse quadratic force
We drop a particle with mass m at distance $r=d$ from the origin under the influence of a central potential $U(r)=-k m / r$. Let s be the time required for the particle to reach the origin $r=0$. As a function of m and d, it holds that $s=\gamma m^{\alpha} d^{\beta}$.
$\triangleright \quad$ (a) Determine these powers α and β.
Question 3 ($10+15$ points). Orbits and Central Forces
A particle with mass m moves in the plane under influence of a central force $f(r) \hat{e}_{r}$. The trajectory of the particle is described by $r(t)=r_{0} e^{k \cdot \phi(t)}$ where $\phi(t)$ is the time dependent angle in the polar coordinate system that we are using.
$\triangleright \quad(a)$ Prove that $\phi(t)$ has to change logarithmically in time t.
$\triangleright \quad(b)$ Prove that $f(r)$ has to depend in an inverse cube way on r.

