Midterm and Homework 5, Phys 105A

Question 1. A Nonconservative Force

Consider a nonconservative force defined over the plane with the following (topological) property for the work done over the closed paths from 1 back to $1: W(1 \rightarrow 1)=0$ if the loop does not go around the origin $O, W(1 \rightarrow 1)=c$ if the loop goes around the origin O once in a clockwise fashion, $W(1 \rightarrow 1)=-c$ if the loop goes around the origin O once in an anti-clockwise fashion, and so on. In other words $W(1 \rightarrow 1) / c$ counts how many times the path went around O clockwise.
$\triangleright \quad$ (a) Write down a force \mathbf{F} that has this property. Give arguments why your answer is correct.
Answer: Look at the clockwise path integral along a circle with radius R that goes around the origin according to $r=R$ and $\phi=-2 \pi s$ as s goes from 0 to 1 , that is: $\oint \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int_{0}^{1}-F_{\phi}(R, \phi) \cdot 2 \pi R \mathrm{~d} s$. So for the force $\mathbf{F}=-c /(2 \pi r) \hat{e}_{\phi}$, we have indeed the required property if the paths are such circles around O. Moreover, because this \mathbf{F} does not have any \hat{e}_{r} component, the same result holds if the path also includes movements in the \hat{e}_{r} direction. Hence this $\mathbf{F}(r, \phi)=-c /(2 \pi r) \hat{e}_{\phi}$ has the desired property.

- (b) Locally, in small patches that does not involve the origin, this force is conservative, and we can indeed give a local potential like function $V(r, \phi)$ with all the right properties. Yet globally no such potential should exist. What is going on here?
Answer: Indeed a 'quasi potential' like $V(r, \phi)=c \phi / 2 \pi$ gives $-\nabla V=-c /(2 \pi r) \hat{e}_{\phi}$, which equals the force of the previous answer.

Note however that this function is not properly defined as it gives different values for $\phi=0,2 \pi, 4 \pi$ and so on. A drawing of such a potential would produce a helicoid (see figure), illustrating how by going around the origin one ends up c higher or lower than when started. If one requires that the potential function V is uniquely defined everywhere on the plane (say by restricting its definition to $0 \leq \phi<2 \pi$), then it ends up being discontinuous (along $\phi=0$).

Question 2. Time of impact under inverse quadratic force

We drop a particle with mass m at distance $r=d$ from the origin under the influence of a central potential $U(r)=-k m / r$. Let s be the time required for the particle to reach the origin $r=0$. As a function of m and d, it holds that $s=\gamma m^{\alpha} d^{\beta}$.
$\triangleright \quad$ (a) Determine these powers α and β.
Answer: This is a central force, hence conservation of energy must hold; at any given time t we must have position r and velocity v such that $E=-k m / r+m v^{2} / 2=-k m / d$. Rewriting this gives $v=-\sqrt{\frac{2 k}{r}-\frac{2 k}{d}}$ (the minus sign should be obvious), hence seperation of variables gives

$$
\mathrm{d} t=-\frac{\mathrm{d} r}{\sqrt{\frac{2 k}{r}-\frac{2 k}{d}}} .
$$

Integrating over the path from d to 0 (in time $t=0$ to $t=s$) gives

$$
s=-\frac{1}{\sqrt{2 k}} \int_{r=d}^{r=0} \frac{\mathrm{~d} r}{\sqrt{\frac{1}{r}-\frac{1}{d}}}
$$

At this point it is already clear that $\alpha=0$ (s does not depend on m), and because we are not interested in γ, we can ignore the term in front of the integral. Defining a new variable $z=r / d$ (with $\mathrm{d} r=d \cdot \mathrm{~d} z$) turns this integral into

$$
\begin{equation*}
\int_{z=1}^{z=0} \frac{d \cdot \mathrm{~d} z}{\sqrt{\frac{1}{z d}-\frac{1}{d}}}=d^{3 / 2} \int_{z=1}^{z=0} \frac{\mathrm{~d} z}{\sqrt{\frac{1}{z}-1}} \tag{1}
\end{equation*}
$$

hence $\beta=3 / 2$.

Question 3. Orbits and Central Forces

A particle with mass m moves in the plane under influence of a central force $f(r) \hat{e}_{r}$. The trajectory of the particle is described by $r(t)=r_{0} \mathrm{e}^{k \cdot \phi(t)}$ where $\phi(t)$ is the time dependent angle in the polar coordinate system that we are using.
$\triangleright \quad$ (a) Prove that $\phi(t)$ has to change logarithmically in time t.
Answer: Newton's $\mathbf{F}=m \mathbf{a}$ in polar coordinates tells us that $F_{r}=m\left(\ddot{r}-r \dot{\phi}^{2}\right)$ and $F_{\phi}=m(r \ddot{\phi}+2 \dot{r} \dot{\phi})$, hence for central forces we have $r \ddot{\phi}+2 \dot{r} \dot{\phi}=0$. For above mentioned \mathbf{r} we have $\dot{r}=r k \dot{\phi}$, giving us $r \ddot{\phi}+2 r k \dot{\phi}^{2}=0$. The proposed $\phi=\gamma \log t$ is indeed a solution, as $r \ddot{\phi}+2 r k \dot{\phi}^{2}=-r \gamma / t^{2}+2 r k(\gamma / t)^{2}=0$ for $\gamma=1 / 2 k$. (This answer is of course not well defined for $t=0$, but that can be resolved by shifting the time, and letting everything 'start' at $t=1$. The general solution to the differential equation $r \ddot{\phi}+2 r k \dot{\phi}^{2}=0$ is given by $\phi(t)=\phi(0)+1 / 2 k \cdot \log (1+C t)$.)

- (b) Prove that $f(r)$ has to depend in an inverse cube way on r.

Answer: Here we use the relation given by the F_{r} component: $f(r) / m=\ddot{r}-r \dot{\phi}^{2}$. Using the answer $\phi(t)=(\log t) / 2 k$ to Question 3a, we have $r(t)=r_{0} \mathrm{e}^{k \phi(t)}=r_{0} \sqrt{t}$, and hence $f(r) / m=-r_{0} / 4 \cdot t^{-3 / 2}-$ $r_{0} \sqrt{t} \gamma^{2} / t^{2}=r_{0}\left(-1 / 4-\gamma^{2}\right) t^{-3 / 2} \propto r^{-3}$.

