Midterm Phys105A, Thursday February 15, 2007, 9:30-10:45 (70 points)

Question 1 (20 points). Time of impact under inverse quadratic force
We drop a particle with mass m at distance $r=d$ from the origin under the influence of a central potential $U(r)=-k m / r$. Let s be the time required for the particle to reach the origin $r=0$. As a function of m and d, it holds that $s=\gamma m^{\alpha} d^{\beta}$.
$\triangleright \quad$ (a) Determine these powers α and β.
Question $2(10+10$ points). A Nonconservative Force
Consider a nonconservative force defined over the plane with the following (topological) property for the work done over the closed paths from 1 back to 1 : $W(1 \rightarrow 1)=0$ if the loop does not go around the origin $O, W(1 \rightarrow 1)=c$ if the loop goes around the origin O once in a clockwise fashion, $W(1 \rightarrow 1)=-c$ if the loop goes around the origin O once in an anti-clockwise fashion, and so on. In other words $W(1 \rightarrow 1) / c$ counts how many times the path went around O clockwise.
$\triangleright \quad(\mathbf{a})$ Write down a force \mathbf{F} that has this property. Give arguments why your answer is correct.
$\triangleright \quad$ (b) Locally, in small patches that does not involve the origin, this force is conservative, and we can indeed give a local potential like function $V(r, \phi)$ with all the right properties. Yet globally no such potential should exist. What is going on here?

Question 3 ($10+20$ points). Orbits and Central Forces
A particle with mass m moves in the plane under influence of a central force $f(r) \hat{e}_{r}$. The trajectory of the particle is described by $r(t)=r_{0} \mathrm{e}^{k \cdot \phi(t)}$ where $\phi(t)$ is the time dependent angle in the polar coordinate system that we are using.
$\triangleright \quad$ (a) Prove that $\phi(t)$ has to change logarithmically in time t.
$\triangleright \quad$ (b) Prove that $f(r)$ has to depend in an inverse cube way on r.

