Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 1 has been posted.
 It is due Monday January 22, 11:30 am.
- You have to hand in two separate sets of answers so that the two TAs can grade the different questions.
- Slides of last Tuesday are now online for real.
- Questions?

Linear Air Resistance

- Consider a flying projectile of mass m for which the quadratic drag force is negligible: f = -b v.
- Summing the forces gives $\mathbf{F} = m\mathbf{g} b\mathbf{v} = m d\mathbf{r}^2/dt^2$.
- With $\mathbf{r}(0) = \mathbf{0}$ and $\mathbf{v}(0) = \mathbf{v}_0$ we expect something like:

Differential Equations

 You may have to overcome your fear of solving differential equations with pen and paper.

Tips:

- 1. Use your pen
- 2. Use lots of empty paper
- 3. When in doubt, try "separation of variables"
- 4. Know your complex valued functions

F = **m**g–**b**v

- Take $x_0 = y_0 = 0$ and initial speeds v_{x0} , v_{y0} .
- After some calculations [pp. 48–56] we get that $x = v_{x0} (m/b) (1-e^{-tb/m})$ $y = v_{ter} t + (v_{y0}-v_{ter}) (m/b) (1-e^{-tb/m})$ where v_{ter} is the *terminal y-speed* mg/b

Note that as $t \to \infty$ we have $x_t \to x_{\infty} = v_{x0}$ m/b and $v_{yt} \to v_{y\infty} = mg/b$.

Quadratic Air Resistance

- Consider a flying projectile of mass m with quadratic drag force: f = -c|v| v.
- Summing the forces gives $\mathbf{F} = m\mathbf{g} c|\mathbf{v}|\mathbf{v} = m d\mathbf{r}^2/dt^2$.
- Unlike the linear case, the x and y motion can now not be separated: the general case 'can not be solved'.
- For x-motion with x₀=0 and v₀ we get:
 v = v₀/(1+t c v₀/m) and x = (m/c) ln(1+t c v₀/m)
 Note that as t→∞ we now have x_∞ = ∞.
- For y-motion with $y_0=0$ and $v_0=0$ we get $v = v_{\infty} \tanh(gt/v_{\infty})$ and $y = v_{\infty}^2/g \ln[\cosh(gt/v_{\infty})]$ with terminal speed $v_{\infty} = \sqrt{(mg/c)}$