Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 1 has been posted. It is due Monday January 22, 11:30 am.
- You have to hand in two separate sets of answers so that the two TAs can grade the different questions.
- Slides of last Tuesday are now online for real.
- Questions?

Linear Air Resistance

- Consider a flying projectile of mass m for which the quadratic drag force is negligible: $\mathbf{f}=-\mathrm{b} \mathbf{v}$.
- Summing the forces gives $\mathbf{F}=\mathrm{mg}-\mathrm{bv}=\mathrm{m} \mathrm{dr}^{2} / \mathrm{dt} \mathrm{t}^{2}$.
- With $\mathbf{r}(0)=0$ and $\mathbf{v}(0)=\mathbf{v}_{0}$ we expect something like:

Differential Equations

- You may have to overcome your fear of solving differential equations with pen and paper.

Tips:

1. Use your pen
2. Use lots of empty paper
3. When in doubt, try "separation of variables"
4. Know your complex valued functions

F = mg-bv

- Take $\mathrm{x}_{0}=\mathrm{y}_{0}=0$ and initial speeds $\mathrm{v}_{\mathrm{x} 0}, \mathrm{v}_{\mathrm{y} 0}$.
- After some calculations [pp. 48-56] we get that

$$
\begin{aligned}
& x=v_{x 0}(m / b)\left(1-e^{-t b / m}\right) \\
& y=v_{t e r} t+\left(v_{y 0}-v_{\text {ter }}\right)(m / b)\left(1-e^{-t b / m}\right)
\end{aligned}
$$

where $v_{\text {ter }}$ is the terminal y-speed mg / b

Note that as $t \rightarrow \infty$ we have
$\mathrm{x}_{\mathrm{t}} \rightarrow \mathrm{x}_{\infty}=\mathrm{v}_{\mathrm{x} 0} \mathrm{~m} / \mathrm{b}$ and $\mathrm{v}_{\mathrm{yt}} \rightarrow \mathrm{v}_{\mathrm{y} \infty}=\mathrm{mg} / \mathrm{b}$.

Quadratic Air Resistance

- Consider a flying projectile of mass m with quadratic drag force: $\mathbf{f}=-\mathbf{c}|\mathbf{v}| \mathbf{v}$.
- Summing the forces gives $\mathbf{F}=\mathrm{mg}-\mathrm{c}|\mathbf{v}| \mathbf{v}=\mathrm{m} \mathrm{dr} \mathbf{r}^{2} / \mathrm{dt} \mathrm{t}^{2}$.
- Unlike the linear case, the x and y motion can now not be separated: the general case 'can not be solved'.
- For x-motion with $x_{0}=0$ and v_{0} we get:
$\mathrm{v}=\mathrm{v}_{0} /\left(1+\mathrm{tc} \mathrm{v}_{0} / \mathrm{m}\right)$ and $\mathrm{x}=(\mathrm{m} / \mathrm{c}) \ln \left(1+\mathrm{tc} \mathrm{v}_{0} / \mathrm{m}\right)$ Note that as $t \rightarrow \infty$ we now have $x_{\infty}=\infty$.
- For y -motion with $\mathrm{y}_{0}=0$ and $\mathrm{v}_{0}=0$ we get $\mathrm{v}=\mathrm{v}_{\infty} \tanh \left(\mathrm{gt} / \mathrm{v}_{\infty}\right)$ and $\mathrm{y}=\mathrm{v}_{\infty}{ }^{2} / \mathrm{g} \ln \left[\cosh \left(\mathrm{gt} / \mathrm{v}_{\infty}\right)\right]$ with terminal speed $v_{\infty}=\sqrt{ }(\mathrm{mg} / \mathrm{c})$

