Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 2 has been posted.
 It is due Monday January 29, 11:30 am.
- Midterm is tentatively scheduled for Week 6, Tuesday Feb 13, or Thursday Feb 15.
 The material will be Chapters 1–4; it is not open book, but you are allowed a 'cheat sheet'.

Help Wanted

Note Taker

You must be sensitive to the needs of students with disabilities

\$75

Stop by the Disabled Students Office at 1201 SAASB and complete an application

Phys105A, Winter 2007, Wim van Dam, UCSB

Chapter 3: Momentum and Angular Momentum

3.4 Angular Momentum (N=1)

For a particle with momentum **p** and position **r** (relative to the origin O), the **angular momentum** ℓ *relative to* O is defined as $\ell = \mathbf{r} \times \mathbf{p}$ (hence ℓ is orthogonal to **r** and **p**).

Note that

- $d\boldsymbol{\ell}/dt = d\boldsymbol{r}/dt \times \boldsymbol{p} + \boldsymbol{r} \times d\boldsymbol{p}/dt$
- dr/dt and p have the same direction
- **F** = d**p**/dt

As a result we have $d\ell/dt = r \times dp/dt = r \times F = \Gamma$, with $\Gamma = r \times F$ the **net torque about O** on the particle.

3.5 Angular Momentum (N>1)

Generalizing to several particles with their angular momenta $\boldsymbol{\ell}_{\alpha} = \mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}$ we define the **total angular momentum** as $\mathbf{L} = \Sigma_{\alpha} \, \boldsymbol{\ell}_{\alpha} = \Sigma_{\alpha} \, \mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}$.

Its rate of change obeys $d\mathbf{L}/dt = \Sigma_{\alpha} d\boldsymbol{\ell}_{\alpha}/dt = \Sigma_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha}$.

Assuming that the internal forces are *central*, i.e. that $F_{\alpha\beta}$ and $r_{\alpha\beta}$ 'lie on the same line', we can show that $dL/dt = \Gamma^{ext}$ with Γ^{ext} the **net external torque**.

"Principle of Conservation of Angular Momentum" If for the net external torque $\Gamma^{ext} = \mathbf{0}$, then the system's total angular momentum $\mathbf{L} = \Sigma_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}$ remains constant.

Central Forces

Phys105A, Winter 2007, Wim van Dam, UCSB

Moment of Inertia

The **moment of inertia** of an object is to angular momentum what mass is to linear momentum.

A (rigid) object that rotates around the z-axis will have an angular momentum **L** (measured from O on the z-axis) where its z-component L_z is proportional to the angular velocity ω of the rotation: $L_z = I_z \omega$. Here I_z is the *moment of inertia* of the object for the given axis.

It can be calculated by $I_z = \Sigma_{\alpha} m_{\alpha} (r_{\alpha x}^2 + r_{\alpha y}^2)$ or the integral variant $I_z = \int_{\alpha} \dots$ of this.

See Chapter 10 for more on this.

Role of the CM

The center of mass of a multiparticle system plays a special role in the theory of angular momentum.

- Later (again in Chapter 10) you will see/prove the following.
- The conservation of momentum $dL/dt = \Gamma^{ext}$ also holds in the (accelerating, hence non inertial) frame that has CM as its origin at any given moment.
- For any origin O, we can decompose the total angular momentum L as $L_{total} = R \times P + L_{around CM}$.

• Moral lesson: the origin dependency of L is described completely by the $\mathbf{R} \times \mathbf{P} = \mathbf{L}_{CM}$ of the total mass M with its center of mass moving at velocity d**R**/dt.