Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 2 has been posted. It is due Monday January 29, 11:30 am.
- Midterm is tentatively scheduled for Week 6, Tuesday Feb 13, or Thursday Feb 15. The material will be Chapters $1-4$; it is not open book, but you are allowed a 'cheat sheet'.

Help Wanted

Note Taker

You must be sensitive to the needs of students with disabilities

$$
\$ 75
$$

Stop by the Disabled Students Office at 1201 SAASB and complete an application

Chapter 3: Momentum
 and Angular
 Momentum

3.4 Angular Momentum (N=1)

For a particle with momentum \mathbf{p} and position \mathbf{r} (relative to the origin O), the angular momentum ℓ relative to O is defined as $\boldsymbol{\ell}=\mathbf{r} \times \mathbf{p}$ (hence $\boldsymbol{\ell}$ is orthogonal to \mathbf{r} and \mathbf{p}).

Note that

- d $\ell / d t=d r / d t \times p+r \times d p / d t$
- $d r / d t$ and p have the same direction
- $\mathrm{F}=\mathrm{dp} / \mathrm{dt}$

As a result we have $\mathrm{d} \ell / \mathrm{dt}=\mathrm{r} \times \mathrm{dp} / \mathrm{dt}=r \times \mathrm{F}=\Gamma$, with $\Gamma=r \times F$ the net torque about \mathbf{O} on the particle.

3.5 Angular Momentum ($\mathrm{N}>1$)

Generalizing to several particles with their angular momenta $\boldsymbol{\ell}_{\mathrm{a}}=\mathrm{r}_{\mathrm{a}} \times \mathbf{p}_{\mathrm{a}}$ we define the total angular momentum as $L=\Sigma_{\alpha} \boldsymbol{e}_{\alpha}=\Sigma_{\alpha} r_{\alpha} \times \mathbf{p}_{\alpha}$.

Its rate of change obeys $\mathrm{dL} / \mathrm{dt}=\Sigma_{\mathrm{a}} \mathrm{d} \boldsymbol{\ell}_{\mathrm{a}} / \mathrm{dt}=\Sigma_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \times \mathrm{F}_{\mathrm{a}}$.
Assuming that the internal forces are central, i.e. that $F_{\alpha \beta}$ and $r_{\alpha \beta}$ 'lie on the same line', we can show that $\mathrm{dL} / \mathrm{dt}=\Gamma^{\text {ext }}$ with $\Gamma^{\text {ext }}$ the net external torque.
"Principle of Conservation of Angular Momentum" If for the net external torque $\Gamma^{\text {ext }}=\mathbf{0}$, then the system's total angular momentum $\mathbf{L}=\Sigma_{\mathrm{a}} \mathbf{r}_{\mathrm{a}} \times \mathbf{p}_{\mathrm{a}}$ remains constant.

Central Forces

(Almost) all forces that we deal with are central.

Moment of Inertia

The moment of inertia of an object is to angular momentum what mass is to linear momentum.

A (rigid) object that rotates around the z-axis will have an angular momentum L (measured from O on the z -axis) where its z-component L_{z} is proportional to the angular velocity ω of the rotation: $\mathrm{L}_{\mathrm{z}}=\mathrm{I}_{\mathrm{z}} \omega$. Here I_{z} is the moment of inertia of the object for the given axis.

It can be calculated by $I_{z}=\Sigma_{\alpha} m_{\alpha}\left(r_{\alpha x}{ }^{2}+r_{\alpha y}{ }^{2}\right)$ or the integral variant $I_{z}=\int_{\alpha} \ldots$ of this.

See Chapter 10 for more on this.

Role of the CM

The center of mass of a multiparticle system plays a special role in the theory of angular momentum.
Later (again in Chapter 10) you will see/prove the following.

- The conservation of momentum dL/dt = $\Gamma^{\text {ext }}$ also holds in the (accelerating, hence non inertial) frame that has CM as its origin at any given moment.
- For any origin O, we can decompose the total angular momentum \mathbf{L} as $\mathbf{L}_{\text {total }}=\mathbf{R} \times \mathbf{P}+\mathbf{L}_{\text {around }} \mathrm{CM}$.
- Moral lesson: the origin dependency of L is described completely by the $\mathbf{R} \times \mathbf{P}=\mathbf{L}_{\mathrm{CM}}$ of the total mass M with its center of mass moving at velocity dR/dt.

