Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 3 has been posted.
 It is due Monday January 29, 11:30 am.
 Be sure to download the 'improved' version.
- Midterm is scheduled for Week 6, Thursday Feb 15. The material will be Chapters 1–4; it is not open book, but you are allowed a 'cheat sheet'.

Force as a Gradient of U

Using the *gradient* we can summarize the connection between a potential U and its corresponding conservative force **F** by the statement:

$$\mathbf{F} = -\nabla \mathbf{U}$$
$$= -\frac{\partial \mathbf{U}}{\partial \mathbf{x}} \, \hat{\mathbf{e}}_{\mathbf{x}} - \frac{\partial \mathbf{U}}{\partial \mathbf{y}} \, \hat{\mathbf{e}}_{\mathbf{y}} - \frac{\partial \mathbf{U}}{\partial \mathbf{z}} \, \hat{\mathbf{e}}_{\mathbf{z}}$$

Note that each possible potential U gives rise to a conservative force $\mathbf{F} = -\nabla \mathbf{U}$.

The "Del" Operator ∇

You can think of del as $\nabla = \partial/\partial x + \partial/\partial y + \partial/\partial z$.

The gradient ∇U of a scalar field U is a vector field: $\nabla U = \partial U/\partial x \mathbf{e}_x + \partial U/\partial y \mathbf{e}_v + \partial U/\partial z \mathbf{e}_z$.

The *curl* $\nabla \times \mathbf{V}$ of a vector field \mathbf{V} is a vector field: $\nabla \times \mathbf{V} = (\partial \nabla_z / \partial y - \partial \nabla_y / \partial z) \mathbf{e}_x + (\partial \nabla_x / \partial z - \partial \nabla_z / \partial x) \mathbf{e}_y + (\partial \nabla_y / \partial x - \partial \nabla_x / \partial y) \mathbf{e}_z.$

The *divergence* $\nabla \cdot \mathbf{V}$ of a vector field \mathbf{V} is a scalar field: $\nabla \cdot \mathbf{V} = \partial V_x / \partial x + \partial V_y / \partial y + \partial V_z / \partial z$.

$\nabla \times F = 0 \iff F$ is Conservative

The fact that F is a conservative force is equivalent with the statement that $\nabla \times F = 0$ at all positions (x,y,z).

To prove this we use Stokes' Theorem:

$$\oint \mathbf{F} \bullet \mathbf{dr} = \int_{\mathbf{S}} \nabla \times \mathbf{F} \bullet \mathbf{d\sigma}$$

where on the left hand we integrate over the boundary Γ of the surface Σ , while on the right hand we integrate over the surface itself (using the normal vector d $\sigma = e_n \cdot d\sigma$).

Understanding Stokes' Thm

To understand Stokes' theorem is it helps to know that for small squares (\mathbf{r} , \mathbf{r} + Δx , \mathbf{r} + Δy , \mathbf{r} + Δx + Δy) we have at \mathbf{r} :

$$\nabla \times \mathbf{F} = \frac{1}{\Delta x \ \Delta y} \oint_{r \to r + \Delta x \to r + \Delta x + \Delta y \to r + \Delta y \to r} \oint \mathbf{F} \bullet d\mathbf{r}' \qquad \text{as } \Delta x, \Delta y \to 0$$

By patching such infinitesimal squares we can make proper surfaces, thus obtaining Stokes' Theorem.

The requirement $\nabla \times \mathbf{F} = \mathbf{0}$ certifies that each (infinitesimal) circular path will have a net work $W(\mathbf{r} \rightarrow \mathbf{r}) = 0$.

Time Dependent U

- For time dependent U, we have at any given moment that F = -∇U is conservative, yet the total energy E = T+U is not conserved.
- dT = m($\mathbf{v} \cdot d\mathbf{v}$) = m($\mathbf{v} \cdot \mathbf{a}$)dt = $\mathbf{F} \cdot d\mathbf{r}$
- dU = $\partial U/\partial x \, dx + \partial U/\partial y \, dy + \partial U/\partial z \, dz + \partial U/\partial t \, dt$ = $\nabla U \cdot dr + \partial U/\partial t \, dt = -\mathbf{F} \cdot d\mathbf{r} + \partial U/\partial t \, dt$
- So, dE = d(T+U) = $\partial U/\partial t$ dt and $\Delta E = \int \partial U/\partial t$ dt.