Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 3 has been posted. It is due Monday January 29, 11:30 am. Be sure to download the 'improved' version.
- Midterm is scheduled for Week 6, Thursday Feb 15. The material will be Chapters $1-4$; it is not open book, but you are allowed a 'cheat sheet'.

Force as a Gradient of U

Using the gradient we can summarize the connection between a potential U and its corresponding conservative force F by the statement:

$$
\begin{aligned}
F & =-\nabla U \\
& =-\frac{\partial U}{\partial x} \hat{e}_{x}-\frac{\partial U}{\partial y} \hat{e}_{y}-\frac{\partial U}{\partial z} \hat{e}_{z}
\end{aligned}
$$

Note that each possible potential U gives rise to a conservative force $\mathrm{F}=-\nabla \mathrm{U}$.

The "Del" Operator ∇

You can think of del as $\nabla=\partial / \partial x+\partial / \partial y+\partial / \partial z$.

The gradient $\nabla \mathrm{U}$ of a scalar field U is a vector field:
$\nabla \mathrm{U}=\partial \mathrm{U} / \partial \mathrm{x} \mathbf{e}_{\mathrm{x}}+\partial \mathrm{U} / \partial \mathrm{y} \mathrm{e}_{\mathrm{y}}+\partial \mathrm{U} / \partial \mathrm{z} \mathrm{e}_{\mathrm{z}}$.
The curl $\nabla \times \mathbf{V}$ of a vector field \mathbf{V} is a vector field:

$$
\begin{aligned}
\nabla \times \mathbf{V}= & \left(\partial V_{z} / \partial y-\partial V_{y} / \partial z\right) \mathbf{e}_{x}+\left(\partial V_{x} / \partial z-\partial V_{z} / \partial x\right) e_{y} \\
& +\left(\partial V_{y} / \partial x-\partial V_{x} / \partial y\right) \mathbf{e}_{z} .
\end{aligned}
$$

The divergence $\nabla \cdot \mathbf{V}$ of a vector field \mathbf{V} is a scalar field: $\nabla \cdot \mathbf{V}=\partial \mathrm{V}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{V}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{V}_{\mathrm{z}} / \partial \mathrm{z}$.

$\nabla \times F=0 \Leftrightarrow F$ is Conservative

The fact that F is a conservative force is equivalent with the statement that $\nabla \times \mathrm{F}=0$ at all positions $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

To prove this we use Stokes' Theorem:

$$
\oint_{\Gamma} F \cdot d r=\int_{\Sigma} \nabla \times F \bullet d \boldsymbol{\sigma}
$$

where on the left hand we integrate over the boundary Γ of the surface Σ, while on the right hand we integrate over the surface itself (using the normal vector do $=\mathbf{e}_{\mathrm{n}} \cdot \mathrm{d} \mathrm{\sigma}$).

Understanding Stokes' Thm

To understand Stokes' theorem is it helps to know that for small squares ($\mathbf{r}, \mathrm{r}+\Delta \mathrm{x}, \mathrm{r}+\Delta \mathrm{y}, \mathrm{r}+\Delta \mathrm{x}+\Delta \mathrm{y}$) we have at \mathbf{r} :

$$
\nabla \times F=\frac{1}{\Delta x \Delta y} \oint_{r \rightarrow r+\Delta x \rightarrow r+\Delta x+\Delta y \rightarrow r+\Delta y \rightarrow r} F \bullet \bullet d r^{\prime} \quad \text { as } \Delta x, \Delta y \rightarrow 0 .
$$

By patching such infinitesimal squares we can make proper surfaces, thus obtaining Stokes' Theorem.

The requirement $\nabla \times F=0$ certifies that each (infinitesimal) circular path will have a net work $\mathrm{W}(\mathbf{r} \rightarrow \mathbf{r})=0$.

Time Dependent U

- For time dependent U, we have at any given moment that $\mathbf{F}=-\nabla \mathbf{U}$ is conservative, yet the total energy $\mathrm{E}=\mathrm{T}+\mathrm{U}$ is not conserved.
- $\mathrm{dT}=\mathrm{m}(\mathbf{v} \cdot \mathrm{dv})=\mathrm{m}(\mathbf{v} \cdot \mathbf{a}) \mathrm{dt}=\mathrm{F} \cdot \mathrm{dr}$
- $d U=\partial U / \partial x d x+\partial U / \partial y d y+\partial U / \partial z d z+\partial U / \partial t d t$ $=\nabla U \cdot d r+\partial U / \partial t d t=-F \cdot d r+\partial U / \partial t d t$
- $\operatorname{So}, \mathrm{dE}=\mathrm{d}(\mathrm{T}+\mathrm{U})=\partial \mathrm{U} / \partial \mathrm{t}$ dt and $\Delta \mathrm{E}=\int \partial \mathrm{U} / \partial \mathrm{t} \mathrm{dt}$.

