Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 4 has been posted. It is due Monday February 12, 11:30 am.
- Midterm is scheduled for Week 6, Thursday Feb 15. The material will be Chapters 1-4; no electronics are allowed, it is not open book, but you are allowed a letter sized, double sided 'cheat sheet'.

Energy of Two Particles

For two particles under the influence of conservative forces, the total energy E is again the sum of kinetic energy and potential energy.
The kinetic energy is straightforward: $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$ with $T_{1}=1 / 2 m_{1} v_{1}{ }^{2}$ and $T_{2}=1 / 2 m_{2} v_{2}{ }^{2}$. Similarly we have for the external potential: $U^{\text {ext }}=\mathrm{U}_{1}{ }^{\text {ext }}+\mathrm{U}_{2}{ }^{\text {ext }}$.

More subtle is the potential energy Uint due to the interacting forces between the particles.
Can we give a potential for this?

Potential between Particles

To simplify matters, assume that there is no external force.

- The force on (1) exerted by (2) is F_{12}, similarly for F_{21}.
- By Newton's $3^{\text {rd }}$ law $F_{12}=-F_{21}$.
- Assume that the force depends only on the positions of the particles, hence $\mathrm{F}_{12}=\mathrm{F}_{12}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$.
- If F is translationally invariant we have $\mathrm{F}_{12}=\mathrm{F}_{12}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$.

With $r_{1}=\left(x_{1} y_{1}, z_{1}\right)$ and $r_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ we can define the differential operator $\nabla_{1}=\partial / \partial x_{1}+\partial / \partial y_{1}+\partial / \partial z_{1}$, and $\nabla_{2}=\ldots$ If F_{12} is a conservative force we have $\nabla_{1} \times F_{12}=0$ and there is a potential U such that $F_{12}=-\nabla_{1} U\left(r_{1}-r_{2}\right)$. For (2) we have $F_{21}=-F_{12}=\nabla_{1} U\left(r_{1}-r_{2}\right)=-\nabla_{2} U\left(r_{1}-r_{2}\right)$.

One Potential, Two Particles

The previous slide shows that for (1) and (2) we have one potential $U\left(r_{1}-r_{2}\right)$ on the position of (1) relative to the position of (2) such that $\mathrm{F}_{12}=-\nabla_{1} \mathrm{U}$ and $\mathrm{F}_{21}=-\nabla_{2} \mathrm{U}$. Note that for (2) we do not use $\mathrm{U}\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)$.
As the particles move, the work dT done is now $\mathrm{dT}=\mathrm{dT}_{1}+\mathrm{dT}_{2}=\mathrm{dr}_{1} \cdot \mathrm{~F}_{12}+\mathrm{dr}_{2} \cdot \mathrm{~F}_{21}=\left(\mathrm{dr}_{1}-\mathrm{dr}_{2}\right) \cdot \mathrm{F}_{12}$. Hence indeed dT $=\mathrm{d}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right) \cdot\left[-\nabla_{1} \mathrm{U}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)\right]=-\mathrm{dU}$ and the total energy $E=T_{1}+T_{2}+U$ stays conserved: $\mathrm{dE}=\mathrm{dT}+\mathrm{dU}=0$.

Important: For the potential energy of two particles you have only one $\mathrm{U}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$, not $\mathrm{U}_{1}+\mathrm{U}_{2}$ or so.

Elastic Collisions

A collision between two particles is in conservative interaction between (1) and (2) with \mathbf{F} going to $\mathbf{0}$ as the relative distance $\left|\mathbf{r}_{1}-r_{2}\right|$ goes to infinity.
At far enough distances we have $\mathrm{U}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$ is constant, hence (by setting $U=0$ at infinity) $E=T_{1}+T_{2}$ is constant: $T^{\text {well before }}=T$ well after, with $T=1 / 2 m_{1} v_{1}{ }^{2}+1 / 2 m_{2} v_{2}{ }^{2}$.

Combined with the conservation of momentum $m_{1} \mathrm{v}_{1}+m_{2} \mathrm{v}_{2}$, this allows us to easily analyze 2 particle collisions

Fact of pool table life [assuming equals mass and no head on collision]: After ball (1) has hit stationary ball (2), the angle between the two velocities afterwards is 90°.

Swinging Balls

The standard setup:

completely elastic collisions, balls have equal mass, negligible friction.

We know what happens when we let a ball swing with velocity v into the remaining four: its momentum and kinetic energy gets transferred to the rightmost ball, which will swing outward with the same velocity v .

Food for thought: why does it not happen that the two rightmost balls move outwards with velocity $2 / 3 \mathrm{~V}$, while the original ball returns with velocity $-1 / 3 \vee ?$

Energy of Several Particles

The generalization of the two particle result to several particles is straightforward as we only have to consider pair wise potentials: $U=U^{\text {int }}+U^{\text {ext }}=\sum_{a, \beta>\alpha} U_{a \beta}+\sum_{a} U_{a}^{e x t}$ with $F_{\alpha \beta}=-\nabla_{\alpha} U_{\alpha \beta}$.
For a conservative system, the total energy is thus:

$$
E=\sum_{\alpha} \frac{1}{2} m_{a} v_{a}^{2}+\sum_{\alpha, \beta>\alpha} U_{a \beta}+\sum_{a} U_{a}^{e x t}
$$

For rigid bodies, we have by definition that $\left|r_{\alpha}-r_{\beta}\right|$ is constant, hence for central forces Fint, the potentials $\mathrm{U}\left(\left|\mathrm{r}_{\mathrm{a}}-\mathrm{r}_{\beta}\right|\right)$ remain constant and can be ignored.

End of Midterm Material

