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Formalities
•

 
Latest news and course slides always found on the 
Phys105A site at http://www.cs.ucsb.edu/~vandam/…

•
 

Homework 4 has been posted.
 It is due Monday February 12, 11:30 am.

•
 

Midterm is scheduled for Week 6, Thursday Feb 15. 
The material will be Chapters 1–4; no electronics 
are allowed, it is not open book, but you are allowed 
a letter sized, double sided ‘cheat sheet’.
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Energy of Two Particles

For two particles under the influence of conservative 
forces, the total energy E is again the sum of kinetic 
energy and potential energy.
The kinetic energy is straightforward: T = T1

 

+T2

 

with
 T1

 

= ½
 

m1

 

v1
2

 

and T2

 

= ½
 

m2

 

v2
2. Similarly we have 

for the external potential: Uext

 

= U1
ext

 

+ U2
ext.

More subtle is the potential energy Uint

 

due to the 
interacting forces between the particles. 
Can we give a potential for this?
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Potential between Particles

To simplify matters, assume that there is no external force.
-

 
The force on (1) exerted by (2) is F12

 

, similarly for F21

 

.
-

 
By Newton’s 3rd

 

law F12

 

= –F21

 

.
-

 
Assume that the force depends only on the positions of 

the particles, hence F12

 

= F12

 

(r1

 

,r2

 

).
- If F is translationally invariant we have F12

 

= F12

 

(r1

 

–r2

 

).
With r1

 

=(x1

 

y1

 

,z1

 

) and r2

 

=(x2

 

,y2

 

,z2

 

) we can define the 
differential operator ∇1

 

= ∂/∂x1

 

+∂/∂y1

 

+∂/∂z1

 

, and ∇2

 

= …
If F12

 

is a conservative force we have ∇1

 

×F12 = 0 and
 there is a potential U such that F12 = –∇1

 

U(r1

 

–r2

 

).
For (2) we have F21

 

= –F12

 

= ∇1

 

U(r1

 

–r2

 

) = –∇2

 

U(r1

 

–r2

 

).
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One Potential, Two Particles

The previous slide shows that for (1) and (2) we have 
one potential U(r1

 

–r2

 

) on the position of (1) relative to 
the position of (2) such that F12 = –∇1

 

U and F21 = –∇2

 

U.
 Note that for (2) we do not use U(r2

 

–r1

 

).
As the particles move, the work dT

 
done is now

 dT
 

= dT1

 

+ dT2

 

= dr1

 

•F12 + dr2

 

•F21 = (dr1

 

–dr2

 

)•F12

 

.
Hence indeed dT

 
= d(r1

 

–r2

 

)•[–∇1

 

U(r1

 

–r2

 

)] = –dU
 and the total energy E = T1

 

+T2

 

+U stays conserved:
 dE

 
= dT

 
+ dU

 
= 0.

Important: For the potential energy of two particles you 
have only one U(r1

 

–r2

 

), not U1

 

+U2

 

or so.



Phys105A, Winter 2007, Wim van Dam, UCSB

Elastic Collisions

A collision between two particles is in conservative 
interaction between (1) and (2) with F going to 0 as 
the relative distance |r1

 

–r2

 

| goes to infinity.
At far enough distances we have U(r1

 

–r2

 

) is constant, 
hence (by setting U=0 at infinity) E = T1

 

+T2

 

is constant:
Twell

 

before

 

= Twell

 

after, with T = ½
 

m1

 

v1
2

 

+ ½
 

m2

 

v2
2.

Combined with the conservation of momentum m1

 

v1

 

+m2

 

v2

 

,
 this allows us to easily analyze 2 particle collisions

Fact of pool table life [assuming equals mass and no head 
on collision]: After ball (1) has hit stationary ball (2), the 
angle between the two velocities afterwards is 90º.
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Swinging Balls

The standard setup: 
completely elastic collisions,

 balls have equal mass,
negligible friction.

We know what happens when we let a ball swing with velocity v

 into the remaining four: its momentum and kinetic energy gets 
transferred to the rightmost ball, which will swing outward with

 the same velocity v.

Food for thought: why does it not happen that the two 
rightmost balls move outwards with velocity ⅔

 
v, while

 the original ball returns with velocity –⅓
 

v ? 
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Energy of Several Particles

The generalization of the two particle result to several 
particles is straightforward as we only have to consider 
pair wise potentials:

 with Fαβ

 

= –∇α

 

Uαβ

 

.
For a conservative system, the total energy is thus:

∑∑ +=+=
> α

ext
α

αβ,α
αβ

extint UUUUU

∑∑∑ ++=
> α

ext
α

αβ,α
αβ

α

2
αα2

1 UUvmE

For rigid bodies, we have by definition that |rα
 

–rβ
 

| is
 constant, hence for central forces Fint, the potentials
 U(|rα

 

–rβ
 

|) remain constant and can be ignored. 

End of Midterm Material
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