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The Final

The final is scheduled as
 Wednesday, March 21, 8:00 – 11:00 am, Broida 1640 

Material:
Everything, including the last 2 weeks, with an 
emphasis on the post-midterm chapters 5, 6 and 7.

What to expect: 
See the problems in the book.

Questions?
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Midterm Distribution
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Chapter 7 
Lagrange’s 
Equations
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Lagrangian

For an unconstrained system in 3 dimensions subject 
to the a conservative field with potential energy U=U(r) 
and kinetic energy T= ½m(x'2+y'2+z'2) we have the 
Lagrangian (or Lagrange function): L = T–U,

 in this case L(x,y,z,x',y',z') = ½m(x'2+y'2+z'2) –
 

U(x,y,z).

Note that ∂L/∂x = –∂U/∂x = Fx

 

and ∂L/∂x' = mx' = px

 

,
 hence ∂L/∂x –

 
d(∂L/∂x')/dt

 
= 0; similarly for y and z. 

These are the three Lagrange equations, 
which follow from Newton’s second law

 for q(t) = x(t), y(t), and z(t).
qdt
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Hamilton’s Principle

Lagrange’s equations indicate that Newton’s second law 
for a single particle describes a path (x(t),y(t),z(t)) that 
obeys the Euler-Lagrange equations for the Lagrangian

 
L.

This is Hamilton’s Principle: The path of a particle 
from time t1

 

to t2
 

is such that the action integral 

is stationary. 

See Feynman’s “QED: The Strange Theory of Light and 
Matter”

 
for how this principle is crucial to modern physics.
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Generalized Coordinates

Hamilton’s principle remains true in cylindrical or spherical 
coordinates, and in fact for any reasonable kind of 
generalized  coordinate system r = r(q1

 

,q2

 

,q3

 

).

We call ∂L/∂qi

 

is i-th
 

the generalized force component,
 and ∂L/∂q'i

 

the i-th
 

generalized momentum component,
 with ∂L/∂qi

 

= d(∂L/∂q'i
 

)/dt
 

for all i.

See Example 7.2 for new, simpler derivation of Newton’s 
second law in polar coordinates. Note that as long as you 
remember your (polar) ∇U rules, you can avoid vector 
calculations like “der

 

/dt
 

= dφ/dt
 

eφ
 

”
 

(cf. Section 1.7).
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Further Generalizations

The Hamilton’s principle-approach can also be generalized 
to N particles with a joint Lagrangian

 
L(r1

 

,…,rN

 

,r'1
 

,…,r'N
 

,t).

For N unconstrained particles in three dimensions, this 
gives 3N equations ∂L/∂qi

 

= d(∂L/∂q'i
 

)/dt
 

for i = 1,…,3N.

The real power of the Langrangian
 

shows when dealing 
with constrained systems. Traditionally this requires us to 
write down the various interactions between the particles 
and their constraints (normal forces et cetera). Now we 
only have to worry about the potential and kinetic energy 
as a function of the generalized coordinates…
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Constrained Systems

The Langrangian
 

approach to mechanics works equally 
well for constrained systems where not all of the 
generalized coordinates can be chosen independently.
Typical example: a mass m that is limited in its mobility 
because it has to slide along a wire, or stick to a surface.

A system with N particles in positions rα
 

for α=1,…,N has 
a set of generalized coordinates q1

 

,…,qn

 

if each rα
 

follows 
from (q1

 

,…,qn

 

,t) and each qi

 

follows from (r1

 

,…,rN

 

,t).
If there is no time dependency, the system is natural.
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Degrees of Freedom

The degrees of freedom of a system is the number of 
coordinates that can independently be varied in an 
infinitesimal displacement (“number of directions to go”).
A system is holonomic if its degrees of freedom equals 
its number of generalized coordinates.  
Nonholonomic systems have more coordinates than 
degrees of freedom, hence the chance of (some of) the 
coordinates is made “indirectly”

 
(by following a path). 

Example: a car has 4 coordinates (2 position, 1 orientation car and 1 
orientation wheel), while when driving it has only two degrees of 
freedom (gas pedal + steering wheel). The art of (parallel) parking 
shows that those 2 degrees are sufficient to move in all 4 coordinates. 
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Holonomic Systems

Here we will only deal with holonomic
 

systems. 
With
•

 
generalized coordinates q1

 

,..,qn

•
 

potential energy U(q1

 

,…,qn

 

,t)
•

 
kinetic energy T

•
 

and Langrangian
 

L
 

= T–U
the time evolution of the system is described by

n1,...,i for
qdt

d
q
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Solving It the Lagrangian Way

When trying to solve the evolution of a holonomic
 

system 
the “Lagrangian

 
way”

 
you should pay special attention to 

picking the right coordinate system (q1

 

,…,qn

 

):

•
 

Do not introduce too many coordinates 
Example 7.3 shows that Atwood’s machine has only one degree of freedom.

•
 

Pick your coordinates in an inertial system 
See the example of a pendulum hanging in an accelerating train.

•
 

Arrange the coordinates such that the Lagrangian L
 is independent from as many coordinates as possible. 

That is, use any kind of symmetry that you have. Example: When dealing with 
gravity, align the coordinates with the direction of g.
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Advantage of Lagrangians

The Langrangian
 

way of solving problems in mechanics 
has several advantages over the traditional way:
•

 
Because it focuses on the potential energy U and the 

kinetic energy T, you get rid of a lot of vector notation. 
Instead your equations become 1d again. 
•

 
The notation is very economic; typically you only deal with 

degrees of freedom of the system, nothing more. This is 
especially helpful in constrained systems. 
The Newtonian way often involves writing down forces that 
end up cancelling each other, and so on. 
• It prepares you for modern physics (cf. Feynman’s QED).
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