Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 1 has been posted. It is due Monday January 22, 11:30 am.
- You have to hand in two separate sets of answers so that the two TAs can grade the different questions.
- Questions?

Cartesian Coordinates

- Rewriting the law of acceleration as $\mathbf{F}=\mathrm{m} \mathrm{d}^{2} \mathrm{r} / \mathrm{dt}{ }^{2}$ in Cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates gives (of course):

$$
F=m \ddot{r} \Leftrightarrow\left\{\begin{array}{l}
F_{x}=m \ddot{x} \\
F_{y}=m \ddot{y} \\
F_{z}=m z ̈
\end{array}\right.
$$

- This allows us to decompose our calculations into three independent, 1 dimensional problems.

2D-Polar Coordinates

- Many 2 dimensional systems have symmetries that are best captured by polar coordinates:

$$
\left.\begin{array}{l}
x=r \cos \varphi \\
y=r \sin \varphi
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\varphi=\arctan (y / x)
\end{array}\right.
$$

For a position \mathbf{r}, we can define the corresponding coordinate system with $\mathbf{e}_{\mathrm{r}}=\mathbf{r} /|\mathbf{r}|$ and $\mathbf{e}_{\varphi} \perp \mathbf{e}_{\mathrm{r}}$.

As r changes in time, we can change our coordinates system such that always $r=r(t) e_{r}$, which is handy.

d/dt in Polar Coordinates

- For a particle with time dependent position r (with r, φ) we want to know its velocity dr/dt:
- Observe that de $/$ /dt $=\mathrm{d} \varphi / \mathrm{dt} \mathbf{e}_{\varphi}$.
- Hence we have: $\mathbf{v}=\mathrm{dr} / \mathrm{dt}=\mathrm{dr} / \mathrm{dt} \mathbf{e}_{\mathrm{r}}+\mathrm{rd} \mathrm{d} / \mathrm{dt} \mathbf{e}_{\varphi}$.
- We also want to know its acceleration dv/dt:
- Observe that $\mathrm{de}_{\varphi} / \mathrm{dt}=-\mathrm{d} \varphi / \mathrm{dt} \mathbf{e}_{\mathrm{r}}$
- Hence we have for $\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}=\mathrm{dv} / \mathrm{dt}$:
$\mathbf{a}=\left[\mathrm{d}^{2} \mathrm{r} / \mathrm{d} t^{2}-\mathrm{r}(\mathrm{d} \varphi / \mathrm{dt})^{2}\right] \mathbf{e}_{\mathrm{r}}+\left[r \mathrm{~d}^{2} \varphi / \mathrm{dt} \mathrm{t}^{2}+2 \mathrm{dr} / \mathrm{dt} \mathrm{d} \varphi / \mathrm{dt}\right] \mathbf{e}_{\varphi}$.

Newton's Laws (Polar version)

- Newton's second law thus becomes

$$
\mathbf{F}=m a \Leftrightarrow\left\{\begin{array}{l}
F_{r}=m\left(\ddot{r}-r \dot{\varphi}^{2}\right) \\
F_{\varphi}=m(r \ddot{\varphi}+2 \dot{r} \dot{\varphi})
\end{array}\right.
$$

Despite its messy appearance, this rephrasing can be very useful as we often deal with situations where r stays constant, giving (cf. Example 1.2):

$$
\mathbf{F}=m \mathbf{a} \Leftrightarrow\left\{\begin{array}{l}
F_{r}=-m r \dot{\dot{q}}^{2} \\
F_{\varphi}=m r \ddot{\varphi}
\end{array}\right.
$$

More Non-Cartesian Systems

- If an additional z-coordinate if required, we use cylindrical (polar) coordinates (ρ, φ, z), see p. 34.
- For spherical symmetries we use spherical coordinates (r, θ, φ), which will be dealt with in Chapter 4.

> Chapter 2: Projectiles and Charged Particles

Modeling (Air) Resistance

- Realistically, a particle moving with through a medium will experience a drag (resistive force) f, which depends on the speed \mathbf{v} of the particle.
- Ignoring the possibility of lift and other sideways forces, the direction will be opposite the speed: $\mathbf{f} / \mathbf{f}|=-\mathbf{v} /|\mathbf{v}|$.
- Furthermore we assume that the magnitude of the drag is determined solely by v as well. Hence $f=f(v) \mathbf{e}_{v}$.
- A reasonable approximation can be made by assuming that f is a quadratic function in v and $f(0)=0$.
- In sum: $f(v)=b v+c v^{2}=f_{\text {lin }}+f_{\text {quad }}$.

Linear Air Resistance

- Consider a flying projectile of mass m for which the quadratic drag force is negligible: $\mathbf{f}=-\mathrm{b} \mathbf{v}$.
- Summing the forces thus gives $\mathbf{F}=\mathrm{mg}-\mathrm{bv}=\mathrm{m} \mathrm{dr}{ }^{2} / \mathrm{dt}^{2}$.
- With $\mathbf{r}(0)=0$ and $\mathbf{v}(0)=\mathbf{v}_{0}$ we expect something like:

