Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 2 has been posted. It is due Monday January 29, 11:30 am.
- Questions?

Motion \& Magnetic Force

- In a uniform magnetic field B, a q-charged particle with speed \mathbf{v} undergoes a force $\mathbf{F}=\mathrm{qv} \times \mathbf{B}$.
- Think "orthogonal linear drag".
- For a B-field in the z-direction and no g force this means that the transverse motion in the xy plane of the particle moves in a circle $\sim c \cdot e^{-i \omega t}$ with:
- radius: $\mathrm{c}=\mathrm{vm} / \mathrm{qB}$
- angular velocity: $\omega=q B / m$

Chapter 3: Momentum
 and Angular
 Momentum

3.1 Conservation of Momentum

Consider N particles, with linear momentum $\mathbf{P}=\Sigma_{\alpha} \mathbf{p}_{\alpha}$. By Newton's $3^{\text {rd }}$ Law, we have d P/dt $=\mathrm{F}^{\text {ext }}$.
"Principle of Conservation of Momentum" If for the net external force $\mathrm{F}^{\mathrm{ext}}=\mathbf{0}$, then the total momentum of the multipartite system $\mathbf{P}=\Sigma_{\alpha} m_{\alpha} \mathbf{v}_{\alpha}$ remains constant.

Some examples:

- Inelastic collisions of several bodies
- Rocket propulsion

3.3 Center of Mass

For N particles with masses m_{α} and positions r_{α} from the origin O, its center of mass CM (relative to the origin O) is defined as the position $R=\left(\Sigma_{\alpha} m_{\alpha} r_{\alpha}\right) / \Sigma_{\alpha} m_{\alpha}$.

Note that the position of R with respect to the particles does not depend on the specific origin O .

With total mass $\mathrm{M}=\Sigma_{\alpha} \mathrm{m}_{\alpha}$, the total momentum of the system can be expressed as $\mathbf{P}=\mathbf{M}$ dR/dt and so we have $\mathrm{F}^{\mathrm{ext}}=\mathrm{M} \mathrm{d}{ }^{2} R / \mathrm{dt}^{2}$. Hence, If we are only interested in the total momentum, we can view the N particle system as a single particle with mass M and position R .

Calculating CMs

For 2 particles with masses m_{1} and m_{2} the barycenter (=center of mass) lies on the line between r_{1} and r_{2} :

For solid bodies with density ρ over its volume we have $\mathbf{R}=\left(\int \rho \cdot r d V\right) /\left(\int \rho d V\right)$; see Example 3.2.

Besides Total Momentum...

Consider a multipartite system with total momentum \mathbf{P} and without external forces acting on it: $\mathbf{F e x t}^{\text {ex }} \mathbf{0}$. We know that \mathbf{P} will stay constant but that is not all...

Example: For a solar system it is impossible to revert the directions of the movements of the planets, although that would not change the total momentum P.

There are other conservation principles that we have to include to better capture the predictions of Newton's laws.

3.4 Angular Momentum (N=1)

For a particle with momentum \mathbf{p} and position \mathbf{r} (relative to the origin O), the angular momentum ℓ relative to O is defined as $\boldsymbol{\ell}=\mathbf{r} \times \mathbf{p}$ (hence $\boldsymbol{\ell}$ is orthogonal to \mathbf{r} and \mathbf{p}).

Note that

- d $\ell / d t=d r / d t \times p+r \times d p / d t$
- $\mathrm{dr} / \mathrm{dt}$ and p have the same direction
- $\mathrm{F}=\mathrm{dp} / \mathrm{dt}$

As a result we have $\mathrm{d} /$ /dt $=r \times d p / d t=r \times F=\Gamma$, with $\Gamma=r \times F$ the net torque about \mathbf{O} on the particle.

