Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 2 has been posted.
 It is due Monday January 29, 11:30 am.
- Questions?

Motion & Magnetic Force

- In a uniform magnetic field B, a q-charged particle with speed v undergoes a force F = qv × B.
- Think "orthogonal linear drag".
- For a B-field in the z-direction and no g force this means that the *transverse* motion in the xy plane of the particle moves in a circle ~ c·e^{-iωt} with:
- radius: c = vm/qB
- angular velocity: $\omega = qB/m$

Chapter 3: Momentum and Angular Momentum

3.1 Conservation of Momentum

Consider N particles, with **linear momentum** $\mathbf{P} = \Sigma_{\alpha} \mathbf{p}_{\alpha}$. By Newton's 3rd Law, we have d $\mathbf{P}/dt = \mathbf{F}^{ext}$.

"Principle of Conservation of Momentum" If for the net external force $\mathbf{F}^{\text{ext}} = \mathbf{0}$, then the total momentum of the multipartite system $\mathbf{P} = \Sigma_{\alpha} m_{\alpha} \mathbf{v}_{\alpha}$ remains constant.

Some examples:

- Inelastic collisions of several bodies
- Rocket propulsion

3.3 Center of Mass

For N particles with masses m_{α} and positions \mathbf{r}_{α} from the origin O, its **center of mass CM** (relative to the origin O) is defined as the position $\mathbf{R} = (\Sigma_{\alpha} m_{\alpha} \mathbf{r}_{\alpha})/\Sigma_{\alpha} m_{\alpha}$.

Note that the position of **R** with respect to the particles does not depend on the specific origin O.

With total mass $M = \Sigma_{\alpha} m_{\alpha}$, the total momentum of the system can be expressed as P = M dR/dt and so we have $F^{ext} = M d^2 R/dt^2$. Hence, If we are only interested in the total momentum, we can view the N particle system as a single particle with mass M and position **R**.

Calculating CMs

For 2 particles with masses m_1 and m_2 the *barycenter* (=center of mass) lies on the line between r_1 and r_2 :

1 2 with
$$\lambda = m_2/(m_1+m_2)$$
.

For solid bodies with density ρ over its volume we have **R** = $(\int \rho \cdot \mathbf{r} \, dV) / (\int \rho \, dV)$; see Example 3.2.

Besides Total Momentum...

Consider a multipartite system with total momentum P and without external forces acting on it: $\mathbf{F}^{\text{ext}} = \mathbf{0}$. We know that P will stay constant but that is not all...

Example: For a solar system it is impossible to revert the directions of the movements of the planets, although that would not change the total momentum **P**.

There are other conservation principles that we have to include to better capture the predictions of Newton's laws.

3.4 Angular Momentum (N=1)

For a particle with momentum **p** and position **r** (relative to the origin O), the **angular momentum** ℓ *relative to* O is defined as $\ell = \mathbf{r} \times \mathbf{p}$ (hence ℓ is orthogonal to **r** and **p**).

Note that

- $d\boldsymbol{\ell}/dt = d\boldsymbol{r}/dt \times \boldsymbol{p} + \boldsymbol{r} \times d\boldsymbol{p}/dt$
- dr/dt and p have the same direction
- **F** = d**p**/dt

As a result we have $d\ell/dt = r \times dp/dt = r \times F = \Gamma$, with $\Gamma = r \times F$ the **net torque about O** on the particle.