Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Formalities

- Latest news and course slides always found on the Phys105A site at http://www.cs.ucsb.edu/~vandam/...
- Homework 3 has been posted. It is due Monday January 29, 11:30 am. Be sure to download the 'improved' version.
- Midterm is scheduled for Week 6, Thursday Feb 15. The material will be Chapters 1–4; it is not open book, but you are allowed a 'cheat sheet'.

Help Wanted

Note Taker

You must be sensitive to the needs of students with disabilities

\$75

Stop by the Disabled Students Office at 1201 SAASB and complete an application

Phys105A, Winter 2007, Wim van Dam, UCSB

Phys105A, Winter 2007, Wim van Dam, UCSB

Kinetic Energy and Work

- The kinetic energy (KE) of a single particle with velocity v is defined as T = ½ m|v|² (units kg m²/s²).
- The time derivative of kinetic energy is therefore dT/dt = m (dv/dt)·v = F·v, hence the change in kinetic energy is: dT = F·dr (just multiply by dt).
- This **F**-d**r** is the *work* done by **F** along d**r**.
- The change in kinetic energy/work done by F is expressed by the line integral ∆T = T₂ T₁ = ∫ F · dr (where the integral ∫ dr can be in >1 dim. space).
- This is also denoted as W(1→2): the work done by F moving from point 1 to point 2 (path dependent).

Work-KE Theorem

The change ΔT in a particle's kinetic energy as it moves from point 1 to point 2 is expressed by

$$\Delta \mathbf{T} = \mathbf{T}_2 - \mathbf{T}_1 = \int_{1}^{2} \mathbf{F} \cdot \mathbf{dr} = W(1 \rightarrow 2)$$

By linearity we can decompose $\mathbf{F} = \mathbf{F}_1 + ... + \mathbf{F}_n$ and calculate the sum of integrals if that is easier, thus giving W(1 \rightarrow 2) = W₁(1 \rightarrow 2) + ... + W_n(1 \rightarrow 2).

Conservative Forces

For *conservative forces* we can define definition of *potential energy*.

A force **F** on a particle is *conservative* if and only if

- F only depends on the position r of the particle
- For any two points the work W(1→2) does not depend on the path from point 1 to point 2.

A conservative force does not depend on time t or the velocity **v** of the particle (like drag does).

The gravitational forces is conservative. So is the force of a spring.

Potential Energy

If all forces on an object are conservative, we can talk about the *potential energy* (PE) of the particle at position **r**, denoted by U(**r**). For a given reference point \mathbf{r}_0 we define the potential energy U(**r**) by:

$$U(\mathbf{r}) = -W(\mathbf{r}_0 \rightarrow \mathbf{r}) = -\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F}(\mathbf{r}') \cdot d\mathbf{r}'$$

Because the force **F** is conservative, this definition is unambiguous (units kg m²/s² and U(\mathbf{r}_0)=0). The potential U(\mathbf{r}) can be negative, what really matters is the *difference* between U(\mathbf{r}_1) and U(\mathbf{r}_2).

Total Mechanical Energy

The *total mechanical energy* E of a particle is the sum its kinetic energy T and its potential energy U: E=T+U. The total mechanical energy E is *conserved*.

The work done by **F** between \mathbf{r}_1 and \mathbf{r}_2 is $W(\mathbf{r}_1 \rightarrow \mathbf{r}_2) = -[U(\mathbf{r}_2) - U(\mathbf{r}_1)] = -\Delta U$. As $\Delta T = W(\mathbf{r}_1 \rightarrow \mathbf{r}_2)$, we have $\Delta(T+U) = 0$.

If we have several conservative forces $\mathbf{F} = \mathbf{F}_1 + ... + \mathbf{F}_n$ (giving the potentials $U_1, ..., U_n$), the total mechanical energy $\mathbf{E} = \mathbf{T} + \mathbf{U} = \mathbf{T} + U_1 + ... + U_n$ is constant.

Force as a Gradient of U

Using the *gradient* we can summarize the connection between a potential U and its corresponding conservative force **F** by the statement:

$$\mathbf{F} = -\nabla \mathbf{U}$$
$$= -\frac{\partial \mathbf{U}}{\partial \mathbf{x}} \, \hat{\mathbf{e}}_{\mathbf{x}} - \frac{\partial \mathbf{U}}{\partial \mathbf{y}} \, \hat{\mathbf{e}}_{\mathbf{y}} - \frac{\partial \mathbf{U}}{\partial \mathbf{z}} \, \hat{\mathbf{e}}_{\mathbf{z}}$$

Note that each possible potential U gives rise to a conservative force $\mathbf{F} = -\nabla \mathbf{U}$.