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Formalities
•

 
Latest news and course slides always found on the 
Phys105A site at http://www.cs.ucsb.edu/~vandam/…

•
 

Homework 4 has been posted.
 It is due Monday February 12, 11:30 am.

•
 

Midterm is scheduled for Week 6, Thursday Feb 15. 
The material will be Chapters 1–4; no electronics 
are allowed, it is not open book, but you are allowed 
a letter sized, double sided ‘cheat sheet’.
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One Dimensional Systems

For one dimensional systems every possible position 
dependent force F(x) will be conservative and the 
potential U(x1

 

) is simply the ‘straight’
 

integral –∫
 

Fx

 

(x) dx
 between the reference point x0

 

and the point x1

 

. 

This allows us to plot the potential U on a line and reason 
about it in a intuitive “hills and valleys”

 
kind of way.

Solving the equations of motion of such a system is 
relatively easy (although the integrals involved might 
still require a computer to approximate).
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Solving 1D Systems

For a 1D conservative system in x with energy E, we have
 T = ½mv2

 

= E–U(x) and hence v(x) = ±√(2/m)√(E–U(x)).
As dt

 
= dx/v, we get for the Δt time between x0

 

and x1

 

:

(The +/–
 

is determined by the direction of the initial speed.)
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Very similar evaluations are possible for other systems
 with only one degree of freedom such as curvilinear 

systems and Atwood systems. We will see much more 
of this in Chapter 7 on Lagrange’s Equations.
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Central Forces

A particle subjected to a central force from a “force 
center”

 
in O can be viewed as a 1d system (in r):

“force center” particle at r
 

subjected 
to force F(r) = f(r) er

 

.

Remarkable fact about central forces:
 F

 
is conservative if and only if F

 
is 

spherical (= rotationally) invariant such 
that f(r) = f(r) depends only on r.

r
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Spherical Coordinates (I)
3D systems that are rotationally invariant are often

 best described in spherical polar coordinates.

A vector r
 

(pointing from the origin to a point P)
 has three spherical coordinates (r,θ,φ) with

• distance r = |r| from O.
• angle θ

 
between r

 
and ez

•
 

angle φ
 

(azimuth) between ex

 
and r

 
projected in XY plane.

In earth coordinates we would
 say that r is the radius of the 

earth, θ
 

gives the co-latitude (N-S)
 and φ

 
gives the longitude (E-W).

P
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Spherical Coordinates (II)
3D systems that are rotationally invariant are often

 best described in spherical polar coordinates.

A vector r
 

(pointing from the origin to a point P)
 has three spherical coordinates (r,θ,φ).

Getting back to Cartesian coordinates is easy:
• x = r cosφ

 
sinθ

• y = r sinφ
 

sinθ
• z = r cosθ.

P
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Spherical Coordinates Basis

φ

φ̂

θ

θ̂

P

Given the vector r, we can use the basis defined
 by the orthogonal vectors er

 

, eθ
 

, eφ
 

such that
 a

 
= ar

 

er

 

+ aθ
 

eθ
 

+ aφ
 

eφ
 

and so on.

For a scalar field f(r,θ,φ), calculating the gradient ∇f such 
that df

 
= ∇f•dr

 
is a bit harder to do.

The displacement dr
 

has three
 components dr, dθ

 
and dφ

 
with

 dr
 

= dr
 

er

 

+ r dθ
 

eθ
 

+ r sinθ
 

dφ
 

eφ
 

.

As df
 

= ∂f/∂r dr + ∂f/∂θ
 

dθ
 

+ ∂f/∂φ
 

dφ
 we have 

φθr φ
f

θsinr
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θ
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F = –∇U Again

Claimed fact about central forces: 
F

 
= f(r) er

 

is conservative ⇔ f(r) = f(r) depends only on r.

Proof of “ ⇒”
 

using spherical coordinates: 
As F

 
is conservative, let U be the potential of F, with 

F
 

= –∇U = –∂U/∂r er

 

– 1/r ∂U/∂θ
 

eθ
 

–(1/r sinθ)∂U/∂φ
 

eφ
 

.
 Because F

 
is central, ∂U/∂θ

 
= ∂U/∂φ

 
= 0 (U is rotationally 

invariant), hence F
 

= –∂U/∂r er

 

is rotationally invariant. 

Proof of “ ⇐”
 

using spherical coordinates: 
Using the “spherical curl”

 
on F

 
= f(r) er

 

, (see back of 
book) one gets ∇×F

 
= 0, so F

 
is conservative.
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