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Formalities
•

 
New homework is posted, 
due Monday March 5, 11:30 am.

•
 

Answers to Midterm/Homework 5 are posted.

•
 

Questions?
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Driven Damped Oscillations

A damped oscillator (with m,b,k) driven by a time 
dependent force F(t) is described by the equation

Rewriting with 2β=b/m, ω0

 

=√(k/m) and f(t) = F(t)/m
 

gives

This is an inhomogeneous differential equation, for 
which we know how to solve the homogeneous part. 
We will describe a particular solution for f = f0

 

cos
 

ωt, 
where ω

 
is the driving frequency.
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Solving the Driven Oscillator
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Solving the equation for the sinusoidal driving force

gives…
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are determined by the homogeneous
 equation and their transient effect does not matter in 

the limit t→∞.
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Resonance

The amplitude squared A2 = f02/(ω0
2–ω2)2+4β2ω2) of a 

driven oscillator depends not only on f0
 

but also on the
 relation between the frequencies ω0

 

and ω. 
For small β

 
(small drag), ω0

 

≈ω
 

will give a high response A:
 the frequencies are “in resonance”. 

Specifically, ω=√(ω0
2–2β2) gives maximum A. 

For small β, it gives A ≈
 

f0
 

/(2βω0

 

).

How critical a system depends on the driving frequency is 
expressed by the quality factor Q = β/2ω0

 

(cf. Section 5.6).
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LRC Circuits

Besides for mechanical systems, the resonance of damped 
oscillations is also relevant for LRC circuits.

A circuit with inductor (L), resistor (R) 
and capacitor (C) is described by the 
differential equation:

where q is the charge at the capacitor and we used 
Kirchoff’s

 
2nd

 

rule (which says that the sum of Voltage 
difference should be zero as we go around the circuit).
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Fourier Analysis

Observation: If one has solutions xj

 

(t) to linear differential 
equations Dx

 
= fj

 

(t), then –by linearity–
 

it holds that 
x = c1

 

x1 + …
 

+ cn

 

xn

 

is a solution to the differential equation
 Dx

 
= c1

 

f1
 

(t)
 

+ …
 

+ cn

 

fn
 

(t), where cj

 

are complex constants.

Fourier analysis tells us that each 2π/ω
 

periodic function f 
can be written as an (infinite) sum f(t) = Σn

 

cn

 

enωit.
Using such a decomposition, and the known solutions to 
the equations Dx

 
= enωit, we can solve the case Dx

 
= f(t).

This is very important when dealing with non sinusoidal 
pulses such as square waves or sawtooth

 
waves.
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A Fourier Decomposition

This sawtooth
 

wave is defined as
 f(t) = (t mod 2)/2 for all t. 

This function can be rewritten as
f(t) = ½

 
–

 
1/π[sin(πt) + sin(2πt)/2 + sin(3πt)/3 + …

 
]

The coefficients 1/πn for the respective frequencies nπ
 make up the spectrum of the function f(t).
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