Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Euler-Lagrange Equation

Let y(x) be the path that minimizes/maximizes the integral

$$S = \int_{x_1}^{x_2} f[y(x), y'(x), x]dx$$

The Euler-Lagrange equation tells us that S is extremal, or *stationary*, when y(x) obeys

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$$

Fastest Path

Given two points P,Q in \mathbb{R}^2 in a gravitational field ge_x , what is the fastest path y(x)?

ind y(x) that minimizes

$$\frac{1}{\sqrt{2g}} \int_{x_1}^{x_2} \frac{\sqrt{1+{y'}^2}}{\sqrt{x}} dx$$

The answer to this classic brachistochrone problem is that y(x) is (part) of a cycloid $x(\theta) = a(1-\cos\theta)$ $y(\theta) = a(\theta-\cos\theta)$

Brachistochrone Problem

For the shortest path we look for the extremal values of the integral $\int f(x) dx$ with $f(x) = \sqrt{(1+y'^2)}/\sqrt{x}$. Euler-Lagrange says $\partial f/\partial y - d(\partial f/\partial y')/dx = 0$, hence $\partial f/\partial y'$ is constant (in x).

$$\frac{\partial f}{\partial y'} = \frac{1}{\sqrt{x}} \frac{y'}{\sqrt{1 + {y'}^2}} = c \quad \begin{array}{l} \text{gives the} \\ \text{equation} \end{array} \quad y' = \sqrt{\frac{x}{2a - x}} \\ y(x_2) = \int_{x=0}^{x_2} \sqrt{\frac{x}{2a - x}} dx \quad \begin{array}{l} \text{has} \\ \text{solution} \end{array} \quad y = a(\theta - \sin\theta) \\ y = a(\theta - \sin\theta) \end{array}$$

E-L for Several Variables

For an arbitrary number of variables $q_1(t), \dots, q_n(t)$, with t the independent variable, what are the extremals of:

$$S = \int_{t_1}^{t_2} L[q_1, \dot{q}_1, ..., q_n, \dot{q}_n, t] dt?$$

The Euler-Lagrange equation tells us (again) that the dependent variables have to obey for all j:

$$\frac{\partial L}{\partial q_j} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} = 0$$

Notation

Note the following shorthand conventions:

The derivative of y with respect to x can be denoted using the apostrophe: dy/dx = y'.

Derivatives with respect to time are often denoted with a dot above the coordinate. Hence $\begin{bmatrix} dv & dv \end{bmatrix}$

 $y' = \frac{dy}{dx}$ and $\dot{y} = \frac{dy}{dt}$

The " ∂ versus d" notation in $\partial L/\partial q - d(\partial L/\partial q)/dt = 0$ should remind you that t is the independent variable and that d/dt concerns all variables in L (unlike the partial derivatives such as $\partial L/\partial q$).

Chapter 7 Lagrange's Equations

Phys105A, Winter 2007, Wim van Dam, UCSB

Langrangian

For an unconstrained system in 3 dimensions subject to the a conservative field with potential energy U=U(**r**) and kinetic energy T= $\frac{1}{2}m(x'^2+y'^2+z'^2)$ we have the **Langrangian** (or **Lagrange function**): $\mathcal{L} = T-U$, in this case $\mathcal{L}(x,y,z,x',y',z') = \frac{1}{2}m(x'^2+y'^2+z'^2) - U(x,y,z)$.

Note that $\partial \mathcal{L}/\partial x = -\partial U/\partial x = F_x$ and $\partial \mathcal{L}/\partial x' = mx' = p_x$, hence $\partial \mathcal{L}/\partial x - d(\partial \mathcal{L}/\partial x')/dt = 0$; similarly for y and z.

These are the three Lagrange equations, $\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}}$ which follow from Newton's second law $\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}}$ for q(t) = x(t), y(t), and z(t).