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Euler-Lagrange Equation

Let y(x) be the path that minimizes/maximizes the integral 

The Euler-Lagrange equation tells us that S is extremal, 
or stationary,  when y(x) obeys
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Fastest Path

Given two points P,Q in R2

 

in a gravitational field gex

 

, 
what is the fastest path y(x)?

The answer to this classic
 brachistochrone problem is 

that y(x) is (part) of a cycloid
 x(θ) = a(1–cosθ)

 y(θ) = a(θ–cosθ)
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Brachistochrone Problem 

For the shortest path we look for the extremal
 

values 
of the integral ∫

 
f(x) dx

 
with f(x) = √(1+y’2)/√x. 

Euler-Lagrange says ∂f/∂y–d(∂f/∂y’)/dx
 

= 0, 
hence ∂f/∂y’

 
is constant (in x). 
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E-L for Several Variables

For an arbitrary number of variables q1

 

(t),…,qn

 

(t), 
with t the independent variable, what are the extremals

 
of:

The Euler-Lagrange equation tells us (again) that 
the dependent variables have to obey for all j:
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Notation

Note the following shorthand conventions:
The derivative of y with respect to x can be denoted

 using the apostrophe: dy/dx
 

= y'.
Derivatives with respect to time are often denoted with a 
dot above the coordinate. Hence

The “∂
 

versus d”
 

notation in ∂L/∂q –
 

d(∂L/∂q)/dt
 

=0
 should remind you that t is the independent variable

 and that d/dt
 

concerns all variables in L (unlike the
 partial derivatives such as ∂L/∂q).

dt
dyy  and  
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dy'y == &

.



Phys105A, Winter 2007, Wim van Dam, UCSB

Chapter 7 
Lagrange’s 
Equations
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Langrangian

For an unconstrained system in 3 dimensions subject 
to the a conservative field with potential energy U=U(r) 
and kinetic energy T= ½m(x'2+y'2+z'2) we have the 
Langrangian (or Lagrange function): L = T–U,

 in this case L(x,y,z,x',y',z') = ½m(x'2+y'2+z'2) –
 

U(x,y,z).

Note that ∂L/∂x = –∂U/∂x = Fx

 

and ∂L/∂x' = mx' = px

 

,
 hence ∂L/∂x –

 
d(∂L/∂x')/dt

 
= 0; similarly for y and z. 

These are the three Lagrange equations, 
which follow from Newton’s second law

 for q(t) = x(t), y(t), and z(t).
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