Classical

 Mechanics
Phys105A, Winter 2007

Wim van Dam

Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Euler-Lagrange Equation

Let $\mathrm{y}(\mathrm{x})$ be the path that minimizes/maximizes the integral

$$
S=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x), x\right] d x
$$

The Euler-Lagrange equation tells us that S is extremal, or stationary, when $\mathrm{y}(\mathrm{x})$ obeys

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0
$$

Fastest Path

Given two points P, Q in \mathbb{R}^{2} in a gravitational field $g e_{x}$, what is the fastest path $y(x)$?

Find $y(x)$ that minimizes

$$
\frac{1}{\sqrt{2 g}} \int_{x_{1}}^{x_{2}} \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{x}} d x
$$

The answer to this classic brachistochrone problem is that $\mathrm{y}(\mathrm{x})$ is (part) of a cycloid $x(\theta)=a(1-\cos \theta)$
$y(\theta)=a(\theta-\cos \theta)$

Brachistochrone Problem

For the shortest path we look for the extremal values of the integral $\int f(x) d x$ with $f(x)=\sqrt{ }\left(1+y^{\prime 2}\right) / \sqrt{ } x$.
Euler-Lagrange says $\partial \mathrm{f} / \partial \mathrm{y}-\mathrm{d}\left(\partial \mathrm{f} / \partial \mathrm{y}^{\prime}\right) / \mathrm{dx}=0$, hence $\partial f / \partial y^{\prime}$ is constant (in x).

$$
\begin{array}{lll}
\frac{\partial f}{\partial y^{\prime}}=\frac{1}{\sqrt{x}} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c \begin{array}{l}
\text { gives the } \\
\text { equation }
\end{array} & y^{\prime}=\sqrt{\frac{x}{2 a-x}} \\
y\left(x_{2}\right)=\int_{x=0}^{x_{2}} \sqrt{\frac{x}{2 a-x}} d x & \begin{array}{l}
\text { has } \\
\text { solution }
\end{array} & \begin{array}{l}
x=a(1-\cos \theta) \\
y=a(\theta-\sin \theta)
\end{array}
\end{array}
$$

E-L for Several Variables

For an arbitrary number of variables $\mathrm{q}_{1}(\mathrm{t}), \ldots, \mathrm{q}_{\mathrm{n}}(\mathrm{t})$, with t the independent variable, what are the extremals of:

$$
S=\int_{t_{1}}^{t_{2}} L\left[q_{1}, \dot{q}_{1}, \ldots, q_{n}, \dot{q}_{n}, t\right] d t ?
$$

The Euler-Lagrange equation tells us (again) that the dependent variables have to obey for all j :

$$
\frac{\partial L}{\partial q_{j}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{j}}=0
$$

Notation

Note the following shorthand conventions:
The derivative of y with respect to x can be denoted using the apostrophe: $\mathrm{dy} / \mathrm{dx}=\mathrm{y}$ '.
Derivatives with respect to time are often denoted with a dot above the coordinate. Hence

$$
y^{\prime}=\frac{d y}{d x} \text { and } \dot{y}=\frac{d y}{d t}
$$

The " ∂ versus d" notation in $\partial \mathrm{L} / \partial \mathrm{q}-\mathrm{d}(\partial \mathrm{L} / \partial \dot{\mathrm{q}}) / \mathrm{dt}=0$ should remind you that t is the independent variable and that d/dt concerns all variables in L (unlike the partial derivatives such as $\partial \mathrm{L} / \partial \mathrm{q})$.

$$
\begin{aligned}
& \text { Chapter } 7 \text { Lagrange's } \\
& \text { Equations }
\end{aligned}
$$

Langrangian

For an unconstrained system in 3 dimensions subject to the a conservative field with potential energy $\mathrm{U}=\mathrm{U}(\mathrm{r})$ and kinetic energy $\mathrm{T}=1 / 2 \mathrm{~m}\left(\mathrm{x}^{\prime 2}+\mathrm{y}^{\prime 2}+\mathrm{z}^{\prime 2}\right)$ we have the Langrangian (or Lagrange function): $\mathcal{L}=\mathrm{T}-\mathrm{U}$, in this case $\mathcal{L}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=1 / 2 m\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)-U(x, y, z)$.

Note that $\partial \mathcal{L} / \partial x=-\partial U / \partial x=F_{x}$ and $\partial \mathcal{L} / \partial x^{\prime}=m x^{\prime}=p_{x}$, hence $\partial \mathcal{L} / \partial \mathrm{x}-\mathrm{d}\left(\partial \mathcal{L} / \partial \mathrm{x}^{\prime}\right) / \mathrm{dt}=0$; similarly for y and z . These are the three Lagrange equations, $\frac{\partial \mathrm{L}}{\partial \mathrm{q}}=\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial \mathcal{L}}{\partial \dot{\mathrm{q}}}$ for $q(t)=x(t), y(t)$, and $z(t)$.

