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Midterm
•

 
New homework has been announced last Friday.

•
 

The questions are the same as the Midterm
•

 
It is due this Friday.

•
 

Regarding the Midterm:
 Future homework assignments will be more aligned 

with the kind of questions for the Final.
•

 
Suggestions, as always, are welcome.
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Chapter 5: 
Oscillations
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Hooke’s Law

For a spring with force constant k (with units kg m/s2) 
Hooke’s Law states F(x) = –kx, such that the potential 
is U(x) = ½kx2

 

(the system is stable as long as k>0).

All conservative, 1d, stable systems at
 x=0, can be approximated for small 

displacements x by such a parabolic U.

In other words: 1d, oscillating, conservative systems 
can always be approximated by Hooke’s law (provided 
the oscillations are small enough).
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Simple Harmonic Motion

The equation of motion is d2x/dt2
 

= –(k/m)x
 

= –ω2

 

x
 with the angular frequency ω=√(k/m). The general 

solution is the superposition x(t) = C1

 

eiωt

 

+ C2

 

e–iωt,
 which has period τ

 
= 2π/ω

 
= 2π√(m/k) (with units s).

The constants C1

 

and C2

 

are determined by the position 
and velocity at (say) t=0.

We know of course that eiωt

 

= cos
 

ωt + sin ωt √–1, 
yet x(t) will typically be real valued. 
Hence the constants C1

 

and C2

 

will be such that the 
complex components ‘cancel’

 
each other. 
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Solving the SHM

Equivalently, we can say we have the simple harmonic 
motion (SHM): x(t) = B1

 

cos(ωt) + B2

 

sin (ωt),
 where the requirement x∈R

 
equals B1

 

,B2

 

∈R.
For initial (t=0) postion

 
x0

 

and velocity v0

 

, we get
 x(t) = x0

 

cos(ωt) + (v0

 

/ω) sin (ωt).

For general B1

 

,B2

 

, there is a phase shift δ
 

= tan–1(B2

 

/B1

 

) 
with )δtωcos(BB)tωsin(B)tωcos(B 2

2
2
121 −+=+

Another way of visualizing all this is as
 the x-coordinate of a circular motion:
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Energy ‘Flow’ of a SHM

From now on 
The potential energy fluctuates as

 U = ½kx2

 

= ½kA2

 

cos2(ωt–δ)

The kinetic energy goes like
 T = ½k(dx/dt)2

 

= ½kA2

 

sin2(ωt–δ) 

Hence the total energy we have
 E = T+U = ½kA2.

2
2

2
1 BBA +=
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Two Dimensional Oscillations

For isotropic harmonic oscillators with F = –kr 
we get the solution (picking t=0 appropriately):

 x(t) = Ax

 

cos(ωt) and y(t) = Ay

 

cos(ωt–δ).
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Anisotropic Oscillations

If (more generally) Fx

 

= kx

 

x
 

and Fy

 

= ky

 

y, then we have two
 independent oscillations, with solutions (again for right t=0):

 x(t) = Ax

 

cos(ωx

 

t) and y(t) = Ay

 

cos(ωy

 

t–δ).
For such an anisotropic oscillator we have two angular 
frequencies ωx

 

= √(kx

 

/m) and ωy

 

= √(ky

 

/m).

If ωx

 

/ωy

 

is irrational, the motion is quasiperiodic 
(see Taylor, page 172).

Three cases when
 ωx

 

/ωy

 

= ½: 
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Damped Oscillations

Often an oscillating system will undergo a resistive force 
f = –bv that is linear in the velocity dx/dt

 
(linear drag).

Thus, for a one dimensional, x-coordinate system, the 
combined force on the particle equals –kx –bdx/dt

 
such 

that md2x/dt2
 

= –kx –bdx/dt, giving us the second order, 
linear, homogeneous differential equation:

with m the mass of the particle, –bv
 

the resistive force 
and –kx

 
the Hooke’s law force.

How to solve this damped oscillation? 

0kxxbxm =++ &&&
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Care versus Don’t Care

We are mainly interested in the 
properties of the system that hold 
regardless of the initial conditions.

We care about: damping, frequencies,…
We care less about: specific velocities, 
angles, positions, and so on.
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Differential Operators

Solving the equations of damped oscillations becomes 
significantly easier with the use of the differential 
operator D = d/dt, such that we can rewrite the equation 
as mD2x + bDx

 
+ kx

 
= (mD2

 

+ bD
 

+ k)x
 

= 0, 
where D2

 

stands for D(D) = d2/dt2. 

To certain degree you can solve equations f(D)x=0 as if 
f(D) is scalar valued: if f(D)x=0 and g(D)x=0, then we 
also have α f(D)g(D)x=0 and (α f(D)+βg(D))x=0. 

An important exception occurs for D2x=0: besides the 
solution Dx=0 (hence x=c), it can also refer to the case 
of x being linear (x = at+c) such that Dx=a, but D2x=0.
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Solving D Equations

With D = d/dt, take the differential equations (D+4)x=0.
Rewrite it as Dx

 
= –4x

Observe that x = C e–4t

 

is the general solution for x(t).
Generally, (D–a)x=0 has the solution x = C eat.

For 2nd

 

order equations f(D)x=0 with f(D) a quadratic 
polynomial in D, we solve the auxiliary equation f(D)=0 
and use its solutions D=a and D=b to rewrite the equation 
as (D–a)(D–b)x=0. As a result, we have (typically) the 
solutions x = C1

 

eat

 

and x = C2

 

ebt. 
If a=b, then (D–a)2x=0 also gives: x = C2

 

t eat.
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Damped Oscillations

Often an oscillating system will undergo a resistive force 
f = –bv that is linear in the velocity dx/dt

 
(linear drag).

Thus, for a one dimensional, x-coordinate system, the 
combined force on the particle equals –kx –bdx/dt

 
such 

that md2x/dt2
 

= –kx –bdx/dt, giving us the second order, 
linear, homogeneous differential equation:

with m the mass of the particle, –bv
 

the resistive force 
and –kx

 
the Hooke’s law force.

How to solve this damped oscillation? 

0kxxbxm =++ &&&



Phys105A, Winter 2007, Wim van Dam, UCSB

Solving D Equations, Take 2

With D = d/dt, (D–a)x=0 has the solution x = C eat.

For a 2nd

 

order equation f(D)x=0 with f(D) a quadratic 
polynomial in D, we solve the auxiliary equation f(D)=0 
and use its solutions D=a and D=b to rewrite the equation 
as (D–a)(D–b)x=0. As a result, we have (typically) the 
general solution x = C1

 

eat

 

+ C2

 

ebt. 
If a=b, then (D–a)2x=0 also gives: x = C2

 

t eat, 
giving the general solution x = C1

 

eat

 

+ C2

 

t ebt

What does this imply for the damped oscillation?
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Solving the Equation

We rewrite the damped oscillation equation by defining 
β=b/2m and ω0

 

=√(k/m) (both with frequency units 1/s) 
such that we have the equation (D2+2βD+ω0

2)x=0.
Factorizing this gives:

There are thus three distinct scenarios:
β<ω0

 

: “underdamping”, when the drag –bv
 

is small
β>ω0

 

: “overdamping”, when the drag –bv
 

is large
β=ω0

 

: “critical damping”

0x)ωββD)(ωββD( 2
0

22
0

2 =−−+−++
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Weak Damping

When β<ω0

 

we have for the differential equation

with ω1

 

=√(ω0
2–β2), such that the general solution is

0x)1ωβD)(1ωβD( 11 =−−+−++

)δtωcos(eA
)tωsinCtωcosC(e)t(x

1
tβ

1211
tβ

−⋅⋅=

+=
−

−
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The decay factor is β, and 
the evolution looks like:

Note that for really small β
 we have ω1 ≈ ω0

 

.
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Strong Damping

When β>ω0

 

we have for the differential equation

such that the general solution is the sum of two decays:

The dominant decay factor is β–√(β2–ω0
2), 

and the evolution looks like:

0x)ωβD)(ωβD( 11 =−+++

t)ωββ(
2

t)ωββ(
1

2
0

22
0

2

eCeC)t(x −+−−−− +=

Note that large β
 

gives 
small decay factors.
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Critical Damping

When β=ω0

 

we have for the differential equation

This time, the general solution is

The decay factor is β, and the evolution looks like:

0x)βD)(βD( =++

tβ
2

tβ
1 etCeC)t(x −− +=
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Driven Damped Oscillations

A damped oscillator (with m,b,k) driven by a time 
dependent force F(t) is described by the equation

Rewriting with 2β=b/m, ω0

 

=√(k/m) and f(t) = F(t)/m
 

gives

This is an inhomogeneous differential equation, for 
which we know how to solve the homogeneous part. 
We will describe a particular solution for f = f0

 

cos
 

ωt, 
where ω

 
is the driving frequency.

)t(Fkxxbxm =++ &&&

)t(fx)ωDβ2D( 2
0

2 =++
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Solving the Driven Oscillator

tωcosfx)ωDβ2D( 0
2
0

2 =++

Solving the equation for the sinusoidal driving force

gives…
tr

2
tr

1
21 eCeC)δtωcos(A)t(x ++−=

With

22222
0

0

ωβ4)ωω(
fA

+−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= −
22

0

1

ωω
βω2tanδ

The C1

 

, C2

 

, r1

 

, r2

 

are determined by the homogeneous
 equation and do not matter in the limit t→∞.
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