Classical Mechanics

Phys105A, Winter 2007

Wim van Dam Room 5109, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/

Phys105A, Winter 2007, Wim van Dam, UCSB

Midterm

- New homework has been announced last Friday.
- The questions are the same as the Midterm
- It is due *this Friday*.
- Regarding the Midterm: Future homework assignments will be more aligned with the kind of questions for the Final.
- Suggestions, as always, are welcome.

Chapter 5: Oscillations

Phys105A, Winter 2007, Wim van Dam, UCSB

Hooke's Law

For a spring with *force constant* k (with units kg m/s²) Hooke's Law states F(x) = -kx, such that the potential is $U(x) = \frac{1}{2}kx^2$ (the system is stable as long as k>0).

All conservative, 1d, stable systems at x=0, can be approximated for small displacements x by such a parabolic U.

In other words: 1d, oscillating, conservative systems can always be approximated by Hooke's law (provided the oscillations are small enough).

Simple Harmonic Motion

The equation of motion is $d^2x/dt^2 = -(k/m)x = -\omega^2 x$ with the angular frequency $\omega = \sqrt{(k/m)}$. The general solution is the superposition $x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$, which has period $\tau = 2\pi/\omega = 2\pi\sqrt{(m/k)}$ (with units s).

The constants C_1 and C_2 are determined by the position and velocity at (say) t=0.

We know of course that $e^{i\omega t} = \cos \omega t + \sin \omega t \sqrt{-1}$, yet x(t) will typically be real valued. Hence the constants C₁ and C₂ will be such that the complex components 'cancel' each other.

Solving the SHM

Equivalently, we can say we have the simple harmonic motion (SHM): $x(t) = B_1 \cos(\omega t) + B_2 \sin(\omega t)$, where the requirement $x \in \mathbb{R}$ equals $B_1, B_2 \in \mathbb{R}$. For initial (t=0) postion x_0 and velocity v_0 , we get $x(t) = x_0 \cos(\omega t) + (v_0/\omega) \sin(\omega t)$.

For general B₁,B₂, there is a phase shift $\delta = \tan^{-1}(B_2/B_1)$ with B₁ cos(ω t) + B₂ sin(ω t) = $\sqrt{B_1^2 + B_2^2} \cos(\omega t - \delta)$

Another way of visualizing all this is as the x-coordinate of a circular motion:

Energy 'Flow' of a SHM

From now on $A = \sqrt{B_1^2 + B_2^2}$ The potential energy fluctuates as $U = \frac{1}{2}kx^2 = \frac{1}{2}kA^2 \cos^2(\omega t - \delta)$

The kinetic energy goes like $T = \frac{1}{2}k(dx/dt)^2 = \frac{1}{2}kA^2 \sin^2(\omega t - \delta)$

Hence the total energy we have $E = T+U = \frac{1}{2}kA^2$.

Two Dimensional Oscillations

For *isotropic* harmonic oscillators with $\mathbf{F} = -k\mathbf{r}$ we get the solution (picking t=0 appropriately): x(t) = A_x cos(ω t) and y(t) = A_y cos(ω t– δ).

Anisotropic Oscillations

If (more generally) $F_x = k_x x$ and $F_y = k_y y$, then we have two independent oscillations, with solutions (again for right t=0): $x(t) = A_x \cos(\omega_x t)$ and $y(t) = A_y \cos(\omega_y t - \delta)$.

For such an anisotropic oscillator we have two angular frequencies $\omega_x = \sqrt{(k_x/m)}$ and $\omega_y = \sqrt{(k_y/m)}$.

Three cases when $\omega_x/\omega_y = \frac{1}{2}$:

If ω_x/ω_y is irrational, the motion is *quasiperiodic* (see Taylor, page 172).

Damped Oscillations

Often an oscillating system will undergo a *resistive force* $\mathbf{f} = -b\mathbf{v}$ that is linear in the velocity $d\mathbf{x}/dt$ (linear drag).

Thus, for a one dimensional, x-coordinate system, the combined force on the particle equals -kx -b dx/dt such that $md^2x/dt^2 = -kx -b dx/dt$, giving us the second order, linear, homogeneous differential equation:

$m\ddot{x} + b\dot{x} + kx = 0$

with m the mass of the particle, -bv the resistive force and -kx the Hooke's law force.

How to solve this damped oscillation?

Care versus Don't Care

We are mainly interested in the properties of the system that hold *regardless* of the initial conditions.

We care about: damping, frequencies,... We care less about: specific velocities, angles, positions, and so on.

Differential Operators

Solving the equations of damped oscillations becomes significantly easier with the use of the differential operator D = d/dt, such that we can rewrite the equation as $mD^2x + bDx + kx = (mD^2 + bD + k)x = 0$, where D² stands for D(D) = d²/dt².

To certain degree you can solve equations f(D)x=0 as if f(D) is scalar valued: if f(D)x=0 and g(D)x=0, then we also have $\alpha f(D)g(D)x=0$ and $(\alpha f(D)+\beta g(D))x=0$.

An important exception occurs for $D^2x=0$: besides the solution Dx=0 (hence x=c), it can also refer to the case of x being linear (x = at+c) such that Dx=a, but $D^2x=0$.

Solving D Equations

With D = d/dt, take the differential equations (D+4)x=0. Rewrite it as Dx = -4xObserve that x = C e^{-4t} is the general solution for x(t). Generally, (D-a)x=0 has the solution x = C e^{at}.

For 2nd order equations f(D)x=0 with f(D) a quadratic polynomial in D, we solve the auxiliary equation f(D)=0and use its solutions D=a and D=b to rewrite the equation as (D-a)(D-b)x=0. As a result, we have (typically) the solutions $x = C_1 e^{at}$ and $x = C_2 e^{bt}$. If a=b, then $(D-a)^2x=0$ also gives: $x = C_2 t e^{at}$.

Damped Oscillations

Often an oscillating system will undergo a *resistive force* $\mathbf{f} = -\mathbf{b}\mathbf{v}$ that is linear in the velocity $d\mathbf{x}/dt$ (linear drag).

Thus, for a one dimensional, x-coordinate system, the combined force on the particle equals -kx -b dx/dt such that $md^2x/dt^2 = -kx -b dx/dt$, giving us the second order, linear, homogeneous differential equation:

$m\ddot{x} + b\dot{x} + kx = 0$

with m the mass of the particle, -bv the resistive force and -kx the Hooke's law force.

How to solve this damped oscillation?

Solving D Equations, Take 2

With D = d/dt, (D-a)x=0 has the solution x = C e^{at} .

For a 2nd order equation f(D)x=0 with f(D) a quadratic polynomial in D, we solve the *auxiliary* equation f(D)=0and use its solutions D=a and D=b to rewrite the equation as (D-a)(D-b)x=0. As a result, we have (typically) the general solution $x = C_1 e^{at} + C_2 e^{bt}$. If a=b, then $(D-a)^2x=0$ also gives: $x = C_2 t e^{at}$, giving the general solution $x = C_1 e^{at} + C_2 t e^{bt}$

What does this imply for the damped oscillation?

Solving the Equation

We rewrite the damped oscillation equation by defining $\beta=b/2m$ and $\omega_0=\sqrt{(k/m)}$ (both with frequency units 1/s) such that we have the equation $(D^2+2\beta D+\omega_0^2)x=0$. Factorizing this gives:

$$(D+\beta+\sqrt{\beta^2-\omega_0^2})(D+\beta-\sqrt{\beta^2-\omega_0^2})x=0$$

There are thus three distinct scenarios: $\beta < \omega_0$: "underdamping", when the drag –bv is small $\beta > \omega_0$: "overdamping", when the drag –bv is large $\beta = \omega_0$: "critical damping"

Weak Damping

When $\beta < \omega_0$ we have for the differential equation

$$(D+\beta+\omega_1\sqrt{-1})(D+\beta-\omega_1\sqrt{-1})x=0$$

with $\omega_1 = \sqrt{(\omega_0^2 - \beta^2)}$, such that the general solution is $x(t) = e^{-\beta t} (C_1 \cos \omega_1 t + C_2 \sin \omega_1 t)$ $= A \cdot e^{-\beta t} \cdot \cos(\omega_1 t - \delta)$

The decay factor is β , and the evolution looks like: Note that for really small β we have $\omega_1 \approx \omega_0$.

Strong Damping

When $\beta > \omega_0$ we have for the differential equation

 $(D + \beta + \omega_1)(D + \beta - \omega_1)x = 0$

such that the general solution is the sum of two decays:

$$x(t) = C_1 e^{-(\beta - \sqrt{\beta^2 - \omega_0^2})t} + C_2 e^{-(\beta + \sqrt{\beta^2 - \omega_0^2})t}$$

The dominant decay factor is $\beta - \sqrt{(\beta^2 - \omega_0^2)}$, and the evolution looks like:

Note that large β gives small decay factors.

Critical Damping

When $\beta = \omega_0$ we have for the differential equation $(D + \beta)(D + \beta)x = 0$

This time, the general solution is

$$\mathbf{x}(t) = \mathbf{C}_1 \mathbf{e}^{-\beta t} + \mathbf{C}_2 t \, \mathbf{e}^{-\beta t}$$

The decay factor is β , and the evolution looks like:

Driven Damped Oscillations

A damped oscillator (with m,b,k) driven by a time dependent force F(t) is described by the equation

$m\ddot{x} + b\dot{x} + kx = F(t)$

Rewriting with $2\beta = b/m$, $\omega_0 = \sqrt{k/m}$ and f(t) = F(t)/m gives

$$(D^2 + 2\beta D + \omega_0^2)x = f(t)$$

This is an inhomogeneous differential equation, for which we know how to solve the homogeneous part. We will describe a *particular solution* for $f = f_0 \cos \omega t$, where ω is the *driving frequency*.

Solving the Driven Oscillator

Solving the equation for the sinusoidal driving force

 $(D^2 + 2\beta D + \omega_0^2)x = f_0 \cos \omega t$

gives...

$$\mathbf{x}(t) = \mathbf{A}\cos(\omega t - \delta) + \mathbf{C}_1 \mathbf{e}^{\mathbf{r}_1 t} + \mathbf{C}_2 \mathbf{e}^{\mathbf{r}_2 t}$$

With

$$A = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}} \qquad \delta = \tan^{-1} \left(\frac{2\beta\omega}{\omega_0^2 - \omega^2}\right)$$

The C₁, C₂, r₁, r₂ are determined by the homogeneous equation and do not matter in the limit $t \rightarrow \infty$.