
Towards a Software Engineering Approach
to Web Site Development

Francesco Coda Carlo Ghezzi Giovanni Vigna Franca Garzotto
Dipartimento di Elettronica

Politecnico di Milano
P.za Leonardo da Vinci, 32

20133 Milano, Italia
+39 2 2399 1

[coda|ghezzi|vigna|garzotto]@elet.polimi .it

ABSTRACT
The World Wide Web (WWW) has become “ the” global
infrastructure for delivering information and services.
The demands and expectations of information providers
and consumers are pushing WWW technology towards
higher–level quali ty of presentation, including active
contents and improved usabili ty of the hypermedia dis-
tributed infrastructure. This technological evolution,
however, is not supported by adequate Web design meth-
odologies. Web site development is usually carried out
without following a well -defined process and lacks suit-
able tool support. In addition, Web technologies are quite
powerful but rather low-level and their semantics is often
left largely unspecified. As a consequence, understanding
the conceptual structure of a complex Web site and man-
aging its evolution are complex and difficult tasks. The
approach we advocate here is based on sound software
engineering principles. The Web site development proc-
ess goes through requirements analysis, design, and im-
plementation in a high-level language. We define an ob-
ject-oriented modeling framework, called WOOM, which
provides constructs and abstractions for a high-level im-
plementation of a Web site. An important feature of
WOOM is that it clearly separates the data that are pre-
sented through the site from the context in which the user
accesses such data. This feature not only enhances sepa-
ration of concerns in the design stage, but also favors its
subsequent evolution. The paper provides a view of the
approach and of its current prototype implementation.

Keywords
World Wide Web, object-oriented model, authoring, hy-
permedia

1 INTRODUCTION
From its first introduction in 1990 [2], the World Wide
Web (WWW) is evolving at a fast pace. The number of
WWW sites is increasing as Internet users realize the
benefits that stem from a globally interconnected hyper-
media system. Companies, organizations, and academic
institutions exploit the WWW infrastructure to provide
customers and users with information and services. The
expectations of both providers and consumers are driving
a relevant research effort aimed at improving the WWW

technology. Examples are represented by the introduction
of active contents in static hypertext pages by means of
languages and technologies like Java [9] and JavaScript
[3] and by the use of the Servlet technology [15] to cus-
tomize Web servers behavior. This technological evolu-
tion has promoted a shift in the WWW intended use. The
Web infrastructure is going beyond the mere distribution
of information and services towards the deployment of a
platform for generic distributed applications in a world-
wide setting.

This promising scenario is endangered by the weakness
of the current methodologies that support the develop-
ment of Web applications. Current WWW technologies
provide low-level mechanisms that enable, for example,
particular visual effects or application integration. The
use of these mechanisms is not guided by a systematic
methodology that provides the Web site developers with
a higher-level view on the structure of the site hyperme-
dia base and a well-defined development process sup-
ported by suitable tools. Most current WWW site devel-
opment and management practices rely only on the de-
veloper's knowledge and expertise.

This situation reminds the childhood of software devel-
opment when applications were developed without meth-
odological support, without the right tools, simply on the
basis of good common sense and individual skills.
WWW site development suffers from a similar problem.
Most WWW developers delve directly into the imple-
mentation phase, paying little or no attention to require-
ments acquisition and specification and going through a
very informal design phase (if any). In most cases, im-
plementation is performed by using a low-level technol-
ogy, such as the Hypertext Markup Language (HTML)
[13]. Using the analogy with conventional software de-
velopment, this approach corresponds to implementing
applications through direct mapping of very informal
designs into an assembly-level language. Furthermore,
the lack of suitable abstractions makes it difficult to reuse
previously developed artifacts, or to develop frameworks
that capture the common structure of classes of applica-
tions and allow fast development by customization. Fi-
nally, the management of the resulting Web site is diff i-

2

cult and error prone, because change tracking and struc-
tural evolution must be performed directly at the imple-
mentation level. This problem is particularly critical since
WWW systems, by their very nature, are subject to fre-
quent updates and even redesigns.

Software engineering research has delivered technologies
(e.g., object-oriented programming languages), method-
ologies (e.g., design paradigms), and tools (e.g., inte-
grated development environments) that support the soft-
ware development process. Being effectively supported,
software developers are able to deliver quali ty products
in a timely and cost-effective manner. A similar approach
has to be followed in order to bring WWW development
out of its immaturity. The problem of WWW site devel-
opment must be tackled by providing methodological and
technological support for each phase of the development
process. While the conceptual modeling of a WWW site,
being independent of the implementation technology, can
be effectively supported by notations developed for hy-
permedia systems, there is a strong need for an imple-
mentation methodology and a corresponding technologi-
cal support that bridges the gap between high-level de-
sign and low-level implementation, by providing suitable
high-level abstractions and constructs.

This paper addresses these problems by proposing a
WWW object-oriented modeling framework, called
WOOM – Web Object Oriented Model. WOOM provides
concepts and abstractions that help in the mapping from
high-level design of a Web site into an implementation
that uses “standard” WWW technology. This model ex-
tends the basic Web model by providing richer seman-
tics, new constructs, and support for complex manage-
ment tasks. In addition, we built a prototype authoring
tool that supports WWW site development using WOOM
concepts and abstractions. The tool is able to translate
automatically a WOOM model instance into a Web site
implemented using the conventional WWW technologies.
The resulting process is similar to the compilation of
high-level languages to binary code. It is not a simple
translation, though. Rather, it is based on a powerful
transformation scheme that allows high-level object de-
scriptions, given in WOOM, to be customized in a con-
text-sensitive way as they are translated into the target
Web site. As a result, this approach clearly separates the
description of the data from the way the data are pre-
sented through the Web interface. The same data can be
presented differently in different contexts. This separa-
tion not only helps in designing the application, but also
provides support to changes and Web site evolution.

This paper is structured as follows. Section 2 proposes a
development process for Web sites. Section 3 defines the
requirements for a suitable implementation technology.
Section 4 presents WOOM, a modeling framework for
Web site implementation. Section 5 discusses the pro-
posed model. Section 6 presents our authoring tool based
on the model. Section 7 draws some conclusions and
outlines future work.

2 A WORLD WIDE WEB SOFTWARE
PROCESS

The development of a Web site that provides structured
access to a large amount of information, possibly under
different views and through different contexts, is a com-
plex activity. In order to deliver high-quali ty Web appli-
cations within limited time and budget, developers should
follow a well -defined development process, possibly
supported by suitable tools and notations.

Web sites are structured sets of multimedia information
woven with hypertext references. The process of devel-
oping the artifacts that compose the information system is
similar to software development. In addition, since Web
sites may include programs that produce contents dy-
namically (like CGI scripts, Java applets, or JavaScript
code) the two development processes may even con-
verge.

The benefits of a well-defined and supported software
process are well known [8]. For these reasons, as for
conventional software, we propose to break down the
development of a Web site into a number of phases: re-
quirements analysis and specification, design, imple-
mentation. After the site has been implemented and de-
livered, its structure and contents are maintained and
evolved. In defining these phases for the development
process we do not imply a specific development process
structure. Different process models (waterfall , spiral,
prototype based) can be accommodated in the frame-
work. Sections 2.1 through 2.4 discuss how such phases
can be structured, based on our experience. In particular,
Sections 2.3 and 2.4 provide the background motivations
for the work we describe here, which developed a mod-
eling framework supporting the implementation and
maintenance of Web sites.

2.1 Requirements analysis and specification
During requirements analysis, the developer collects the
needs of the stakeholders, in terms of contents, structur-
ing, access, and layout. Contents requirements define the
domain-specific information that must be made available
through the Web site. Structuring requirements specify
how contents must be organized. This includes the defi-
nition of relationships and views. Relationships highlight
semantic connections among contents. For example, re-
lationships could model generalization (is-a), composi-
tion (is-composed-of), or domain-dependent relation-
ships. Views are perspectives on information structures
that “customize” contents and relationships according to
different use situations. Different views of the same con-
tents could be provided to different classes of user (e.g.,
an abstract of a document can be made accessible to
“external” users, while the complete document can be
made accessible to “ internal” users). Access requirements
define the style of information access that must be pro-
vided by the Web site. This includes priorities on infor-
mation presentation, indexing of contents, query facil i-
ties, and support for guided tours over sets of related in-
formation. Layout requirements define the general ap-
pearance properties of the Web site, such as emphasis on
graphic effects vs. text-based layout.

3

We argue that existing tools supporting requirements
specification and traceabili ty of requirements through all
development artifacts can be used in this context too.
Further research is needed both to extend the above
framework and to identify the additional specific features
that a tool supporting requirements for Web based appli-
cations should exhibit.

2.2 Design
Based on the requirements, the design phase defines the
overall structure of a WWW site, describing how infor-
mation can be organized and how users can navigate
across it. A careful design activity should highlight the
fundamental constituents of a site, abstracting away from
low-level implementation details, and should allow the
designer to identify recurring structures and navigation
patterns to be reused [5]. As such, a good design can sur-
vive the frequent changes in the implementation, fostered
by the appearance of new technologies.

2.2.1 Support to design
Being largely implementation-independent, the design
activity can be carried out using notations and method-
ologies that are not explicitly Web-oriented. Any design
methodology for hypermedia applications could be used;
e.g., HDM [6], RMDM [1], or OOHDM [14]. Our expe-
rience is based on the adoption of the HDM (Hypertext
Design Model) notation [4], which is shortly described in
the rest of this subsection.

In designing a hypermedia application, HDM distin-
guishes between the hyperbase layer and the access
layer. The hyperbase layer is the backbone of the appli-
cation and models the information structures that repre-
sent the domain, while the access layer provides entry
points to access the hyperbase constituents.

The hyperbase consists of entities connected by applica-
tion links. Entities are “first-class” structured pieces of
information. They are used to represent conceptual or
physical objects of the application domain. An example
of entity in a literature application is “Writer”. Applica-
tion links are used to describe domain-specific, non-
structural relationships among different entities (e.g., an
application link from a “writer” to the “novels” he
wrote). Entities are structured into components, i.e.,
clusters of information that are perceived by the user as
conceptual units (for example, a writer’s “biography”).
Complex components can be structured recursively in
terms of other components. Information contained in
components is modelled by means of nodes. Usually,
components contain just one node, but more than one
node can be used to give different or alternative views
(perspectives, in HDM) of the component information
(e.g., to describe a piece of contents in different lan-
guages, or to present it in a “short” vs. an “extended”
version). Navigation paths inside an entity are defined by
means of structural links, which represent structural rela-
tionships among components. Structural l inks may, for
example, define a tree structure that allows the user to
move from a root component (for example, the data-sheet
for a novel) to any other component of the same entity

(e.g., credits, summary, reviews, etc.)

Once entities and components are specified, as well as
their internal and external relationships, the access layer
defines a set of collections that provide users with the
structures to access the hyperbase. A collection groups a
number of “members”, in order to make them accessible .
Members can be either hyperbase elements or other col-
lections (nested collections). Each collection owns a spe-
cial component called collection center that represents
the starting point of the collection. Examples of collec-
tions are guided tours, which support linear navigation
across members (through next/previous, first/last links),
or indexes, where the navigation pattern is from the cen-
ter to the members and viceversa. For example, a guided
tour can be defined to navigate across all horror novels,
another one can represent a survey of 14th century Euro-
pean writers.

2.3 Implementation
The implementation phase creates an actual Web site
from the site design. As a first step, the elements and
relationships highlighted during design are mapped on
the constructs provided by the chosen implementation
technology. Entities, component, links, and access struc-
tures are associated with particular primitives provided
by the hypermedia technology or composition thereof. As
a second step, the site is populated. The actual informa-
tion is inserted by instantiating the structures defined in
the previous step and the cross-references representing
structural and application links among the elements.
Collections are then created to provide structured access
to the hyperbase contents. The third step is delivery. The
site implementation must be made accessible using stan-
dard WWW technologies, namely Web browser like Net-
scape' s Navigator or Microsoft' s Internet Explorer that
interact with servers using the Hypertext Transfer Proto-
col (HTTP). This can be achieved by translating the site
implementation into a set of files and directories that are
served by a number of “standard” WWW servers (also
called http daemons in the UNIX jargon).

2.3.1 Support to implementation
According to the current practices, the implementation of
a Web site is carried out using standard WWW technolo-
gies and tools based on the constructs provided by these
technologies, such as text or image editors and format
converters [12]. This is the source of most of the diffi-
culties of Web site development. In fact, the standard
Web technology is very low-level and semantically poor.
The basic abstractions available to Web developers are:

• HTML pages, i.e., text files formatted using a low-
level markup language;

• directories, i.e., containers of pages; and

• references, i.e., strings of text embedded in HTML
tags that denote a resource (e.g., an HTML page)
using a common naming scheme.

There are no constructs to define complex information
structures like sets of pages with particular navigational

4

patterns, such as lists of pages or indexes. Such struc-
tured sets of information must be realized manually by
composing the existing constructs and primitives. In ad-
dition, there is no way to create document templates and
mechanisms to extend existing structures by customiza-
tion. The development of a set of documents exhibiting
the same structure is carried out in an ad hoc manner by
customizing manually sample prototypes. There are no
constructs or mechanisms to specify different views of
the same information and to present such views depend-
ing on the access context. This hampers effective reuse of
information. The only form of reuse is by copy. Some
authoring tools like Microsoft' s FrontPage [10] and Ne-
tObject' s Fusion [11] try to overcome some of these
limitations by providing a site-level view on the informa-
tion hyperbase. Nonetheless, these tools are strictly based
on the low-level concepts of HTML pages and directo-
ries. As a consequence, the developer is faced with a gap
between the high level concepts defined during design
and the low-level constructs available for implementa-
tion.

2.4 Maintenance
Web sites have an inherently dynamic nature. Contents
and their corresponding structural organization may be
changed continuously. Therefore, maintenance is a cru-
cial phase, even more than in the case of conventional
software applications. As for conventional software, we
can classify maintenance into three categories: corrective,
adaptive, and perfective maintenance [8]. Corrective
maintenance is the process of correcting errors that exist
in the Web site implementation. Examples are repre-
sented by internal dangling references, errors in the in-
dexing of resources, or access to outdated information (as
in the case of published data with an expiration date).
Adaptive maintenance involves adjusting the Web site to
changes in the outside environment. A notable example is
represented by verification of the references to docu-
ments and resources located at different sites. Outbound
links become dangling as a consequence of events over
which the site developer has no control. Thus, mainte-
nance is a continuous process. Perfective maintenance
involves changing the Web site in order to improve the
way contents are structured or presented to the end user.
Changes may be fostered by the introduction of new in-
formation or the availabil ity of new technologies. Perfec-
tive maintenance should reflect updates to the require-
ments and design documents. Maintenance in general,
and perfective maintenance in particular, is by far the
activity that takes most of the development effort.

2.4.1 Support for maintenance
Presently, Web site maintenance is carried out using tools
like link verifiers or syntax checkers that operate directly
on the low-level Web site implementation. This approach
may be suitable for some cases of corrective and adaptive
maintenance, but does not provide effective support for
tasks that involve knowledge of the high-level structure
of the Web site. For example, since reuse is achieved by
copy, modifying a reused component, like a recurring
introduction paragraph for a number of documents, in-

volves the identification of every use of the component
and its consistent update. In a similar way, modification
of the structure or style of a set of similar documents re-
quires updates in all instances. For example, if we decide
that the background color of the summary page of all
“horror” novels must be changed to purple, this requires
consistent change of all files representing such summa-
ries. More generally, since perfective maintenance may
require a modification of the structure and organization
of information, it should be supported by a structural
view of the site and of the relationships between design
elements and their implementation constructs. These re-
lationships are of paramount importance because they
allow the developer to reflect design changes onto the
implementation and viceversa. Standard Web technolo-
gies do not provide any means to represent these relation-
ships and the high level organization of information. An-
other problem concerns maintenance of hypertext refer-
ences. In the standard WWW technology, references are
just strings embedded inside the HTML code of pages;
they do not have the status of first-class objects. There-
fore, their management and update is an error prone ac-
tivity.

3 REQUIREMENTS FOR AN IMPLEMENTA-
TION TECHNOLOGY

As we discussed in the previous section, current standard
WWW technologies do not provide adequate constructs
and tools to support Web site implementation and main-
tenance. The technology used to implement a Web site
should provide high level abstractions that support the
mapping of design entities into implementation con-
structs and the management of the high level structure of
the site. At the same time, since the WWW is accessed
by users using the standard WWW interface, an imple-
mentation technology must provide tools to automate
such mapping into standard WWW elements like HTML
pages, directories, and the like.

The requirements for a Web site implementation technol-
ogy can be derived by examining the founding principles
of software engineering [8].

Rigor and formality An implementation technology
should provide a clear definition of the entities involved
in the implementation process, their relationships, and
their associated semantics. A precise definition of the
characteristics and behavior of the different elements of a
Web site supports developers’ understanding of the ap-
plication at hand.

Separation of concerns An implementation technology
should clearly separate among contents and structuring
representation, navigational specification, and contents
presentation. It should be possible to define different
types of entities with specific characteristics and behav-
ior. In addition, the technology should allow the devel-
oper to extend the type hierarchy with application spe-
cific types. An implementation technology should pro-
vide support for structuring the site contents in a well-
defined manner. The capabilit y to define navigational
patterns to access site resources separately from the mod-

5

eling of the site’s contents should be provided. The proc-
ess of extracting the view of the site contents to be deliv-
ered to the end user should be specified separately from
the information sources and should be parameterized
using the access context.

Modularity An implementation technology should pro-
vide constructs and abstractions that allow the developer
to divide a complex problem in smaller simpler compo-
nents. Modules should use information hiding to allow
easy integration and management. Modularization
mechanisms could then be used to support reuse.

Abstraction An implementation technology should ab-
stract away from low level, unimportant details, identi-
fying important concepts and relationships. In addition,
abstraction should highlight and model concepts that are
left implicit or hidden in the standard Web technology.

Anticipation of change Web sites, by their nature, un-
dergo changes constantly. It is important to provide sup-
port for maintenance. Structuring techniques, require-
ments/design/implementation tracking, modularization,
separation of concerns and abstractions, are the basis of
effective Web evolution.

Generality An implementation technology should pro-
vide general mechanisms that support the development of
implementation constructs and allow the developer to
create ad hoc constructs and customize the existing ones.

4 A WEB SITE MODEL
Based on the requirements listed in Section 3, in this sec-
tion we propose an object-oriented modeling framework
[16] for the development of a World Wide Web site,
called WOOM (Web Object Oriented Model). WOOM
abstracts away from technological details and defines
primitives and constructs that support effectively the de-
veloper during the implementation and maintenance
phases of Web site development process. The model al-
lows the developer to define the site contents, the navi-
gational structure, and the service architecture. A site is
implemented by creating a WOOM model instance, i.e.
by instantiating the objects defined by the model. The
WOOM model instance is then automaticall y translated
into conventional WWW technologies.

According to WOOM, a Web site can be defined in terms
of the following entities: resources, elements, sites, serv-
ers, links, and transformers.

Resources and elements are the fundamental entities of
the model. They model the contents and the structure of a
collection of information. Resources can be divided into
containers and basic resources. A container is a collector
of resources. The containment relationship among re-
sources defines a DAG (Direct Acyclic Graph)1, in which
containers are intermediate nodes and basic resources are
leaves. The root of the DAG is called the root container
and encloses all the resources of the site. Each resource,
with the notable exception of the root container, is con-
tained at least in one container (see Figure 1-A). WOOM
provides a number of predefined container types: lists,
trees, indexes, and sets. Additional container types can be
defined by the Web designer by extending the WOOM
framework. Lists organize the enclosed resources in a
linear fashion. They are used to represent a sequential
relationship inside a group of resources (e.g., the pages
that compose a guided tour through the novels of a given
writer). Trees impose a hierarchical structure to the en-
closed resources. For example, the novels of a given
writer can be classified into genres: horror, science fic-
tion, etc.; science fiction novels, in turn, can be classified
into, say genetics, astronomy, etc. Indexes organize the
contained resources in two-level trees. For example, an
author’s novels can be grouped into “youth”, “maturity”,
and “late” novels. Sets are simply used to group r e-
sources without any specific relationship among them,
but characterized by some common visual or semantic
property. Each container type exports an interface that
allows other entities to access the enclosed resources
without exposing the container’s internal implementation
details. For instance, one can address the first resource of
a list or the root of a tree without specifying the target
resource by name.

Basic resources are information repositories. They are
distinguished into opaque resources and hyper pages.
Opaque resources are unstructured resources. Subclasses
of this class are images, i.e., graphic objects, applets, i.e.,
programs that are activated on the client side, scripts, i.e.,
applications that are activated on the server side, and ex-
ternal. External resources are those types of information
that are not directly supported by the current Web tech-
nology and are managed by means of external helper
applications. These resources include audio and video
information, PostScript files, binaries, and other similar
entities.

Hyper pages are hypertext pages, which may contain text,
anchors, and references to pictures, sounds, and anima-
tions. The contents of a hyper page are modeled by a
collection of elements (see Figure1-B). An element is an
information unit, like a text paragraph, an anchor, or a
dotted list. Elements can be simple or complex. Simple
elements are atomic data containers, while complex ele-

1 Circular containment relationships are forbidden.

Container

Basic
Resource

Root
Container

A B

Hyper pages

Complex
Element

Simple
Element

RESOURCES HYPER PAGES AND ELEMENTS

α β

γα β α β

α β α β

Identifier α α

α β α

α α β

C1

C2 C3

C4 C5R1

R2 R3 R4

Figure 1: The containment relationship between infor-
mation entities

6

ments contain an ordered list of other elements. For ex-
ample, the image placeholder element (IMG) is a simple
element, while the BODY element may be composed of
some paragraphs, a table, etc. Each element belongs at
least to one hyper page. As for resources, the contain-
ment relationship among elements defines a DAG.

Resources and elements may have some associated at-
tributes. Attributes specify entity properties, such as:
expiration date, version, relevance, graphic properties
(e.g., the font size of a text string), etc.

Each container, hyper page, and complex element associ-
ates a unique identifier to each of the enclosed entities.
The identifier can be used to denote an entity among oth-
ers enclosed in the same container, complex element, or
hyper page. The identifiers are represented in Figure 1 as
labels associated to the containment relationship arcs.

The context of a resource (or element) is its position in-
side the resources/elements containment DAG. Contexts
are specified through pathnames. The pathname of an
entity is a sequence of identifiers that describes the path
from the root container to the entity. This identification
mechanism is similar to the well-known naming scheme
based on pathnames adopted by file systems. An entity
can be reached through many different paths. As a conse-
quence, an entity can be in different contexts. For exam-
ple, let us consider Figure 1-A. Resource R3 belongs to
three contexts, because it is contained by both containers
C4 and C5, and container C5 is contained by both con-
tainers C2 and C3. Therefore, resource R3 is accessible
through paths “/ α/β/β”, “/ α/γ/α” and “/ β/α/α”.

Each resource and element has an associated translate
operation. The invocation of the translate operation for
an entity produces its implementation in the conventional
WWW technology. That is, hyper pages are translated
into HTML files, containers into directories, and ele-
ments into character strings representing HTML tags.
The translation operation of entities composed by sub-
entities (containers, hyper pages, and complex elements)
is recursive. The translation of the composed entity is
built using the results of the translation of its sub-entities.
For instance, the translation operation of a hyper page
invokes the translation operation on the enclosed ele-
ments and uses the resulting text strings to build an
HTML file.

A site is composed of a root container and one or more
servers. A site models a set of related information, repre-
sented by the set of resources contained (directly or indi-
rectly) in the site’s root container. The associated servers
are used to define the network access points to the site
contents. A server corresponds, at run-time, to an HTTP
daemon process that answers to the end user requests for
resources belonging to the site. Each server is character-
ized by a unique address and has an associated container
and context that limit the scope of the resources that are
accessible through the server. For instance, a server asso-
ciated to the container C5 of Figure 1 with the context
“/ α/γ” allows one to access resources R3 and R4 under

the contexts “/ α/γ/α” and “/ α/γ/β” (see the translation
process later in this section).

In WOOM, references are modeled via links. Links are
first-class objects that associate a source element with a
destination resource within a particular context. Context
information must be taken into account when creating
links because, as we will see later, a resource in different
contexts may assume different forms. By keeping track
of the context of the destination resource, WOOM links
may lead to a particular version of the resource. Links are
composed of an element reference, a resource reference,
a context specification, a server reference, and some
script parameters. The element reference identifies the
element that assumes the role of anchor (the starting
point of the link). The resource reference and context
specification identify the destination of the link. The
server reference specifies the server that must be used in
order to retrieve the destination resource. Script parame-
ters are used when the destination of the link is a script
resource. They are the input parameters used in script
invocation. Links are translated into URLs embedded in
attributes of the anchor HTML tag during the translation
process.

A WOOM model instance can be translated into a tradi-
tional file-based site implementation. The translation
process is triggered by calling the translate operation on
the root container. The operation propagates in a top-
down fashion to the entire WOOM instance DAG. An
entity positioned in the DAG in n different context is
translated n times. This is the case, for example, of a
paragraph element enclosed in two different hyper
pages. The shared paragraph will correspond, after the
translation, to two distinct strings in two different HTML
files. This is necessary because conventional WWW
technology does not allow information sharing at the
element level (two files can not share a piece of text).

As we mentioned, in WOOM, site contents (resources
and elements) can be put in context; that is, they can be
modified on the basis of their current context during the
translation process. For instance, consider a hyper page
describing a novel (e.g., Primo Levi’s La Tregua) that is
placed in two containers. The first container is a list en-
closing all the novels of a particular genre (e.g., “hol o-
caust” novels). The second is a set collecting the novels
of the same writer (e.g., Levi’s books). In the first context
the page can be modified to include information that
highlight the relationship between the movie and the
genre, and links to navigate inside the list. In the latter
context, the resource can be modified to include refer-
ences to the author’s biography. The modifications that
must be applied to the entities within a particular context
are specified by means of transformers. Transformers are
objects with an associated state and a transform operation
that takes as parameter a resource or element object. The
transform operation modifies the element or resource
passed as parameter and eventually returns it. Transform-
ers can be associated to containers to influence the trans-
lation of the enclosed entities.

7

The translation operation of an entity receives a list of
transformer objects from one of its parents in the DAG
structure, and returns the entity representation in the con-
ventional WWW technology (i.e., strings, files, and di-
rectories). The translation operation follows a fixed
schema. First, it creates a shallow copy of the entity (i.e.,
a resource or an element is created). Such a copy is
passed to the transform method of the first transformer
belonging to the list received during the translation invo-
cation. The transformer modifies the copy depending on
its own state and the values of the copy attributes. The
modified object is then passed to the transform method of
the next transformer, until the last transformation has
been applied. At this step of our work, we do not con-
strain what transformers can do. Transformers may add,
delete, and modify the object attributes; they may recon-
figure the containment relationship; they may add new
sub-entities, delete or reorder references to existing sub-
entities, etc. In addition, the composition of transformers
may eventually return a null object, meaning that the cur-
rent resource or element must not be translated at all. If
the returned object is non-null, the translation operation
is invoked on every resource or element contained in the
modified entity. The translation operation invoked on a
descendant entity receives as a parameter a list of trans-
formers obtained by appending the transformers associ-
ated with the entity being translated (if any) to the list of
transformers received by the parent entity. The transla-
tion of descendant nodes returns their representation in
the conventional WWW technology. These data are used
by the entity to produce its own translation. Note that
since transformers are applied to copies of resources and
elements, the original entities defined by the site author
are not modified.

A predefined set of transformers has been introduced in
WOOM to implement navigational patterns that take ad-
vantage of the topological structure imposed by some
containers (lists, indexes, and trees). For example, a list
transformer has been associated to list containers to im-
pose a sequential navigation among the enclosed re-
sources. During the translation process the transformer is
able to add proper navigational garnishment to the hyper
pages contained in the list. Similarly, a navigational pat-
tern has been predefined for the index container type to
allow end users to navigate from the root resource to the
leaves and back again. Other transformers have been pre-
defined for the tree container in a similar way.

Transformers can be used to define properties common to
a set of resources, such as color background, graphical
decorations, and fonts. Transformers give the opportunity
to centralize the control of properties that in conventional
WWW technology are defined implicitly on a per-entity
basis.

Furthermore, transformers are used to extract particular
views of a resource or element. During the translation
process a transformer can inhibit the translation of por-
tions of information on the basis of their attribute values
(e.g., expiration date, creation date, relevance, and ver-
sion). For instance, let us consider a hyper page contain-

ing a scientific paper that is put in three different con-
texts. Labeling the page elements with proper attributes, a
different view of the contents can be proposed in each
context: an abstract, a simplified version without mathe-
matical formalisms, and a detailed presentation.

In conclusion, transformers are powerful mechanisms
that allow the information provided by a site to be kept
separate from the various occurrences in which such in-
formation can appear in different forms, within different
contexts. By separating the information from its contex-
tual occurrence, we facilitate reuse, implementation, and
maintenance of complex data structures.

5 MEETING THE REQUIREMENTS
The WOOM modeling framework provides several ad-
vantages with respect to the standard Web technology. Its
benefits can be analyzed with respect to the requirements
presented in Section 3.

Rigor and formality By using an object-oriented model,
the entities that compose a Web site and their relation-
ships can be defined in a precise manner. The behavioral
semantics of each element type is encapsulated within its
definition.

Separation of concerns WOOM provides the resource
and element concepts to model and structure site con-
tents. Differently from the standard Web technology, in
WOOM all the entities that compose a site from the
server to the small grain elements are abstract data types.
It is possible to extend the type hierarchy by using com-
position and inheritance. The modeling framework de-
fines structuring constructs like containers, page sets,
lists, trees, and supports the creation of user-defined con-
structs. The model provides predefined navigational pat-
terns for resource structures. Thanks to the transformer
mechanism, navigational patterns are defined separately
from contents. The same mechanism allows the devel-
oper to keep the different views of the same information
separate from the information itself.

WOOM provides an explicit model of the concepts of
site and server, and their relationships with the site’s
contents. This clearly separates the issue of network ac-
cess to the site contents from the internal organization
and modeling of the data.

Modularity WOOM container types (lists, trees, etc.)
provide a way to aggregate contents and partition the
contents base. Container types have a well-defined inter-
face; they can be used as building blocks to define more
complex container structures. In addition, the server ab-
straction allows for a higher-level partitioning of the in-
formation domain.

Abstraction Modeling a Web site provides the developer
with clearly defined abstractions. Abstractions can be
distinguished into entity-level abstractions (resources,
servers, site) and structuring abstractions (containers,
page sets). WOOM clearly defines the relationships
among the site constituents, hiding unimportant details
and highlighting concepts that are left implicit in the low-
level technology. For example, while the standard WWW

8

technology implements links like string attributes of an-
chor elements, WOOM models them as first-class ob-
jects. Management of implementation details is left to the
translation process, as happens in the case of high-level
programming languages [7].

Anticipation of change Design entities and their relation-
ships can be modeled directly by using the WOOM
framework. This way design changes can be tracked
down to implementation and viceversa. In addition,
modularization allows for easy management of groups of
resources.

Generality Being an object-oriented model, WOOM ex-
ploits the inheritance mechanisms provided by object
orientation to extend and manage abstractions and con-
structs. In addition, the transformer mechanism is a pow-
erful, general-purpose mechanism that provides the de-
veloper with a tool for extending and customizing the
model.

6 A TOOL FOR WEB DEVELOPMENT
We developed a prototype authoring tool, written in Java,
that implements the WOOM model. The tool allows the
developer to use WOOM constructs to create the re-
sources that compose a Web site, to perform complex
management operations, and to translate the WOOM in-
stance into the standard WWW technology. The main
components of the tool are presented in Figure 2.

A first component is the WOOM class framework. The
framework provides the definition of basic WOOM enti-
ties and provides some predefined constructs. The class
framework provides support for representing Web site
design elements into the model. This is achieved by
means of an integrated, yet separate, design module. The
design module is a plug-in component that provides sup-
port for a specific design notation. Currently, the HDM
notation is supported.

As a preliminary step in Web site implementation, the
WOOM class framework is imported into the develop-
ment application. Then, the developer uses the instances
of the classes provided by the design module to represent
the entities defined during the design phase. Once the
design elements have been represented, the developer
chooses the corresponding resource implementation. In
order to implement each design element, the developer
may use the predefined constructs offered by the WOOM
class framework or create new application-specific con-
structs using inheritance, composition, and the trans-
former mechanism. After suitable constructs have been
identified, implementation links that associate a design
element with the corresponding implementation construct
are created. Such links are used in tracking changes in the
implementation to the site design and viceversa.

The next step consists of populating the site, by instanti-
ating resource objects of the appropriate classes, and cre-
ating application links. Structural links are automatically
managed by the semantics of structured objects that im-
plements structured design elements. Once the site has
been populated, the translation process is invoked on the

site root container. The translation produces the site im-
plementation in terms of files in the file system and serv-
ers that provide access to the site’s co ntents.

Web site maintenance and management operations are
performed on the WOOM model instance. The WOOM
framework provides support for a set of predefined tasks
like syntax checking, link updating, resource restructur-
ing, consistency checks, shared resource management,
and design change management. The model instance,
after it has been modified, must undergo a new transla-
tion process in order to reflect changes on its target im-
plementation.

Web site instances, composed of site-dependent schema
extensions (classes and transformers) and resource ob-
jects are persistently2 stored in the Repository module.
The control application accesses the WOOM schema and
instances by means of the WOOM API. The control ap-
plication is a Java application that uses the primitives and
services offered by the API.

We are currently working on a graphical interface that
allows the developer to access WOOM services in an
intuitive and user-friendly way.

7 CONCLUSIONS AND CURRENT WORK
The development and evolution of Web sites is a signifi-
cantly complex and time-consuming task. Unfortunately,
the current approaches to Web site development not only
are centered just on the implementation phase, but also
lack high-level language abstractions as well as a com-
prehensive methodological development framework. In
this paper, we presented a Web site development process
that we used successfully in a number of projects. Our
experience showed that the semantically poor abstrac-
tions and low-level mechanisms offered by the current
WWW technology are inadequate to support the imple-

2 Persistency is achieved by using the Java object seriali-
zation mechanism.

WOOM CLASS FRAMEWORK

REPOSITORY

W
O

O
M

A
PI

CONTROL
APPLICATION

DESIGN MODULE

Class extensions

Model instance

Class extensions

Model instance

SITE A SITE B

Figure 2: The WOOM-based authoring tool.

9

mentation and maintenance phases of the development
process. Therefore, we developed a new object-oriented
modeling framework that extends and enriches the Web
basic abstractions and mechanisms by providing higher-
level constructs. These constructs are used to implement
higher-level design entities and provide the developer
with powerful, customizable, and reusable patterns. In
addition, the model supports complex management tasks
by supporting an explicit representation of the relation-
ships and links among the site constituents.

A prototype tool based on the model has been developed.
The tool allows a developer to create a WOOM model
instance and to translate it into a Web site implemented
using standard WWW technology. The experience gath-
ered so far on the use of the tool has shown that by fol-
lowing a clearly defined, tool-supported development
process it is possible to produce high-quality Web sites
with reduced effort. Web evolution is also facilitated.

Future work will include the development of a user-
friendly graphical interface for the tool that will allow the
site developer to use the features of the model more natu-
rally. In addition, the set of predefined resource container
types (i.e., lists, trees, sets, and indexes) will be extended
to include more representation and navigation patterns
that can be used with minimal modifications by the de-
veloper in a number of application domains.

Finally, we will address the issue of incremental Web
translation. Presently, a complete target Web site is gen-
erated after each change in the high-level model. In an
incremental schema, we would like to regenerate only the
minimum amount of target information affected by the
change.

REFERENCES
1. V. Balasubramanian, T. Isakowitz, and E. A. Stohr,

RMM: A Methodology for Structured Hypermedia
Design, Communications of the ACM, 38(8), August
1995.

2. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk
Nielsen and A. Secret, The World Wide Web, Com-
munications of the ACM, vol. 37, num. 8, August
1994.

3. D. Flanagan, JavaScript – The Definitive Guide, 2nd

Edition, O’Reilly & Ass ., January 1997.

4. F. Garzotto, L. Mainetti, and P. Paolini, Hypermedia
Design, Analysis, and Evaluation Issues, Communi-
cations of the ACM, Vol. 38, No. 8, August 1995.

5. F. Garzotto, L. Mainetti, and P. Paolini, Information
Reuse in Hypermedia Applications, Proceedings of
ACM Hypertext ’96, Washington DC, ACM Press,
March 1996.

6. F. Garzotto, P. Paolini, and D. Schwabe, HDM – A
Model-Based Approach to Hypertext Application De-
sign, ACM Transactions on Information System, Vol.
11, No. 1, January 1993.

7. C. Ghezzi and M. Jazayeri, Programming Language

Concepts, 3rd edition, Wiley, 1997.

8. C. Ghezzi, M Jazayeri, and D. Mandrioli, Funda-
mentals of Software Engineering, Prentice Hall, 1991.

9. J. Gosling and H. McGilton, The Java Language En-
vironment: a White Paper, Technical Report, Sun Mi-
crosystems, October 1995.

10. Microsoft Corp., FrontPage Home Page,
http://www.microsoft.com/FrontPage/

11. NetObjects Inc., Fusion Home Page,
http://www.netobjects.com/

12. Netscape Inc., Netscape Composer,
http://www.netscape.com/

13. D. Ragget, Hypertext Markup Language 3.2 Refer-
ence Specification, W3C recommendation, 1996.

14. D. Schwabe and G. Rossi, From Domain Models to
Hypermedia Applications: An Object-Oriented Ap-
proach, Proceedings of the International Workshop
on Methodologies for Designing and Developing
Hypermedia Applications, Edimburgh, September
1994.

15. Sun Microsystems, The Java Servlet API White Pa-
per, 1997

16. Taligent Inc.,Building Object-Oriented Frameworks,
A Taligent White Paper, 1994.

