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Abstract. Mobile code systems are technologies that allow applications
to move their code, and possibly the corresponding state, among the
nodes of a wide-area network. Code mobility is a flexible and power-
ful mechanism that can be exploited to build distributed applications
in an Internet scale. At the same time, the ability to move code to and
from remote hosts introduces serious security issues. These issues include
authentication of the parties involved and protection of the hosts from
malicious code. However, the most difficult task is to protect mobile
code against attacks coming from hosts. This paper presents a mecha-
nism based on execution tracing and cryptography that allows one to
detect attacks against code, state, and execution flow of mobile software
components.

1 Introduction

Mobile code technologies are languages and systems that exploit some form
of code mobility in an Internet-scale setting. In this framework, the network
is populated by several loosely coupled computational environments, or sites,
that provide support for the execution of executing units, or agents. Agents
represent sequential flows of computation which are characterized by a code
segment, providing the static description of the behavior of a computation, and
an execution state, containing control information related to the state of the
computation, such as the call stack and the instruction pointer.

Mobile code technologies can be divided in two sets [6]. Weakly mobile tech-
nologies allow an application to send code to a remote site in order to have
it executed there, or to dynamically link code retrieved from a remote site in
order to execute it locally. The transferred code may be accompanied by some
initialization data but no migration of execution state is involved. Examples of
weakly mobile technologies are Java [19] and the Aglets system [16]. Strongly
mobile technologies allow an executing unit that is running at a particular site
to move to a different computational environment. In this case, the executing
unit is stopped and its code and execution state are marshaled into a message
that is sent to the remote site. The destination site restarts the unit from the
statement that follows the invocation of the migration primitive. Examples of
strongly mobile languages are Telescript [30] and Agent-Tcl [12]. A survey of
several mobile code languages and systems can be found in [10].
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While the mobile code approach to designing and implementing distributed
applications provides a greater degree of flexibility and customizability with
respect to the traditional client-server approach [4], it raises some serious security
issues. Agents travel across the network on behalf of users, visiting sites that
may be managed by different authorities (e.g., a university or a company) with
different and possibly conflicting objectives [20]. Therefore, mobile code systems
must provide mechanisms to protect hosts and execution environments from
misbehaviors or attacks coming from roaming agents as well as mechanisms
to protect agents from malicious sites. In addition, agents should be protected
against eavesdropping or tampering during migration from site to site.

Protection of agents while traveling over an untrusted network can be achieved
using well-known cryptographic protocols (e.g., the Secure Socket Layer [9]).
Mechanisms and policies to protect a site from code coming from an untrusted
source have been the focus of recent research [28,21,32,17]. Using suitable access
control and sandboxing mechanisms, it is possible to protect execution environ-
ments effectively against a wide range of attacks.

By far, the hardest security problem is represented by the protection of agents
from attacks coming from the computational environments that are responsible
for their execution. In fact, execution environments must access agents’ code and
execution state to be able to execute them. As a consequence, it is very difficult
to prevent disclosure, tampering, or incorrect execution of agents.

We propose a mechanism that allows for detecting possible misbehavior of
a site with respect to a roaming agent by using cryptographic traces. Traces
are logs of the operations performed by an agent during its lifetime. The pro-
posed mechanism allows an agent owner to check, after agent termination, if the
execution history of the agent conforms to a correct execution.

The paper is organized as follows. Section 2 presents some related work on
mobile code and security. Section 3 introduces some concepts and assumptions
underlying cryptographic tracing. In sections 4 and 5 we describe the mecha-
nism and its applications. Section 6 discusses the applicability of the proposed
approach and some of its limits. In Section 7 we describe a mobile code lan-
guage that implements the tracing mechanism. The language is then used in a
simple electronic commerce application. Section 8 draws some conclusions and
illustrates future work.

2 Related Work

Protecting programs against attacks coming from the interpreter responsible for
their execution is a challenging problem!. Some efforts have been devoted to
determining which goals are achievable and which are not [5,8]. For example, it
is not possible to guarantee that an environment will execute an agent correctly
and to its completion, or to achieve total protection of agent data from disclosure.

! Presently, most mobile code systems consider the site as a trusted entity and therefore
they do not provide any mechanism to protect agent execution.
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Presently, solutions to the problem of protecting mobile agents against at-
tacks coming from their execution environment are aimed at prevention or de-
tection.

Prevention mechanisms try to make it impossible (or very difficult) to access
or modify agents’ code and state in a meaningful way. One possible approach
is to adopt tamper-proof devices [31]. These devices are processors that execute
agents in a physically sealed environment. The system internals are not accessi-
ble even by its owner without disrupting the system itself. While these systems
can provide a high level of protection, they require dedicated (expensive) hard-
ware. Therefore, they are not easily deployed on a large scale. A software-based
approach is followed by code scrambling [14,25] mechanisms. In this case, the mo-
bile code is “rearranged” before it is moved to a remote site. The technique used
to modify the code makes it difficult to re-engineer the code but preserves its
original behavior. A simpler solution performs partial encryption of the agent’s
components. Using this mechanism, an agent protects data that must be used
at a particular site by encrypting them with the site’s public-key. This way, data
are accessible only when the agent reaches the intended execution environment.
Obviously, this approach requires that (at least part of) the route that will be fol-
lowed by the agent is known in advance. A new and promising approach exploits
cryptographed functions [23]. In this case, the mobile code performs an algo-
rithm that, given some external inputs, computes a cryptographed value. The
site has no clue about which is the function actually computed and therefore
cannot meaningfully tamper with algorithm execution and computation results.
Presently, this mechanism has been applied to the evaluation of polynomial and
rational functions.

Detection mechanisms aim at detecting illegal modification of code, state, and
execution flow of a mobile agent. While static code can be easily protected by
using digital signatures, state and execution flow are dynamic components and
therefore other mechanisms must be devised. For example, the state appraisal
mechanism [7] associates a mobile agent with a state appraisal function. When
a roaming agent reaches a new execution environment, the appraisal function
is evaluated passing as a parameter the agent’s current state. The appraisal
function checks if some invariants on the agent’s state hold (e.g., relationships
among variables). This way, some malicious attempts to tamper with the agent’s
state can be detected.

We introduce a mechanism that aims at detecting any possible illegal mod-
ification of agent code, state, and execution flow. The mechanism is based on
post-mortem analysis of data —called traces— that are collected during agent
execution. Traces are used as a basis for program execution verification, i.e., for
checking the agent program against a supposed history of its execution. This way,
in case of tampering, the agent’s owner can prove that the claimed operations
could have never been performed by the agent.



140 Giovanni Vigna

3 Tracing Execution

The proposed mechanism assumes that all the involved principals, namely users
and site owners, own a public and a secret key that can be used for encryption
and digital signatures [22]. The public key of a principal A is denoted by A,
while A, is used for the corresponding secret key. Principals are users of a public
key infrastructure [15] that guarantees the association of a principal identity
with the corresponding public key by means of certificates. We assume that, at
any moment, any principal can retrieve the certificate of any other principal and
verify the integrity and the validity of the associated public key.

The process of encrypting? a message m with a key K is expressed by K (m).
In addition, we will use one-way hash functions in order to produce cryptograph-
ically secure compact representations of messages. The hash value obtained by
application of the one-way hash function H to the message m is denoted by
H(m). The process of signing® a message with a secret key is denoted by X(m),
where X is the signing principal. Several examples of cryptosystems and one-way
hash functions can be found in [24].

A moving agent is composed of a code segment p and the associated exe-
cution state S?, which has been determined, at some specified point i, by code
execution. The state includes global data structures, the call stack, and the pro-
gram counter. We assume that the code is static with respect to the lifetime of
the agent, that is, the agent cannot change its own code segment as the result
of its execution. This constraint will be removed in Section 6. The code segment,
is composed of a sequence of statements, that can be white or black. A white
statement is an operation that modifies the agent’s execution state on the basis
of the value of the agent’s internal variables only. For example, the statement
T := y + 2z, where z, y, and z are variables contained in the agent’s execution
state, is a white statement. A black statement modifies the state of the pro-
gram using information received from the external execution environment. For
example, the statement read(x), that assigns to the variable z a value read from
the terminal, is a black statement. This is not a new concept. For example,
the Perl [18] language implements a security mechanism, called tainting, that
allows the programmer to keep track of the variables whose value has been de-
termined on the basis of information retrieved from the external environment
(e.g., terminal input or environment variables).

A trace TP of the execution of program p is composed of a sequence of
pairs (n,s), where n represents a unique identifier of a statement, and s is a
signature. When associated with a black statement, the signature contains the
new values assumed by internal variables as a consequence of the statement

2 Public-key cryptography is slow when compared to symmetric cryptography. In the
sequel, when we will need bulk encryption using public keys we will assume that
the message has been encrypted with a randomly generated secret key and that the
key has been protected with the original public key. For example, if the application
of a symmetric encryption process parameterized by a key K to a message m is
represented by K(m), then A,(m) is equivalent to A,(K), K(m).

3 If not explicitly noted, Xs(m) is considered equivalent to m, X, (H (m)).
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execution. For example, if the read(z) instruction gets the value 3 from the
terminal, the associated signature will be x := 3. The signature is empty for
white statements.

We make some assumptions about the execution infrastructure. First of all,
we assume that all the interpreter implementations are certified correct and re-
spectful of the semantics of the language. For example, the interpreter owner
must provide some kind of third-party certification of correct implementation of
the language to be able to charge agents for the services used. This way, a site
owner cannot claim that, in his/her interpreter implementation, the execution
of a while statements means “buy two hundred shares of Microzooft in the stock
market”. Second, we assume that all the principals participating in the infras-
tructure respond to some trusted party that will be involved in case of (claimed)
misbehaviors.

The following two sections address problems of increasing complexity, firstly
considering remote code erecution, and then mobile agents. In describing the
protocols we employ the following notation:

XY . R,F,... F,.

The expression above means that principal X sends message m; to principal Y.
The contents of the message are a sequence of fields Fi, Fs, ... , F,.

4 Remote Code Execution

Remote code execution, also known as remote evaluation, is a mechanism that
allows an application to have code sent to a remote host and executed there.
Remote execution is a well-known mechanism that dates back to the 70s, when
it was used for remote job submissions [1], and has always been available to UNIX
users by means of the rsh facility. Remote code execution represents the basis
for several mobile code systems like Oblig [3] and MO [29]. A formal definition
of the remote evaluation mechanism is presented in [26].

Suppose now that principal A wants to execute program p on site B. There-
fore, A sends B the following signed message:

A B: AJ(A,B,ig,ta, Ks(p), TTP).

The first two fields of the message specify that the message is coming from A
and it is directed to B. When B receives mq, it uses A’s public key to verify
the message signature. This way, B is assured that the message was actually
sent by A and that the message was intended for itself. The third field (i)
is a unique identifier used to mark all the messages that are involved in this
execution request and to protect from replay attacks. The following field (¢4) is
a timestamp to guarantee freshness?. The next field is the code to be executed,

4 The timestamp may be associated to a time interval to limit execution time or the
validity of the request.
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encrypted using a random secret key K 4, chosen by A. The last field is the
identifier of a trusted third party (T'TP) that will be involved if A or B claim
that the other principal is not playing fair.

B can reject or accept the request on the basis of the available information
(the identity of the sender, the unique identifier, the timestamp, and the trusted
third party chosen by A). In either case B replies with a signed message con-
taining the outcomes of its decision, say M. If B rejects the request and refuses
to execute the code, M contains the error message that motivates the rejection.
If B accepts the request, M contains an acceptance statement that represents
B’s commitment to the execution of p and implicitly requests the decryption key
Ka:

B3 A:B,(B,A,ia, H(my), M).

A receives mo and validates the message. Thus, A is assured that the message
was sent by B, that it was intended for itself, and that the message refers to the
execution request identified by i 4. If M is a rejection message the protocol ends.
If the request has been accepted then A sends a signed message containing the
key K 4 protected using B’s public key:

A% B:Ay(A,B,ia, By(Ka)).

When B receives the message, it checks message validity and then extracts the
key K4 by using its own secret key. Then, B decrypts K 4(p), retrieves the code
to be executed, and sends A an acknowledgment message:

B % A:B,(B,A,ia, H(ms)).

Then, B executes code p and, during execution, it produces the associated trace
TF. The trace contains the identifiers of the executed statements and the signa-
tures associated with black statements.

When the program terminates, B sends A a signed message containing the
program’s final state Sp encrypted using a random key Kp, chosen by B, a
checksum of the execution trace Th (whose extended form is stored —for a
limited amount of time— by B), and a timestamp tp:

B E) A: BS(B7A77:A7KB(SB)rH(Tg):tB)'

When A receives the message, it replies with a signed acknowledgment message
implicitly requesting the key to access the computation results:

A% B: A, (A, B,ia, H(ms)).

This message is A’s commitment to pay for the services used by the mobile code
if the execution was correct. B replies to mg with a signed message containing
the key Kp, protected with A’s public key:

B ™% A: By(B,A,ia, Ay(KB)).
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A verifies the signature on the message and then extracts Kp by using its own
secret key. Then, A decrypts Kp(Sg) and accesses the results of the computa-
tion.

After having accessed the results, if, for some reason, A suspects that B
cheated while executing p, it can ask B to produce the trace. B cannot refuse
because of its signed message ms. After B delivers the complete trace T, A
checks whether the trace is the one actually referenced in message ms by com-
puting H(T%) and comparing it with the value contained in B’s message. Finally,
A validates the execution of p with respect to the trace T%. That is, the code
is re-executed step by step, and at each step the identifier of the current state-
ment is compared with the one contained in the trace at the corresponding step.
Every time a statement that involves some input from the outside environment
must be executed, the input value is extracted from the corresponding signature.
Note that the complexity of the validation process is linear with the size of the
execution trace.

If, at some point, a discrepancy between the simulated execution and the
trace is found or if the final state of the simulator does not match the value
Sp provided by B then B cheated by modifying the code, by modifying some
program variables, or by tampering with the code execution flow. If no difference
between the simulated execution and the trace is found but B charged A for
actions that the code did not perform during the simulation, then B cheated by
overcharging A for services or resources that have not been used.

In both cases, A can prove B’s misbehavior to the trusted third party. In
fact, using message ma, A can prove that B received code p and committed to its
execution. Then, using message ms, A can prove that B claimed to have executed
p following trace T4 to obtain the final state Sg. In fact, B signed H(T%) and
Kp(Sp) and cannot provide a different trace or change the computation results.
The proposed mechanism also provides a means to protect a well-behaving site
against a cheating user. In fact, B can prove to the trusted third party that A
requested the execution of code p by providing m; and that A accepted to pay
for the resources consumed by showing message mg.

The protocol described so far assumes that the participants are playing fair
by following the protocol as expected. If A and/or B does not play fair, the
trusted party must be involved to force the misbehaving participant to a correct
behavior. In the following we analyze what these misbehaviors can be and how
they are solved.

After A sends B message my, B should send message my. At this step there
are two possible misbehaviors: (i) A could claim to have sent m; without actually
having sent it; (ii) B omits producing message ms claiming that it has never
received message m;. In both cases, A —the party that is interested in having
the code executed— contacts the trusted party TTP providing message m and
requesting its delivery to B. Note that TTP has no means of determining who
is not playing fair and therefore cannot apply any sanction. Its role is simply to
guarantee (and certify) that message m, was delivered to B.
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After this step B must send a response message. Again, there are two possible
misbehaviors: (i) B could claim to have sent my without actually having sent it;
(ii) A could omit sending message mg3 claiming that ms was never sent by B. In
both cases, B —the party that is interested in charging A for the execution of
p— contacts the trusted party and asks it to deliver message ms to A. Now A
is committed to send message ms. If A fails to send message m3, B can contact
the trusted party and ask it to force A to behave correctly. If A sent message
mg3 but B claims it has never received it and for this reason it did not produce
message my, A can ask the trusted party to deliver message ms and force B to
provide a receipt.

After B executed the code, it should send message ms with the encrypted
results. B can play unfair by pretending to have sent the message, while A can
misbehave by pretending not to have received it. In both cases, B is in charge
of contacting the trusted party and force the delivery, because B needs message
meg to be able to charge A. If B omits sending message m7 claiming it has
never received mg, A —the party that is interested in obtaining the results—
can contact the trusted party, produce ms and mg as evidence, and force B to
deliver message my.

The protocol described so far addresses the problem of detecting tampering
in case of remote execution of code. Code execution involves two principals: the
owner of the code and the remote site responsible for code execution. In the
next section we will extend the protocol to take into account a computation
that involves several sites and the transfer of intermediate execution states.

5 Mobile Agent

In the following we consider a scenario in which a mobile agent starts from an
initial home site and then jumps from site to site to perform a particular task.
Eventually the agent will terminate and the results will be delivered to its owner
at its home site.

Let us suppose that the agent starts at site A (its “home” site) and, at some
point, it requests to migrate to site B. As a consequence, the code p of the agent
and its current execution state S4 are transferred to site B. That is, A sends B
the following signed message:

AZS B: A (A B,Ks(p,Sa), As(A,ia, ta, H(p), TTP)).

The first two fields state that the message is sent from A to B. The following field
contains the agent code (p) and its initial state (S4) encrypted with a random
key K 4 chosen by A. The fourth field is the agent token that contains some static
data about the agent that will be used during further hops in the agent trip.
The agent token (agent 4 for short) contains A’s identity, the agent’s identifier
ia, a timestamp t4 indicating the time of agent dispatching, the hash value of
the agent’s code H(p), and the identity of the trusted party (TTP) that will be
involved in possible dispute resolution, similarly to the procedure described in
the previous section. The token is signed by A.
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When B receives my, it uses A’s public key to check the signature on both
the message and the agent token. As in the case of remote code execution, at
this point B can refuse or accept agent execution on the basis of the information
contained in the message. In both cases, B sends A the following signed message:

B3 A:B,(B,A,ia, H(my), M).

A validates the message and examines M. If M represents a rejection then the
protocol ends. Otherwise, M is B’s commitment to execute the agent and is an
implicit request for the key K 4. In this case, A sends the key to B, protected
with B’s public key:

A% B: Ay (A,B,ia, B,(Ka)).

B checks the message validity, extracts the key using its own secret key, and
decrypts the agent’s code and state. Then, B sends A a signed acknowledgment
message:

B 24 A:By(B,A,is, H(ms)),

and begins agent execution.

B executes the agent until the agent requests to migrate to another site,
say C. As a consequence, B stops the execution of the agent and sends C two
consecutive signed messages:

B % C: Bs(B,C, agent ., H(T%), H(SE), t5),

B C: By(Ks(p, Su), H(ms)).

The first message contains the names of both the sender and the receiver, the
agent token, a hash value of the trace Th produced by agent execution on B,
a hash value of the current state Sp, and a timestamp ¢p. The next message
contains the agent’s code and the current state Sp, encrypted with a random
key Kp chosen by B, followed by a hash of the previous message®. After having
received both messages, C' checks the corresponding signatures. In addition, C'
computes H(ms) and compares the result with the hash value contained in my.
Then C' checks the signature on agent 4 using A’s public key and verifies that
the agent was sent originally by A at time t4. C accepts or rejects the migration
request with a signed message that replies to ms and m{:

C % B: Cy(C, B,ia, H(ms,mi), M).

If M represents a rejection, then B restarts the agent by returning an error
message as the result of the statement that requested the migration. If M is an

5 The two messages ms and mj are kept distinct because the verification procedure
uses the data contained in ms only. This way it is possible to avoid retransmission
of the whole code and state of the agent during trace validation.



146 Giovanni Vigna

acceptance message, then C' commits to execute the agent and implicitly requests
the decryption key Kp. Therefore, B replies with a signed message containing
the requested key protected using C’s public key:

B ™5 C: By(B,C,ia,Cp(KBR)).

C receives the message and uses K g to access the agent’s state and code. Then it
checks that the code has not been modified by B computing H(p) and comparing
the resulting value with the hash contained in the agent token. In addition, C'
checks if the hash of S matches the value contained in ms. If both the code and
the state of the agent have been sent correctly, C' sends a signed acknowledgment
that terminates the transfer:

C ™% B:C,(C,B,ia, H(my)).

This protocol is repeated for every subsequent hop until the agent terminates.
Upon termination, the final site, say Z, retrieves from the agent token the name
of the “home site” of the agent (i.e., A) and contacts the home site to deliver
the final state of the agent. Therefore Z sends A the following signed message:

Z M A: ZS(Z’Aa agentAaH(Tg)aKZ(SZ)atZ)'

A checks the message validity and requests Kz with a signed acknowledgment
message:

AR 7 AJA, Zia, H(my)).

Z provides the key Kz —protected using A’s public key— in a signed message
that terminates the protocol:

VA "2)2 A: Zs(Za Aa iAaAP(KZ)’H(mn+1))

After having examined the results of the computation or after having received
the charges for the resources used by the agent during its execution, if A thinks
that one or more of the sites involved cheated, it starts the verification procedure.
Thus, A asks B (the first site in the agent route) to provide its trace TF. B
cannot deny receipt of the agent and having committed to its execution because
of message mo and must provide the trace. A starts the simulation following the
provided trace. The simulation eventually reaches the instruction that requests
the migration to site C. The agent’s simulated state, at that point, is S. Then,
A asks C to provide its trace and a copy of message ms (that is signed by B).
C cannot deny acceptance of the migration request, because B has messages my
that states the commitment of C' to agent execution. A extracts from message ms
the hash values of Sp and T%. Therefore, A can compare H(Sg) to H(S%). In
addition A can verify the integrity of the trace previously provided by B. If both
checks succeed, B did not cheat. As a consequence, A restarts the simulation of
the agent’s execution following the trace provided by C.
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This process continues until it reaches agent termination. At the end of the
simulation if state S7, and Sz coincide and the trace provided by Z produces
the same hash value H(T%) contained in message m,,, then the agent has been
executed correctly. Alternatively, if some discrepancy is found during the verifi-
cation of the trace provided by site X, then X cheated.

6 Discussion

Cryptographic tracing is a mechanism for detection of illegal tampering with
agent execution. By relying on this mechanism, the agent owner can verify with
a high degree of certainty that his/her agent was executed conforming to its
specification, that is, its code. Therefore, the agent’s owner is protected against
service overcharging. In addition, if the agent behaves incorrectly because its
code and/or state has been modified in a malicious way against its original spec-
ification, the principal responsible for its execution can relinquish responsibility
and determine who “brainwashed” the agent. Obviously, if there are ways to
induce the agent to attack other sites by providing carefully crafted inputs, the
agent’s owner may be held responsible for the damage caused by the agent. In
this respect, the developer of the agent’s code must use the same caution re-
quired when developing privileged programs that could receive parameters by
untrusted principals (e.g., SUID programs in the UNIX operating system [11]
or CGI scripts that process inputs received from browsers [27]). Greater care
must be used if the language being traced allows for dynamic evaluation of code,
that is, if there exists some kind of evaluate statement that takes as a parameter
a string and interprets it as code. This is a feature of most scripting language
(e.g., Perl or Tcl) and represents both a danger and a blessing. In fact, while
dynamic evaluation may allow a malicious site to drive an agent to execute ar-
bitrary pieces of code, it makes it possible to remove the static constraint on
code. If code can be managed as data, the code fragments determined by inter-
acting with the computational environment during execution will be recorded
in the execution trace and the corresponding statements will be traceable and
verifiable as well.

Being able to detect mobile agent tampering is an asset. Yet there are some
issues that limit the applicability of the tracing mechanism. Some limitations
stem from the scope of the mechanism. First of all, cryptographic tracing is a
mechanism that allows detection of tampering after agent execution. Therefore
if timely detection of tampering is needed a different mechanism must be de-
vised. In addition, the mechanism does not provide any means to determine a
priori if tampering occurred. The decision to perform trace validation must rely
on the evaluation of the outcomes of agent execution and on the charges received
for agent operations®. The proposed protocol could be extended to include in
the messages carrying the agent a list of signed hash values of the traces pro-
duced during execution at previously visited sites; this way, a site could refuse
to execute the agent if it has visited certain sites, or perform trace validation

6 This is somewhat similar to reconciling credit card statements.
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of the agent’s execution from its start to the current state before resuming the
agent. Another issue is that the proposed mechanism does not offer any protec-
tion against disclosure. Differently from mechanisms based on code scrambling,
partial encryption, or cryptographed functions, the code and the state of an
agent are accessible by the site responsible for agent execution. Therefore if the
mobile agent’s code and state must be kept secret, then the tracing mechanism
must be extended with the aforementioned mechanisms.

Some limits come from the assumptions made in Section 3. In particular, the
mechanism requires that all the sites participate in some kind of infrastructure
that allows for key distribution and management, interpreter certification, service
billing, and sanctioning of the principals. In fact, since cryptographic tracing is
a detection mechanism, it is useless unless there is a way to sanction cheating
sites or the principals responsible for misbehaving agents. Therefore the involved
parties must be liable in case of misbehavior or must be subject to some kind
of social control. This constraint poses some limitation to the scalability of the
proposed mechanism.

An obvious limit comes from the quantity of resources that are needed to en-
force the mechanism. The protocols described in sections 4 and 5 make extensive
use of public-key cryptography. These cryptographic algorithms are consider-
ably slow when compared to secret-key cryptography. Yet, they are necessary to
provide authentication and non-repudiation between untrusted parties. Another
issue is posed by the size of the traces collected during execution. In fact, the
size of the traces may be large, even if compressed. Several mechanisms can be
used in order to reduce the size of the traces. For example, instead of a complete
execution trace it could be possible to log just the signature of black statements
and the points in execution where control flow is non-deterministic. Another
extension to the mechanism could be devised that allows the programmer to
define a range of statements to be traced. The programmer may require that the
values of some critical variables must satisfy a set of constraints before entering
that particular group of statements. In a similar way, a mechanism could allow a
programmer to specify that a group of statements must not be traced and that
just the final values of the modified variables must be included in the trace. This
mechanism could be useful in search procedures when, during a loop, several
values are retrieved from the external environment and only a subset is saved in
the agent’s state.

Another set of issues stem from the nature of the language adopted for agents.
If the language is too low-level, the traces produced during execution would be
really large. If the language allows management of very complicated data struc-
tures, the modifications to the agent’s internal state could be difficult to represent
and could require a lot of space. In addition, we have made the assumption that
agents cannot share memory and are single threaded. If this is not the case, an
extension to the tracing mechanism is required. In order to check the execution
of an agent, a user would need the trace of all the agents or threads that shared
some memory portion with the agent thread under examination. In addition,
traces should be extended with some timing information that allows for deter-



Cryptographic Traces for Mobile Agents 149

mining the order of the statements executed by the different threads. As one can
easily understand, this mechanism would be practically infeasible.

7 An Electronic Commerce Agent

In order to give an example of the operations involved in agent execution, trac-
ing, and verification, we introduce a simple mobile code language, called SALTA
(Secure Agent Language with Tracing of Actions)”, that implements the trac-
ing mechanism. The language is then used to develop an electronic commerce
application.

SALTA is a modified version of the Safe-Tcl language [2,21]. The Safe-Tcl
language has been restricted further, and two new instructions have been added,
namely: request and go.

The request command allows an agent to access the services provided by a
site. The request command takes as arguments the service name and a list of
strings representing the service parameters. The go command allows an agent
to migrate to a remote site specified as the command argument. When an agent
executes the go command, it is suspended and its code and execution state
(values of variables, call stack, and program counter) are packed into a message.
The message is delivered to the destination site following the protocol described
in Section 5. Upon arrival, the agent is unpacked, its execution state is restored,
and its execution is restarted from the command following the go. From this
point of view this language is similar to Agent-Tcl [13].

We use this minimal language to develop a simple agent application. A user,
at site home.sweet-home.com wants to buy a home video of Tarantino’s Pulp
Fiction movie. Therefore, he dispatches an agent to a site called agents.vir-
tualmall. com dedicated to maintain a directory of electronic shops. Once there,
the agent performs a directory query for sites offering home videos. Then, the
agent visits the provided sites. At each site the agent contacts the local catalog
service to determine the current price of the Pulp Fiction home video. When
all prices have been collected, the agent identifies the best offer and, if the best
price is less then a specified amount—say, twenty dollars—the agent goes to the
selected site and buys the home video. The transaction identifier is stored in the
variable result. Upon completion of its task, the agent terminates and its state
is returned to its home site. Figure 1 shows the agent’s code.

Now suppose that the directory service at agents.virtualmall.com has
suggested two sites, namely agents.brockbuster.com and agents.towelre-
cords.com. The prices of the Pulp Fiction home video are fifteen dollars at
agents.brockbuster.comand seventeen dollars at agents.towelrecords.com.
The execution trace will be the one shown in Figure 2.

Let us suppose that the Towel Records site wants to modify Brockbuster’s
offer so that Towel Record’s offer appears to be the most convenient. Before the
agent computes the best price, the Towel Records site modifies the home video

7 “Salta” is also an Italian verb meaning “jump”.
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1 : go agents.virtualmall.com
2 : set shoplist [request directory query homevideo]
3 : foreach shop $shoplist {
3.1 : go $shop
3. : set price($shop) [request catalog movies "Pulp Fiction"]
2}
4 : set best_price 20
5 : set best_shop none
6 : foreach p [array names price] {
6.1 : if {$price($p) < $best_price} {
6.1.1: set best_price $price($p)
6.1.2: set best_shop $p
: }
:
7 : if {$best_price > 20} {
7.1 set result "No offers below \$20!"
7.2 : exit
2}
8 : go $best_shop
9 : set result [request buymovie "Pulp Fiction" $best_pricel
10 : exit
Fig. 1. The Pulp Fiction Agent.
home virtualmall brock towel
1 2,shoplist = brock towel 3.2,price(brock) = 15 3.2,price(towel) = 17
3 3 4
3.1 3.1 5
9,result = PF11 6
10 6.1
6.1.1
6.1.2
6
6.1
6.1.1
6.1.2
7
8

We made the following substitutions:

home = home.sweet-home.com
virtualmall = agents.virtualmall.com
brock = agents.brockbuster.com
towel = agents.towelrecords.com

Fig. 2. Pulp Fiction Agent execution traces.
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price associated with Brockbuster, raising its value to twenty-two dollars. As a
consequence, the agent buys the home video at Towel Records. The trace, in this
case will be the one shown in Figure 3.

home virtualmall brock towel
1 2,shoplist = brock towel 3.2,price(brock) = 15 3.2,price(towel) = 17
3 3 price(brock) = 22
3.1 3.1 4
5
6
6.1
6
6.1
6.1.1
6.1.2
7
8
9,result = PF11
10

The illegal tampering with the agent’s state is showed in italics.

Fig. 3. Execution traces resulting from tampering.

After having received the agent’s final state, the agent owner may decide to
verify agent execution. In this case, he/she retrieves the trace produced by the
agent at the first site, namely agents.virtualmall.com. Then the owner of the
agent simulates the agent’s execution following the provided trace, until it comes
to the request to migrate to another site, i.e., agents.brockbuster.com. As a
consequence, the agent’s owner asks Brockbuster’s site to provide the agent’s
trace and the signed checksum of the agent’s state received from agents.vir-
tualmall.com. If the checksum computed over the simulator’s state does not
match the value provided by the Brockbuster site, then Virtuall Mall’s site
cheated. Otherwise simulation proceeds. When the verification process reaches
instruction 8 (see figures 1 and 3) an inconsistency is flagged. In fact, the simula-
tor holds value agents.brockbuster.com for variable best_shop and therefore
the go command should have migrated the agent to the corresponding site. Since
agents.brockbuster.comsent a signed checksum of the agent state just before
the agent left, and agents.towelrecords.com has signed a receipt for that
message, A can determine that Towel Records’ site cheated. In addition, using
the messages produced during the protocol, A can prove to a third party that
agents.towelrecords.com tampered with state in an illegal way. The same
procedure can be used to flag out tampering with code, inconsistencies in state
transmission, computational flow diversion, and service overcharging.
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8 Conclusions and Future Work

The interest in code mobility has been raised by the availability of a new breed
of technologies featuring the ability to move portions of application code and
possibly the corresponding state among the nodes of a wide-area network. Being
able to move computations from host to host, mobile code systems raise seri-
ous security issues. One of the most difficult problems to solve is the protection
of roaming agents from computational environments. We presented a mecha-
nism, based on execution tracing, that allows an agent owner to detect illegal
tampering with agent data, code, and execution flow, under certain assump-
tions. The proposed system does not require dedicated tamper-proof hardware
or trust between parties. A language that implements the system concepts has
been described, together with a simple electronic commerce example.

Presently, the Software Engineering group at Politecnico di Milano is design-
ing and implementing a first prototype of the SALTA language. The prototype
is written in Java, while cryptographic functionalities are implemented using
PGP [33]. Aside from the tracing mechanism described in this paper, the SALTA
language includes mechanisms to protect sites against malicious agents. We plan
to use SALTA to implement electronic commerce applications that require ac-
countability and a high degree of protection against frauds.
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