
Stateful Intrusion Detection for High-Speed Networks

Christopher Kruegel Fredrik Valeur
Giovanni Vigna Richard Kemmerer

Reliable Software Group
University California, Santa Barbara�

kruegel,fredrik,vigna,kemm � @cs.ucsb.edu

Abstract

As networks become faster there is an emerging need for
security analysis techniques that can keep up with the in-
creased network throughput. Existing network-based intru-
sion detection sensors can barely keep up with bandwidths
of a few hundred Mbps. Analysis tools that can deal with
higher throughput are unable to maintain state between dif-
ferent steps of an attack or they are limited to the analysis
of packet headers. We propose a partitioning approach to
network security analysis that supports in-depth, stateful in-
trusion detection on high-speed links. The approach is cen-
tered around a slicing mechanism that divides the overall
network traffic into subsets of manageable size. The traffic
partitioning is done so that a single slice contains all the ev-
idence necessary to detect a specific attack, making sensor-
to-sensor interactions unnecessary. This paper describes
the approach and presents a first experimental evaluation
of its effectiveness.

Keywords: Intrusion Detection, High-Speed Networks, Se-
curity Analysis.

1 Introduction

Network-based intrusion detection systems (NIDSs) per-
form security analysis on packets obtained by eavesdrop-
ping on a network link. The constant increase in network
speed and throughput poses new challenges to these sys-
tems. Current network-based IDSs are barely capable of
real-time traffic analysis on saturated Fast Ethernet links
(100 Mbps) [3]. As network technology presses forward,
Gigabit Ethernet (1000 Mbps) has become the de-facto
standard for large network installations. In order to protect
such installations, a novel approach for network-based in-
trusion detection is necessary to manage the ever-increasing
data volume.

Network speeds have increased faster than the speed of
processors, and therefore centralized solutions have reached
their limit. This is especially true if one considers in-depth,
stateful intrusion detection analysis. In this case, the sensors
have to maintain information about attacks in progress (e.g.,
in the case of multi-step attacks) or they have to perform
application-level analysis of the packet contents. These
tasks are resource intensive and in a single-node setup may
seriously interfere with the basic task of retrieving packets
from the wire.

To be able to perform in-depth, stateful analysis it is
necessary to divide the traffic volume into smaller portions
that can be thoroughly analyzed by intrusion detection sen-
sors. This approach has often been advocated by the high-
performance research community as a way to distribute the
service load across many nodes. In contrast to the case for
standard load balancing, the division (or slicing) of the traf-
fic for intrusion detection has to be performed in a way that
guarantees the detection of all the threat scenarios consid-
ered. If a random division of traffic is used, sensors may not
receive sufficient data to detect an intrusion, because differ-
ent parts of the manifestation of an attack may have been
assigned to different slices. Therefore, when an attack sce-
nario consists of a number of steps, the slicing mechanism
must assure that all of the packets that could trigger those
steps are sent to the sensor configured to detect that specific
attack.

This paper presents an approach to in-depth, stateful in-
trusion detection analysis and a tool based on this approach.
The approach allows for meaningful slicing of the network
traffic into portions of manageable size. The slicing ap-
proach and a tool based on the approach are presented in
Section 3, after a discussion of related work in Section 2.
Section 4 presents the results of the quantitative evaluation
of the first prototype of the tool. Section 5 presents some
final remarks and outlines future research.

2 Related Work

The possibility of performing network-based intrusion
detection on high-speed links (e.g., on OC-192 links) has
been the focus of much debate in the intrusion detection
community. A common position is to state that high-speed
network-based intrusion detection is not practical because
of the technical difficulties encountered in keeping pace
with the increasing network speed and the more widespread
use of encrypted traffic. Others advocate locating highly
distributed network-based sensors at the periphery of com-
puter networks; the idea being that the traffic load is, possi-
bly, more manageable there.

Even though both of the advocated approaches above
have good points, analysis of network traffic on high-speed
links still represents a fundamental need in many practical
network installations. The commercial world attempted to
respond to this need and a number of vendors now claim
to have sensors that can operate on high-speed ATM or
Gigabit Ethernet links. For example, ISS [4] offers Net-
ICE Gigabit Sentry, a system that is designed to monitor
traffic on high-speed links. The company advertises the
system as being capable of performing protocol reassem-
bly and analysis for several application-level protocols (e.g.
HTTP, SMTP, POP) to identify malicious activities. The
tool claims to be the “first network-IDS that can handle full
Gigabit speeds.” However, the authors of the tool also state
that “GigaSentry handles a full Gigabit in lab conditions,
but real-world performance will likely be less. [. . .] Cus-
tomers should expect at least 300 Mbps real-world perfor-
mance, and probably more depending up the nature of their
traffic. [. . .] GigaSentry can only capture slightly more than
500,000-packets/second.” These comments show the actual
difficulties of performing network-based intrusion detection
on high-speed links. Other IDS vendors (like Cisco [1])
offer comparable products with similar features. Unfortu-
nately, no experimental data gathered on real networks is
presented. TopLayer Networks [11] presents a switch that
keeps track of application-level sessions. The network traf-
fic is split with regard to these sessions and forwarded to
several intrusion detection sensors. Packets that belong to
the same session are sent through the same link. This allows
sensors to detect multiple steps of an attack within a single
session. Unfortunately, the correlation of information be-
tween different sessions is not supported. This could result
in missed attacks when attacks are performed against mul-
tiple hosts (e.g., ping sweeps), or across multiple sessions.

Very few research papers have been published that deal
with the problem of intrusion detection on high-speed links.
Sekar et al. [10] describe an approach to perform high-
performance analysis of network data, but unfortunately
they do not provide experimental data based on live traf-
fic analysis. Their claim of being able to perform real-time

intrusion detection at 500 Mbps is based on the processing
of off-line traffic log files. This estimate is not indicative of
the real effectiveness of the system when operating on live
traffic.

3 A Slicing Approach to High-Speed
Intrusion Detection

The problem of intrusion detection analysis in high-
speed networks can be effectively attacked only if a scal-
able solution is available. Let us consider the traffic on the
monitored network link as a bi-directional stream of link-
layer frames (e.g., Ethernet frames). This stream contains
too much data to be processed in real-time by a centralized
entity and has to be divided into several smaller streams that
are fed into a number of different, distributed sensors. Each
sensor is only responsible for a subset of all detectable in-
trusion scenarios and can therefore manage to process the
incoming volume in real-time. Nevertheless, the division
into streams has to be done in a way that provides each sen-
sor with enough information to detect exactly the same at-
tacks that it would have witnessed when operating directly
on the network link.

3.1 Requirements

The overall goal is to perform stateful intrusion detection
analysis in high-speed networks. The approach presented
in this paper can be characterized by the following require-
ments.

� The system implements a misuse detection approach
where signatures representing attack scenarios are
matched against a stream of network events.

� Intrusion detection is performed by a set of sensors,
each of which is responsible for the detection of a sub-
set of the signatures.

� Each sensor is autonomous and does not interact with
other sensors.

� The system partitions the analyzed event stream into
slices of manageable size.

� Each traffic slice is analyzed by a subset of the intru-
sion detection sensors.

� The system guarantees that the partitioning of traffic
maintains detection of all the specified attack scenar-
ios. This implies that sensors, signatures, and traffic
slices are configured so that each sensor has access to
the traffic necessary to detect the signatures that have
been assigned to it.

Switch
Reassemblers

ID Sensors

Slicers

Tap

Outside
Internet

Scatterer

Inside

Figure 1. High-level architecture of the high-speed intrusion detection system.

� Components can be added to the system to achieve
higher throughput. More precisely, the approach
should result in a scalable design where one can add
components as needed to match increased network
throughput.

3.2 System Architecture

The requirements listed in the previous section have been
used as the basis for the design of a network-based intrusion
detection system. The system consists of a network tap, a
traffic scatterer, a set of � traffic slicers

�����������	�
������
, a

switch, a set of � stream reassemblers � �������	��� ��� ��
, and

a set of � intrusion detection sensors � ���������	� ��� ��
. A high-

level description of the architecture is shown in Figure 1.
The network tap component monitors the traffic stream

on a high-speed link. Its task is to extract the sequence �
of link-layer frames ��� � � � � �������	� ��� � that are observable on
the wire during a time period ! . This sequence of frames
is passed to the scatterer which partitions � into � sub-
sequences ��"$#&%('*),+-� . Each ��" contains a (possibly
empty) subset of the frame sequence � . Every frame ��. is
an element of exactly one sub-sequence � " and therefore/ "10 �
"32 � ��"�45� . The scatterer can use any algorithm to parti-

tion � . Hereafter, it is assumed that the splitting algorithm
simply cycles over the � sub-sequences in a round-robin

fashion, assigning � . to � . mod 6 �87
. As a result, each � "

contains an � -th of the total traffic.
Each sub-sequence �9" is transmitted to a different traf-

fic slicer
� " . The task of the traffic slicers is to route the

frames they receive to the sensors that may need them to
detect an attack. This task is not performed by the scatterer,
because frame routing may be complex, requiring a sub-
stantial amount of time, while the scatterer has to keep up
with the high traffic throughput and can only perform very
limited processing per frame.

The traffic slicers are connected to a switch component,
which allows a slicer to send a frame to one or more of �
outgoing channels : . . The set of frames sent to a channel
is denoted by �;: . . Each channel : . is associated with a
stream reassembler component � . and a number of intru-
sion detection sensors. The set of sensors associated with
channel : . is denoted by ��: . . All the sensors that are asso-
ciated with a channel are able to access all the packets sent
on that channel. The original order of two packets could
be lost if the two frames took different paths over distinct
slicers to the same channel. Therefore, the reassemblers
associated with each channel make sure that the packets ap-
pear on the channel in the same order that they appeared
on the high-speed link. That is, each reassembler �<. must
make sure that for each pair of frames � " � �>=@?A�;: . it holds
that (� " before ��=) BDCE)F+HG .

Each sensor component � " is associated with � differ-
ent attack scenarios � " 4���� " � � �	���	� � "�� ����

. Each attack
scenario � " = has an associated event space 	 " = . The event
space specifies which frames are candidates to be part of the
manifestation of the attack. For example, consider an attack
targeting a Web server called spider within the network
protected by the intrusion detection system. In this case, the
event space for that attack is composed of all the TCP traffic
that involves port 80 on host spider.

Event spaces are expressed as disjunctions of clauses,
that is, 	 " = 4�
 " =����
 " =���� ����� ��
 " =� , where each clause

 " = is an expression of the type � ��� . � denotes a value
derived from the frame � . (e.g., a part of the frame header)
while � specifies an arithmetic relation (e.g., =, !=, +). �
can be a constant, the value of a variable, or a value de-
rived from the same frame. Clauses and event spaces may
be derived automatically from the attack descriptions, for
example from signatures written in attack languages such
as Bro [6], Sutekh [7], STATL [2], or Snort [8].

3.3 Frame Routing

Event spaces are the basis for the definition of the fil-
ters used by the slicers to route frames to different chan-
nels. The filters are determined by composing the event
spaces associated with all the scenarios that are “active” on
a specific channel. More precisely, the set of active scenar-
ios is ��: . 4�� "10��"32 � � " where � " is the set of scenarios of
� " ? � : . . The event space 	 : . for a channel : . is the dis-
junction of the event spaces of all active scenarios, which
corresponds to the disjunction of all the clauses of all the
active scenarios. The resulting overall expression is the fil-
ter that each slicer uses to determine if a frame has to be
routed to that specific channel. Note that it is possible that
a certain frame will be needed by more than one scenario.
Therefore, it will be sent on more than one channel.

The configuration of the slicers as described above is
static; that is, it is calculated off-line before the system is
started. The static approach suffers from the possibility
that, depending on the type of traffic, a large percentage of
the network packets could be forwarded to a single channel.
This would result in the overloading of sensors attached to
that channel. The static configuration also makes it impos-
sible to predict the exact number of sensors that are neces-
sary to deal with a Gigabit link. The load on each sensor
depends on the scenarios used and the actual traffic. The
minimum requirement for the slicers is that the capacity of
their incoming and outgoing links must be at least equal to
the bandwidth of the monitored link.

One way to prevent the overloading condition is to per-
form dynamic load balancing. This is done by reassigning
scenarios to different channels at run-time. This variant ob-
viously implies the need to reconfigure the filter mechanism

at the traffic slicers and update the assignment of clauses to
channels.

In addition to the reassignment of whole scenarios to dif-
ferent channels, it is also possible to split a single scenario
into two or more refined scenarios. The idea is that each
refined scenario catches only a subset of the attacks that the
original scenario covered, but each can be deployed on a dif-
ferent channel. Obviously, the union of attacks detectable
by all refined scenarios has to cover exactly the same set of
attacks as the original scenario did.

This can be done by creating additional constraints on
certain attributes of one or more basic events. Each con-
straint limits the number of attacks a refined scenario can
detect. The constraints have to be chosen in a way such that
every possible value for a certain attribute (of the original
scenario) is allowed by the constraint of at least one refined
scenario. Then the set of all refined scenarios, which each
cover only a subset of the attacks of the original one, are
capable of detecting the same attacks as the original.

A simple mechanism to partition a particular scenario is
to include a constraint on the destination attribute of each
basic event that represents a packet which is sent by the at-
tacker. One has to partition the set of possible destinations
such that each refined scenario only covers attacks against a
certain range of hosts. When the union of these target host
ranges covers all possible attack targets, the set of refined
scenarios is capable of finding the same attacks as the orig-
inal scenario.

Such an approach is necessary when a single scenario
causes too much traffic to be forwarded to a single channel.

In addition, obviously innocent or hostile frames could
be filtered out before the scenario clauses are applied,
thereby eliminating traffic that needs no further processing.
This could be used, for instance, to prevent the system from
being flooded by packets from distributed denial-of-service
slaves that produce traffic with a unique, known signature.

4 Evaluation

The initial set of experiments were primarily aimed at
evaluating the effectiveness of the scatterer/slicer/ reassem-
bler architecture. For these experiments, we deployed three
traffic slicers (� 4��) and four stream reassemblers (�(4 �)
with one intrusion detection sensor per stream. The next
section presents the details of the hardware and software
used to realize the initial prototype, and the section after
that gives the details of each experiment and presents the
corresponding results.

4.1 Prototype Architecture

The prototype is composed of a number of hosts respon-
sible for the analysis of the traffic carried by a Gigabit link.

The Gigabit link is realized as a direct connection
(crossover cable) between two machines equipped with In-
tel Xeon 1.7 GHz processors, 512 MB RAM and 64-bit PCI
3Com 996-T Gigabit Ethernet cards running Linux 2.4.2
(Red Hat 7.1). One of the two machines simulates the net-
work tap and is responsible for creating the network traffic
(via tcpreplay [12]). The other machine acts as the traf-
fic scatterer and is equipped with three additional 100 Mbps
3Com 905C-TX Ethernet cards.

The scatterer functionality itself is realized as a kernel
module attached to the Linux kernel bridge interface. The
bridge interface provides a hook that allows the kernel to
inspect the incoming frames before they are forwarded to
the network layer (e.g., the IP stack). The scatterer mod-
ule intercepts frames coming from the Gigabit interface and
immediately forwards them to one of the outgoing links
through the corresponding Fast Ethernet card. The links
are selected in a round-robin fashion. The scatterer also
attaches a sequence number to each packet, which is later
used by the reassemblers. In order to overcome the problem
of splitting Ethernet frames with a length close to the maxi-
mum transferable unit (MTU), the sequence number has to
be integrated into the Ethernet frame without increasing its
size. To leave the data portion untouched, we decided to
modify the Ethernet header. We also wanted to limit the
modifications of the Ethernet frame to a minimum in order
to be able to reuse existing hardware (e.g., network interface
cards, network drivers). Therefore, the MTU had to remain
unchanged. For this reason, we decided to use the six-byte
Ethernet source address field for sequence numbers. As a
result, before the traffic scatterer forwards a frame, it writes
the current sequence number into the source address field
and increments it.

The experimental setup demonstrates that the partition-
ing of traffic is possible and that it allows for the detailed
analysis of higher traffic volume (including defragmenta-
tion, stream reassembly, and content analysis). Because we
only use three traffic slicers (with an aggregated bandwidth
of 300 Mbps), sustained incoming traffic of 1 Gbps would
overload our experimental setup. However, the introduction
of additional traffic slicers would allow us to handle higher
traffic inputs.

The traffic slicers (Intel Pentium 4 1.5 GHz, 256 MB
RAM, 3Com 905C-TX fast Ethernet cards running Linux
2.4.2 - Redhat 7.1) have the NIC of the link that connects
them to the traffic scatterer set to promiscuous mode, in or-
der to receive all incoming frames. The data portion of each
incoming frame is matched against the clauses stored for
each channel. Whenever a clause for a channel is satisfied,
a copy of the frame is forwarded to that channel. Note that
this could (and usually does) increase the total number of
frames that have to be processed by the intrusion detection
sensors. Nevertheless, a sufficiently large number of sen-

sors combined with sophisticated partitioning enable one
to keep the amount of traffic at each sensor low enough to
handle. In our test setup, the partitioning (i.e., the clauses)
was determined as follows. Similar to Snort [9], we distin-
guished between an inside network and an outside network,
representing the range of IP addresses of the protected net-
work and its complement, respectively. The protected net-
work address range is divided according to the existing class
C subnetworks. The network addresses are then grouped
into four sets, each of which is assigned to a different chan-
nel. This partitioning allows the system to detect both at-
tacks involving a single host and attacks spanning a sub-
network. As explained in Section 3.3 more sophisticated
schemes are possible by analyzing additional information
in the packet headers or even by examining the frame pay-
load.

Once the filters have been configured, the frames have to
be routed to the various channels. As in the case for the
transmission between the scatterer and the traffic slicers,
we want to prevent frames from being split when sent to
the channels. This makes it necessary to include the des-
tination address information of the intended channel in the
Ethernet frame itself without increasing its size and with-
out modifying the payload. To do this we use the Eth-
ernet destination address. Therefore, the destination ad-
dress is rewritten with values 00:00:00:00:00:01,
00:00:00:00:00:02, etc., depending on the destina-
tion channel. There were two reasons for using a generic
link number instead of the actual Ethernet addresses as the
target address for sensors. First, a number of sensors may be
deployed on each channel, processing portions of the traffic
in parallel. Since each sensor has to receive all packets on
the channel where it is attached, selecting the Ethernet ad-
dress of a single sensor is not beneficial. Second, whenever
the NIC of a sensor has to be replaced, the new Ethernet
address would have to be updated at each traffic slicer. In
order to save this overhead, each traffic slicer simply writes
the channel number into the target address field of outgoing
frames.

The actual frame routing is performed by a switch (a
Cisco Catalyst 3500XL) that connects traffic slicers with
reassemblers. The MAC address-port table of the switch
holds the static associations between the channel numbers
(i.e., the target Ethernet addresses set by the traffic slicers)
and the corresponding outgoing ports. In general back-
planes of switches have very high bandwidth compared to
Ethernet links, so they are not likely to be overloaded by
traffic generated by the scatterer.

In our setup, the stream reassemblers are located at
each sensor node (using the same equipment as the traf-
fic slicers), and they provide the intrusion detection sensors
with a temporally sorted sequence of frames by using the
encapsulated sequence numbers. The reassembly procedure

Outside
Internet Inside

Tap

Figure 2. Single-node Snort setup.

has been integrated into libpcap so that every sensor that
utilizes these routines to capture packets can be run unmod-
ified. For each frame, we assume that no other frame with a
smaller sequence number can arrive after a certain time span
(currently 500 ms). This means that when an out-of-order
packet is received, it is temporarily stored in a queue until
either the missing packets are received and the correctly-
ordered batch of packets is passed to the application, or the
reassembler decides that some packets have been lost be-
cause a timeout expired and the packet is passed without
further delay. Therefore, each received packet is passed to
the sensors with a worst case delay being the timeout value.
The timeout parameter has to be large enough to prevent
the situation where packets with smaller sequence numbers
arrive after subsequent frames have already been processed
but small enough so that the reaction lag of the system is
within acceptable limits. Since the processing and trans-
mission of frames is usually very fast and no retransmission
or acknowledgments are utilized, one can expect frames to
arrive at each reassembler in the correct order most of the
time. In principle, this allows one to safely choose a very
short time span. We expect to have no problems in reduc-
ing the current timeout value, but at the moment we have
no experimental evaluation of the effect of different timeout
values on the effectiveness of intrusion detection.

The network cards of the nodes would normally be re-
ceiving traffic at rates close to their maximum capacity.
If administrative connections, such as dynamically setting
clauses, reporting alarms, or performing maintenance work
were to go through the same interfaces, these connections
could potentially suffer from packet loss and long delays.
To overcome this problem, each machine is connected to
a second dedicated network that provides a safe medium
to perform the tasks mentioned above. An additional com-
munication channel decoupled from the input path has the
additional benefit of increasing the resiliency of the system
against denial-of-service attacks. That is, alarms and recon-
figuration commands still reach all intended receivers, since
they do not have to compete against the flood of incoming
packets for network access.

4.2 Experimental Results

The goal of the set of experiments described in this sec-
tion is to get a preliminary evaluation of the practicality and
effectiveness of our approach. The general assumption is
that we are interested in in-depth, stateful, application-level
analysis of high-speed traffic. For this reason, we chose
Snort as our “reference” sensor and we enabled reassem-
bling and defragmenting.

To run our experiments we used traffic produced by
MIT Lincoln Labs as part of the DARPA 1999 IDS eval-
uation [5]. More precisely, we used the data from Tuesday
of the fifth week. The traffic log was injected on the Gigabit
link using tcpreplay. To achieve high speed traffic we
had to “speed up” the traffic. We assumed that this would
not affect the correctness of our experiment. We also as-
sumed that the LL/MIT traffic is a reasonable approxima-
tion of real-world traffic. This assumption has often been
debated, but we think that for the extent of the tests below
this assumption is reasonable.

The first experiment was to run Snort on the tcpdump
traffic log. The results of this “off-line” run are: 11,213
detections in 10 seconds with an offline throughput of 261
Mbps. The ruleset used included 961 rules.

The second experiment was to run Snort on a single-node
monitor. The setup is shown in Figure 2. In practice, Snort
is run on the scatterer host and it reads directly from the
network card. We measured the decrease in effectiveness of
the detection when the traffic rate increases1. The ruleset
used included only the 18 rules that actually fired on the
test data. Figure 3 shows the results of this experiment. The
reduced performance is due to packet loss, which becomes
substantial at approximately 150 Mbps. This experiment
identifies the saturation point of this setup.

The third experiment was to run Snort in the simple setup
of Figure 2 with a constant traffic rate of 100 Mbps and
an increasing number of signatures. The experiment starts
with only the eighteen signatures that are needed to achieve

1The limit of 200 Mbps in the graphs is the maximum amount of traffic
that tcpreplay is able to generate.

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200

al
er

ts

Mbps

single-node sensor

Figure 3. Single-host monitor detection rate for increasing traffic levels.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000

al
er

ts

rules

single-node sensor

Figure 4. Single-host monitor detection rate for increasing number of signatures.

maximum detection for the given data. The plot in Figure 4
shows how the performance decreases as more signatures
are added to the sensor. This experiment demonstrates that
such a setup is limited by the number of signatures that can
be used to analyze the traffic stream.

The fourth and fifth experiments repeated the previous
two experiments using Snort sensors in the proposed archi-
tecture. Figure 5 and 6 present the results of these exper-
iments. The performance of the single-node experiments
are included for comparison. The drop in detection rate at
high speeds by the distributed sensor, which can be seen
in Figure 5, is caused by packet loss in the scatterer. The
network cards currently used for the output traffic are not
able to handle more than about 170 Mbps. The experimen-
tal results show that the proposed architecture has increased
throughput and is much less sensitive to the number of sig-
natures used.

5 Conclusion and Future Work

This paper presents the design, implementation, and ex-
perimental evaluation of a distributed network monitor. The
system supports stateful, in-depth analysis of network traf-
fic on high-speed links. The evaluation of the first prototype
showed that the approach is more scalable than the single-
host monitor approach. The current results are very prelimi-
nary and a thorough evaluation will require experimentation
in a real-world environment.

Future work will include a more thorough evaluation of
the trade-offs when configuring the system, the develop-
ment of a mechanism for dynamic load balancing, and the
use of hierarchically structured scatterers/slicers to achieve
higher throughput levels.

Acknowledgments

This research was supported by the Army Research
Office, under agreement DAAD19-01-1-0484 and by the
Defense Advanced Research Projects Agency (DARPA)
and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-1-0207. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, ei-
ther expressed or implied, of the Army Research Office, the
Defense Advanced Research Projects Agency (DARPA),
Rome Laboratory, or the U.S. Government.

References

[1] CISCO. CISCO Intrusion Detection System. Techni-
cal Information, Nov 2001.

[2] S.T. Eckmann, G. Vigna, and R.A. Kemmerer.
STATL: An Attack Language for State-based Intrusion
Detection. In Proceedings of the ACM Workshop on
Intrusion Detection Systems, Athens, Greece, Novem-
ber 2000.

[3] NSS Group. Intrusion Detection and Vulnerability As-
sessment. Technical report, NSS, Oakwood House,
Wennington, Cambridgeshire, UK, 2000.

[4] ISS. BlackICE Sentry Gigabit.
http://www.networkice.com/products/sentry gigabit,
November 2001.

[5] MIT Lincoln Laboratory. DARPA Intrusion Detection
Evaluation. http://www.ll.mit.edu/IST/ideval/, 1999.

[6] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX, Jan-
uary 1998.

[7] J. Pouzol and M. Ducassé. From Declarative Signa-
tures to Misuse IDS. In W. Lee, L. Mé, and A. Wespi,
editors, Proceedings of the RAID International Sym-
posium, volume 2212 of LNCS, pages 1 – 21, Davis,
CA, October 2001. Springer-Verlag.

[8] M. Roesch. Writing Snort Rules: How To write Snort
rules and keep your sanity. http://www.snort.org.

[9] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of the USENIX LISA
’99 Conference, November 1999.

[10] R. Sekar, V. Guang, S. Verma, and T. Shanbhag. A
High-performance Network Intrusion Detection Sys-
tem. In Proceedings of the 6th ACM Conference on
Computer and Communications Security, November
1999.

[11] Toplayer networks. http://www.toplayer.com, Novem-
ber 2001.

[12] M. Undy. tcpreplay. Software Package, May 1999.

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200

al
er

ts

Mbps

single-node sensor
distributed sensor

Figure 5. Distributed monitor detection rate for increasing traffic levels.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000

al
er

ts

rules

single-node sensor
distributed sensor

Figure 6. Distributed monitor detection rate for increasing number of signatures.

