
A Comprehensive Approach to Intrusion
Detection Alert Correlation

Fredrik Valeur, Giovanni Vigna, Member, IEEE, Christopher Kruegel, Member, IEEE, and

Richard A. Kemmerer, Fellow, IEEE

Abstract—Alert correlation is a process that analyzes the alerts produced by one or more intrusion detection systems and provides a

more succinct and high-level view of occurring or attempted intrusions. Even though the correlation process is often presented as a

single step, the analysis is actually carried out by a number of components, each of which has a specific goal. Unfortunately, most

approaches to correlation concentrate on just a few components of the process, providing formalisms and techniques that address only

specific correlation issues. This paper presents a general correlation model that includes a comprehensive set of components and a

framework based on this model. A tool using the framework has been applied to a number of well-known intrusion detection data sets

to identify how each component contributes to the overall goals of correlation. The results of these experiments show that the

correlation components are effective in achieving alert reduction and abstraction. They also show that the effectiveness of a

component depends heavily on the nature of the data set analyzed.

Index Terms—Intrusion detection, alert correlation, alert reduction, correlation data sets.

�

1 INTRODUCTION

RECENTLY, networks have evolved into a ubiquitous
infrastructure. High-speed backbones and local area

networks provide the end-user with bandwidths that are
orders of magnitude larger than those available a few years
ago. In addition, wireless technology is bringing connectiv-
ity to a number of devices, from laptops to cell phones and
PDAs, creating a complex, highly dynamic network of
systems. Most notably, the Internet has become a mission-
critical infrastructure for governments, companies, institu-
tions, and millions of everyday users.

The surveillance and security monitoring of the network
infrastructure is mostly performed using Intrusion Detec-
tion Systems (IDSs). These systems analyze information
about the activities performed in computer systems and
networks, looking for evidence of malicious behavior.
Attacks against a system manifest themselves in terms of
events, which can be of differing nature and level of
granularity. For example, events may be represented by
network packets, operating system calls, audit records
produced by operating system auditing facilities, or log
messages produced by applications. The goal of intrusion
detection is to analyze one or more event streams and
identify manifestations of attacks. When an attack is
detected, an alert that describes the type of the attack and
the entities involved (e.g., hosts, processes, users) is
produced.

Event streams are used by intrusion detection systems in
two different ways, according to two different paradigms:
anomaly detection and misuse detection. In anomaly detection

systems [9], [14], [20], [23], [25], [52], historical data about a
system’s activity and/or specifications of the intended
behavior of users and applications are used to build a
profile of the “normal” operation of the system being
monitored. The intrusion detection system then tries to
identify patterns of activity that deviate from the defined
profile. Misuse detection systems take a complementary
approach [17], [19], [34], [38], [42], [50]. These systems are
equipped with a number of attack descriptions (or
“signatures”) that are matched against the stream of audit
data looking for evidence that one of the modeled attacks is
occurring.

Misuse and anomaly detection both have advantages
and disadvantages. Misuse detection systems can perform
focused analysis of the audit data, and they usually produce
only a few false positives, which are erroneous detections.
However, these systems can detect only those attacks that
have been modeled. Anomaly detection systems have the
advantage of being able to detect abnormal behavior, which
may reveal previously unknown attacks. This advantage is
paid for in terms of a large number of false positives.
Another disadvantage of anomaly detection systems is the
difficulty of training a system with respect to a very
dynamic environment.

The intrusion detection community has developed a
number of different intrusion detection systems that per-
form intrusion detection in particular domains (e.g., hosts
or networks), in specific environments (e.g., Windows NT
or Solaris), and at different levels of abstraction (e.g., kernel-
level tools or application-level tools). As more IDSs are
developed, network security administrators are faced with
the task of analyzing an increasing number of alerts
resulting from the analysis of different event streams. In
addition, IDSs are far from perfect and may produce both
false positives and nonrelevant positives. Nonrelevant
positives are alerts that correctly identify an attack, but

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004 1

. The authors are with the Department of Computer Science, University of
California, Santa Barbara, CA, 93106.
E-mail: {fredrik, vigna, chris, kemm}@cs.ucsb.edu.

Manuscript received 10 June 2004; accepted 10 Aug. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0082-0604.

1545-5971/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

the attack fails to meet its objective. For instance, the attack
may be exercising a vulnerability in a service that is not
provided by the victim host. As an example, consider a
“Code Red” worm that attacks a Linux Apache server.
Although an actual attack is seen on the network, this attack
has to fail because Apache is not vulnerable to the exploit
utilized by the worm. Clearly, there is a need for tools and
techniques that allow the administrator to aggregate and
combine the outputs of multiple IDSs, filter out spurious or
incorrect alerts (such as “Code Red” attacks against Apache
installations), and provide a succinct, high-level view of the
security state of the protected network.

To address this issue, researchers and vendors have
proposed alert correlation, an analysis process that takes the
alerts produced by intrusion detection systems and pro-
duces compact reports on the security status of the network
under surveillance. Although a number of correlation
approaches have been suggested, there is no consensus on
what this process is or how it should be implemented and
evaluated. In particular, existing correlation approaches
operate on only a few aspects of the correlation process,
such as the fusion of alerts that are generated by different
intrusion detection systems in response to a single attack, or
the identification of multistep attacks that represent a
sequence of actions performed by the same attacker. In
addition, correlation tools that do cover multiple aspects of
the correlation process are evaluated “as a whole,” without
an assessment of the effectiveness of each component of the
analysis process. As a result, it is not clear if and how the
different parts of the correlation process contribute to the
overall goals of correlation.

This paper presents a comprehensive correlation ap-
proach and an analysis of its components. The correlation
approach has been designed to be as complete as possible
and to include all the aspects of correlation discussed in
previous research efforts. We built a framework that
implements the correlation process and used a tool based
on the framework to analyze a number of data sets. Instead
of just focusing on the overall effectiveness of correlation,
this paper focuses on each aspect of the process separately,
to provide insights into how each component of the
correlation process contributes to alert reduction and
abstraction and what properties of the data being analyzed
make one component more effective than another. The
results show that the effectiveness of correlation is highly

dependent on the nature of the data sets. That is, different
parts of the process contribute to correlation in different
ways, depending on the nature of the data being analyzed.

The remainder of this paper is structured as follows:
Section 2 presents the overall architecture of the correlation
process. Section 3 presents the data sets that were analyzed.
Section 4 provides a detailed description of the components
of the correlation process and the results of applying each
component to the sample data sets. Section 5 presents
related work on alert correlation. Finally, Section 6 draws
conclusions and outlines future work.

2 THE CORRELATION PROCESS

The main objective of the correlation process is to produce a
succinct overview of security-related activity on the net-
work. This process consists of a collection of components
that transform intrusion detection sensor1 alerts into
intrusion reports. Because alerts can refer to different kinds
of attacks at different levels of granularity, the correlation
process cannot treat all alerts equally. Instead, it is
necessary to provide a set of components that focus on
different aspects of the overall correlation task.

Fig. 1 gives a graphical representation of the integrated
correlation process that we implemented. The first two
tasks are performed on all alerts. In the initial phase, a
normalization component translates every alert that is
received into a standardized format that is understood by
all correlation components. This is necessary because alerts
from different sensors can be encoded in different formats.
Next, a preprocessing component augments the normalized
alerts so that all required alert attributes (such as start-time,
end-time, source, and target of the attack) are assigned
meaningful values.

The next four correlation components of our framework
all operate on single, or closely related, events. The fusion
component is responsible for combining alerts that repre-
sent the independent detection of the same attack instance
by different intrusion detection systems. The task of the
verification component is to take a single alert and determine
the success of the attack that corresponds to this alert. The
idea is that alerts that correspond to failed attacks should be

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

1. In this paper, we use intrusion detection system and intrusion detection
sensor (or just sensor) interchangeably.

Fig. 1. Correlation process overview.

appropriately tagged and their influence on the correlation
process should be decreased. The task of the thread
reconstruction component is to combine a series of alerts
that refer to attacks launched by a single attacker against a
single target. The attack session reconstruction component
associates network-based alerts with host-based alerts that
are related to the same attack.

The next two components in our framework operate on
alerts that involve a potentially large number of different
hosts. The focus recognition component has the task of
identifying hosts that are either the source or the target of a
substantial number of attacks. This is used to identify
denial-of-service (DoS) attacks or port scanning attempts.
The multistep correlation component has the task of identify-
ing common attack patterns such as island-hopping
attacks.2 These patterns are composed of a sequence of
individual attacks, which can occur at different points in the
network.

The final components of the correlation process con-
textualize the alerts with respect to a specific target
network. The impact analysis component determines the
impact of the detected attacks on the operation of the
network being monitored and on the assets that are targeted
by the malicious activity. Based on this analysis, the
prioritization component assigns an appropriate priority to
every alert. This priority information is important for
quickly discarding information that is irrelevant or of less
importance to a particular site.

Alerts that are correlated by one component of our
framework are used as input by the next component.
However, it is not necessary that all alerts pass through the
same components sequentially. Some components can
operate in parallel, and it is even possible that alerts output
by a sequence of components are fed back as input to a
previous component of the process.

In this section, we have given just a brief presentation of
each of the components of the correlation process. A
detailed description of the process and of each of its various
components is presented in Section 4.

3 DATA SETS

Since their first introduction, intrusion detection systems
have been evaluated using various means. The most
common approach has been to launch attacks within some
background activity and test the ability of the systems to
detect the manifestations of the attacks in the event stream.

Over the past six years, DARPA has sponsored a series of
intrusion detection evaluation efforts. More precisely, the
first evaluation was carried out by the MIT Lincoln
Laboratory in 1998 [27], followed by a second, more
systematic evaluation in 1999 [11], [12]. In both evaluations,
a number of attacks, including portscans, remote compro-
mises, local privilege escalation attempts, and denial-of-
service attacks [21], were carried out on a testbed network
and the relevant auditing events (network traffic and OS
audit records) were collected at a number of critical points.

Even though these evaluations were not perfect [29], they
produced data sets that became a reference point in the
evaluation of intrusion detection functionality. The success
of these evaluation efforts motivated the MIT Lincoln
Laboratory group to generate new data sets in 2000.
Because of the growing interest in evaluating techniques
for the detection of complex attacks, these new data sets
were geared toward multistep attack scenarios.

As the focus of many researchers shifted from low-level
attack detection to high-level attack analysis and goal
recognition, it was necessary to devise new data sets and
evaluation procedures. The DARPA-sponsored Cyber Panel
Correlation Technology Validation (CTV) effort [16], carried
out in 2002, was motivated by the need to assess correlation
systems. This evaluation was performed on a testbed
network with 59 hosts that were divided into four protected
enclaves and an additional part that represented the public
Internet. Several runs of 14 different attacks, divided into
four classes (denial-of-service, data theft, Web defacement,
and backdoor installation), were performed, using only
publicly available attack tools. Background traffic (e.g., Web
and mail traffic) was simulated using scripted applications.
The alerts produced by a number of sensors during these
attacks were collected and processed by the correlation
tools being evaluated.

The Defcon 9 data set is another data set that is
commonly used in IDS evaluations. Defcon is a yearly
underground hacking conference. The conference includes
a hacker competition, called Capture The Flag (CTF).
During the competition, all network traffic was recorded
and then made publicly available. The Defcon 9 data set has
several properties that make it very different from “real
world” network traffic. It contains an artificially high
amount of attack traffic, no background traffic, and only a
small number of IP addresses. In spite of these short-
comings, this data set is very useful in IDS testing as it
represents a worst-case scenario of the amount of attack
traffic an IDS will receive and, thus, can be utilized for
stress-testing.

Although the aforementioned data sets are a tremendous
asset for the intrusion detection community, they have
problems that make them unsuitable for the evaluation of
the effectiveness of some of the components of the
correlation process. First of all, some of the data sets were
created to evaluate intrusion detection sensors and not to
assess correlation tools. These data sets do not include
sensor alerts (i.e., output from the intrusion detection
systems). Therefore, the alerts have to be generated by
running specific sensors on the collected event streams.

Another problem is that the offline nature of these data
sets makes it impossible to perform alert verification
because the victim of an attack must be analyzed in real
time to determine if the attack is relevant or not. In addition,
the impact of attacks on the protected network and on the
mission that the network infrastructure supports are
impossible to evaluate, due to the lack of a mission model
and its relationship to the network assets. Finally, network
health monitoring information is usually not provided,
which makes it difficult to determine the actual impact of
the attacks.

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 3

2. An island-hopping attack refers to the situation in which an attacker
breaks into a host and uses it as a launch pad for more attacks.

The data sets presented all suffer from not being
representative of real world traffic. The DARPA sponsored
data sets are all synthetically generated, and questions have
been raised about the realism of the background traffic
models used [29]. Also, none of the data sets presented were
recorded on a network connected to the Internet. Internet
traffic usually contains a fairly large amount of anomalous
traffic that is not caused by any malicious behavior [3], and
data sets recorded in a network isolated from the Internet
might not include these types of anomalies.

To solve some of these problems, we collected three
additional data sets. One data set was generated by
deploying two honeypot systems, namely, a host running
a standard RedHat 7.2 Linux installation and a Microsoft
Windows 2000 Server. These systems were exposed to the
Internet and, in addition, they were the target of a security
evaluation performed by the students of a graduate security
class. The Snort intrusion detection system was used to
collect alerts, and we developed a tool to perform real-time
alert verification. This tool is the verification component
used in the correlation process; it is described in detail in
Section 4.6.

The second data set was generated during a Cyber
Treasure Hunt competition, organized as part of the same
graduate class in network security [49]. The Treasure Hunt
goal was to break into a simulated payroll system and
perform unauthorized money transfer transactions. In this
case, the class was divided into two teams. Each team had
to perform a number of tasks in sequence (e.g., scan a
network or break into a host). Each task had to be
completed in a limited amount of time (e.g., 30 minutes)
in order to receive the maximum score. If the time elapsed
and the team was not able to complete the task, then some
helpful hints were provided so that the task could be
completed, but no points were given. A new task was
disclosed only after the previous one was completed by
both teams. The tasks and the execution of this exercise
were devised to support the creation of event streams that
contain complex and meaningful multistep attacks (i.e., a
sequence of attacks that are part of an overall plan to
achieve a specific goal).

The last data set was collected by an IDS monitoring the
uplink of one of Rome Air Force Research Laboratory’s
networks. The monitored network was a production net-
work with no artificially generated background traffic or
canned attacks. A disadvantage of this data set is that, as far
as we know, it contains no successful attacks.

The MIT Lincoln Laboratory data sets can be down-
loaded from [26]. The Treasure Hunt, Honeypot, and
Defcon 9 data sets are available online at [41]. The other
data sets are, as far as we know, not available online.

In order to effectively use both the public and the custom
data sets that were collected, we first generated alerts from
the raw event streams (with the exception of the DARPA
Correlation Technology Validation and the Rome AFRL
data, which already provided the alerts produced by the
sensors). To this end, we ran IDS tools that were readily
available (Snort [42], USTAT [18], and LinSTAT [40]), using
standard signature sets. These tools all output alerts in the
Intrusion Detection Message Exchange Format (IDMEF) [6],

which is a standardized way of encoding intrusion alerts.
An example IDMEF alert is shown in Fig. 2. This alert
represent an ICMP ping from 4.22.161.203 to 26.100.101.1,
which was reported by Snort. Table 1 summarizes the
characteristics of the data sets in terms of tools used to
generate the alerts, the time span, and the number of
generated alerts.

Note that generating alerts from raw data is dangerous,
because it might bias the evaluation of the correlation
process. On the other hand, correlation is a new field and
there are very few shared data sets, like the Cyberpanel
evaluation effort, that can be used to evaluate different
correlation tools. In addition, none of the data sets has an
associated truth file that can be used in a systematic way to
determine if the correlated alerts represent a meaningful
grouping of attack detections. Therefore, the assessment of
the correctness of the correlation process has to be
performed manually.

One contribution of this paper is the lessons learned
from analyzing different data sets with very different
properties. Even though the results do not necessarily
represent a final evaluation of the correlation process in
general, they do provide useful findings that can be used by
other researchers in the field.

4 CORRELATION COMPONENTS AND ANALYSIS

RESULTS

Alert correlation is a multicomponent process that receives
as input a stream of alerts from multiple intrusion detection
systems. In each component of the process, alerts are
merged into high-level intrusion reports or tagged as
nonrelevant if they do not represent successful attacks.
Finally, the alerts are prioritized according to the site’s
security policy, and eventually the results are reported.

4.1 Meta-Alerts

When two or more related alerts are merged as part of
the alert correlation process, the result is called a meta-
alert. The process of “merging” alerts refers to the action
of subsuming a set of related alerts as a single meta-alert
at a higher level of abstraction. Thus, a meta-alert is an
intrusion report at a higher level of abstraction that
comprises the information contained in all alerts that

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

Fig. 2. Example IDMEF alert.

were used to create the meta-alert. For example, a series
of sensor alerts in which each alert refers to an individual
network probe packet can be merged into a single
portscan meta-alert by the correlation process.

A meta-alert is similar to an alert but its contents (e.g.,
the victims of an attack) are derived as a function of the
attributes of the merged alerts. Each meta-alert also contains
references to all of the alerts that were merged to produce
the meta-alert. Continuing the example above, the portscan
meta-alert contains all the hosts that were scanned by at
least one probe packet as attack targets. In addition, the
portscan alert holds references to each probe packet alert.
The decision of whether or not to merge alerts is dependent
on the particular component of the correlation process and
on the values of relevant attributes of the alerts. The
purpose of meta-alerts is to aggregate information of related
attacks and to present a single alert instance that sum-
marizes all the relevant information to a human analyst.

A meta-alert can be further merged with other alerts
(either intrusion detection sensor alerts or meta-alerts),
resulting in a hierarchical structure, which can be
represented as a tree. The most recent meta-alert is the
root node in this tree, and all successor nodes can be
reached by following the references to the merged alerts.
All interior nodes in the tree are meta-alerts, while all
leaves are sensor alerts.

Whenever the correlation system considers a meta-alert
and a sensor alert as candidates for merging, it first
attempts to merge the root of the meta-alert with the sensor
alert. If the root alert cannot be merged, all its successor
alerts are independently considered for merging. The process
of finding appropriate alert candidates for merging is
repeated recursively until an alert that can be merged with
the sensor alert is found, or until all nodes have been
considered. The idea behind this approach is that a meta-
alert represents the complete attack information of all its
successor nodes. Therefore, alerts are considered in a
breadth-first-search fashion and merging is performed at
the highest level possible.

Consider the following example of merging a meta-alert
M, which has two child nodes M1 and M2, and a sensor
alert S, as shown in Fig. 3. The merging process first checks
whether M and S can be merged, but fails. Next, M1 is
considered for merging with S. This operation is successful,
and a new meta-alert M 0 with two children (M1 and S) is
created. The merging process continues to consider M2 and

S, because child nodes are considered independently. Note,
however, that no children of M1 will be considered because
a successful merge with a node precludes all of this node’s
descendants from being candidates.

4.2 Example Attack Scenario

To explain the different components of the correlation
process, the following example attack scenario is used
throughout the paper. In this example, a victim network is
running a vulnerable Apache Web service on a Linux host
(IP: 10.0.0.1). This host runs a host-based IDS (H) and an
application-based IDS (A) that monitors the Apache Web
logs for content that indicates malicious activity. In
addition, the network traffic is analyzed by two different
network-based IDSs (N1 and N2). Table 2 shows the seven
alerts (Alert 1 through Alert 7) that are generated during an
attack against the victim host. The AlertID and Name
columns in the table identify an alert instance, the Start/
End column shows the start-time and end-time of the
corresponding attack, and the Source and Target columns list
information about the attack’s sources and targets. The Tag
column is included to show information that the correlation
system associates with each alert (e.g., references to
successor nodes for meta-alerts or indications of nonrele-
vant alerts).

The attacker (IP: 31.3.3.7) first launches a port scan
against the Linux host and discovers the vulnerable Apache
server (Alert 2, Alert 3). While the scan is in progress, a
worm (IP: 80.0.0.1) attempts to exploit a Microsoft IIS
vulnerability and fails (Alert 1). After the scan finishes, the

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 5

TABLE 1
Data Set Summary Information

Snort, USTAT, and LinSTAT were run with their default rule sets.

Fig. 3. Alert merging process.

attacker launches a successful Apache buffer overflow
exploit (Alert 4, Alert 5) and obtains an interactive shell,
running as the apache user. Using a local exploit against
linuxconf (a system administration tool), the attacker
elevates her privileges and becomes root. Note that the
same exploit is executed twice with different parameters
(Alert 6, Alert 7) before it succeeds.

Given this attack scenario, the correlation system should
present the administrator with a single meta-alert that
characterizes a multistep attack against the victim host. The
multistep attack consists of three steps: the initial scanning,
the remote attack against the Web server, and the privilege
escalation. The two alerts (Alert 2, Alert 3) describing the
scanning incident should be merged and marked as
referring to a single incident. The two alerts referring to
the Web server attack (Alert 4, Alert 5) should be merged as
being part of the same remote exploit. The two alerts
associated with the privilege escalation (Alert 6, Alert 7)
should be merged because they represent repeated in-
stances of the same local attack. The alert raised because of
the worm activity (Alert 1) should be excluded from the
scenario and marked as nonrelevant.

The following sections describe the components of the
correlation process in detail and show their effect on the
example attack scenario. For each of the components, a data
analysis section is presented that discusses the effectiveness
of the component with respect to each of the data sets
considered. Note that even though the process is repre-
sented as a “pipeline” for the sake of presentation, some
components of the process may be applied multiple times,
may be applied in parallel, or may be applied in a different
order.

4.3 Alert Normalization

The correlation process may receive alerts from different
sensors, and these alerts can be encoded in different
formats. The goal of the alert normalization component is
to translate all attributes of each sensor alert into a common
format. This translation requires that the syntax and
semantics of a sensor alert are recognized.

The Internet Engineering Task Force proposed the
Intrusion Detection Message Exchange Format (IDMEF)
[6] data model as a way to establish a standard representa-
tion for intrusion alerts. Although this representation

defines the semantics of a few attributes, the IDMEF effort

is mostly concerned with syntactic rules. Therefore, it is

common for IDS implementors to choose different names

for the same attack,3 provide incomplete information for

certain fields, or choose to include additional fields to store

relevant data. As a result, similar information can be labeled

differently or included in different fields of the alerts.
In our framework, we followed the common practice of

implementing wrapper modules to interface with the

different intrusion detection sensors. Each module relies

on a knowledge base to convert sensor-specific information

into attributes and values usable by our framework. The

alert names are, whenever possible, taken from the CVE

(Common Vulnerabilities and Exposures) [7] list, which is a

well-known effort to standardize the names of all publicly

known vulnerabilities.
The pseudocode for the normalization process is as

follows:

global normalization_db, alertname_db

normalize(raw_alert) {

alert new alert

alert.alertid get_unique_id()

alert.name
get alertname from alertname_db using

(raw_alert.name, raw_alert.sensortype)

as key

mappings
get all m:mapping from normalization_db

where m.sensor = raw_alert.sensor

for each m:mapping in mappings:

alert_attr m.alert_attr

raw_attr m.raw_attr

alert.alert_attr raw_alert.raw_attr

pass alert to next correlation component

}

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

TABLE 2
Example Attack Scenario Alerts

3. There is no mandatory naming convention and, at the time of writing,
a few different competing schemes such as CVE [7] and Bugtraq-IDs [28]
exist.

Each raw alert is translated into a standardized alert
format, assigned a standardized name, and its attributes are
copied to the appropriate fields of the alert as defined by the
attribute mappings in the normalization database. The
attributes contained in the standardized alert are shown in
Fig. 4.

Given the alerts of the example scenario, the alert
normalization component assigns identical names to the
two alerts describing the portscan (Alert 2, Alert 3) as
shown in Table 3. Note that in this table, as well as in the
following ones, the elements in boldface are those affected
by the correlation process.

4.3.1 Data Analysis

If only one type of sensor were used, then that sensor’s
format could be used as the standard format. In that case,
there would be no need to have a normalization component.
All seven data sets were processed by the normalization
component, since the other components in the correlation
process depend on the format of the alerts being standar-
dized. The normalization component passes all alerts
through and, therefore, it does not provide any reduction
in the number of the alerts received as input.

4.4 Alert Preprocessing

Normalized alerts have a standardized name and are in a
format that is understood by the other components of the
correlation process. However, additional preprocessing
may be required since some sensors omit fields that are
necessary for other components of the correlation process

(i.e., start-time, end-time, source, and target). The goal of
the preprocessing component is to supply, as accurately as
possible, missing alert attributes that are important for later
correlation components.

The IDMEF standard defines three different classes to
represent time. These are the CreateTime (the time when the
alert is created by the IDS), the DetectTime (the time when
the events producing an alert are detected by the IDS), and
the AnalyzerTime (the time at the IDS when the alert is sent
to the correlation system). If any of these time values are
present in the alert, the preprocessing component can use
this information as the value for the attack’s start-time.
More precisely, DetectTime is the preferred time value,
followed by CreateTime, and then AnalyzerTime. When no
time information is available, the start-time is approximated
as the point in time when the correlation system receives
the alert from the sensor. When no end-time (or appropriate
duration information) is present, the end-time is assumed to
be identical to the start-time. The heuristics used could
potentially introduce significant errors in the timestamp
attributes, which in turn could lead to errors later on in the
correlation process. No errors were observed during our
evaluation. This is mainly due to the fact that all the clocks
of the sensors used in the experiments were synchronized
using the Network Time Protocol (NTP) [30], and all alerts
processed included at least one of the three different
timestamps.

According to the IDMEF standard, the attack source is
composed of information about the node, the user, the
process, and the network service that originated the attack.
The attack target is composed of the same information, and
it also includes a list of affected files. Not all fields have to be
defined for both the source and the target, but to operate
properly, the correlation process requires at least one
nonempty field for each. For host-based alerts, the node
fields of the attack source and target are set to the address of
the host where the sensor is located. For network-based
alerts, the node information is taken from the source and
destination IP addresses.

Finally, an alert can be augmented with additional
information on the basis of the standardized alert name
that is assigned by the normalization component. Our
implementation assigns an attack type to each alert. This
attribute describes the type of an attack with respect to a
simple scheme that distinguishes between local or remote
information gathering and privilege escalation attempts.
The type information is useful because it allows one to
group attacks with a similar impact together.

The pseudocode for the preprocessing component is as
follows:

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 7

Fig. 4. Alert attributes.

TABLE 3
Effect of Alert Normalization on the Alerts

for the Example Attack

Boldface indicates information affected by the correlation process.

global attack_type_db

preprocess(alert) {

if alert.start_time is null:

if alert.detecttime is not null:

alert.start_time alert.detecttime

else if alert.createtime is not null:

alert.start_time alert.createtime

else if alert.analyzertime is not null:

alert.start_time alert.analyzertime

else:

alert.start_time alert.receivedtime

if alert.end_time is null:

alert.end_time alert.start_time

if alert is produced by a host-based IDS:

alert.victimnodes alert.sensornode

alert.attackernodes alert.sensornode

alert.type
get alertype from attack_type_db using

alert.name as key

pass alert to next component

}

Table 4 shows the alerts of the example attack scenario

that are augmented with information provided by the

preprocessing component. In this case, source and target

information for host and application-level alerts is added.

4.4.1 Data Analysis

Preprocessing is an important step of the correlation

process, but it does not provide any reduction in the

number of alerts or any abstraction improvement. However,

the information added by this component is fundamental

for the correct operation of later components. For example,

when processing the MIT/LL 2000 data set, the multistep

correlation component (see Section 4.10) would not produce

any correlated attacks if the alerts were not correctly labeled

by the preprocessing component. However, when prepro-

cessing was applied, the system was able to correctly

identify six multistep attacks.

4.5 Alert Fusion

The goal of the alert fusion component is to combine alerts

that represent the independent detection of the same attack

occurrence by different intrusion detection systems. The

decision to fuse two alerts is based on the temporal
difference between these alerts and the information that
they contain. The alert fusion component keeps a sliding
time window of alerts. The alerts within the time window
are stored in a time-ordered queue. When a new alert
arrives, it is compared to the alerts in the queue, starting
with the alert with the earliest timestamp. A match is found
if all overlapping attributes are equal and the new alert is
produced by a sensor different from the sensors already
associated with the alert being matched.4 The latter
requirement is reasonable since a sensor is not expected to
emit two similar alerts for one single attack occurrence.
Upon finding a match, the two alerts are merged, the
resulting meta-alert replaces the matched alert in the queue,
and the search is terminated. If no match is found after
searching through the whole queue, the alert is inserted into
the queue, to be considered for matching with future alerts.

In our implementation the merging of alerts is
performed by creating a meta-alert. The timestamp of
the meta-alert is assigned the earlier of both start-times
and end-times. This is done because both alerts are
assumed to be related to the same attack, and a later
time stamp is likely to be the result of a delay at the
sensors. The attribute fields of the fused meta-alert are set
to the union of the values of the respective alert attributes.
Note that it is possible that more than two sensor alerts
may be fused into a single meta-alert. In this case, two
alerts are first fused into a meta-alert that is subsequently
fused (one at a time) with additional sensor alerts.

When the time difference between the oldest and the
newest alert in the queue exceeds the specified window
size, the oldest alerts are removed from the queue and
passed to the next correlation component. A value for the
window size that is too low causes related alerts to escape
fusion, while a value that is too high causes unrelated alerts
to be fused. For our experiments we used 2 seconds as the
window size, which was determined heuristically by
choosing a size and analyzing the results of the fusion
process.

At a first glance, the constraints that have to be satisfied
for fusion to occur seem very restrictive. However, the
purpose of the fusion component is to combine duplicate
alerts, not to correlate closely related attacks (this is
implemented in other components of the analysis).

The pseudocode for the fusion component is as follows:

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

TABLE 4
Effect of Alert Preprocessing on the Alerts

for the Example Attack

4. The alert being matched in the queue could be either another sensor
alert or a meta-alert that is the result of an earlier match.

parameter window_size

global alert_queue

fuse (alert) {

remove all a:alert from alert_queue where

a.start_time <

(alert.start_time - window_size)

pass removed alerts to next

correlation component

al get a:alert with lowest start_time from

alert_queue where

alert.analyzer \ a.analyzer is empty and

all overlapping attributes except

start_time, end_time,

analyzer, alertid are equal

if al is not null:

replace al in alert_queue with

fuse_merge(alert, al)

else:

add alert to alert_queue

}

fuse_merge(alert1, alert2) {

r new alert

r.alertid get_unique_id()

r.start_time min(alert1.start_time,

alert2.start_time)

r.end_time min(alert1.end_time,

alert2.end_time)

for each attr:attribute except start_time,

end_time, reference, alertid:

r.attr alert1.attr [alert2.attr

r.reference alert1.alertid [
alert2.alertid

return r

}

In the example scenario, the two alerts that refer to the
portscan attack (Alert 2, Alert 3) can be fused, because their
start-times and end-times are within the 2 second time
window and all remaining fields are identical. Note that the
two alerts referring to the local exploit (Alert 6, Alert 7)
cannot be fused because both are produced by the same
sensor. The result of the alert fusion component is shown in
Table 5. The generated meta-alert is tagged with references
to the two alerts that were fused, while both portscan alerts
are tagged as being correlated.

4.5.1 Data Analysis

The alert fusion component is particularly relevant if the
existing intrusion detection infrastructure contains a sub-
stantial level of redundancy. For example, when intrusion
detection systems operate on both sides of a firewall, or
when they are run both at the network gateway and on
individual hosts, redundant alerts are likely to be gener-
ated.

The results obtained for the data sets analyzed are shown
in Table 6. The Defcon 9 data set shows a 28 percent
reduction rate, since all subnetworks had an IDS installed.
Because of this, all traffic between two teams was seen by
two sensors. The Honeypot and Rome AFRL data sets were
both produced by a single sensor; therefore, no fusion was
possible.

For the remaining data sets, only a small fraction of the
alerts were fused. In all these cases, most of the attack-
related events were seen by only one sensor. For instance, in
the Treasure Hunt data set, a majority of the alerts was
caused by attacks against hosts in the demilitarized zone
(DMZ) of the target network. These attacks were only seen
by the IDS in the DMZ, not by the IDSs installed on the
inside network.

4.6 Alert Verification

An important task of alert correlation is the aggregation of
alerts to provide a high-level view (i.e., the “big picture”) of
malicious activity on the network. Unfortunately, when the
correlation process receives false positives as input, the
quality of the results can degrade significantly. Correlating
alerts that refer to failed attacks can easily result in the

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 9

TABLE 5
Effect of Alert Fusion on the Alerts for the Example Attack

TABLE 6
Impact of Alert Fusion

detection of whole attack scenarios that are nonexistent. The
goal of the alert verification component is to remove (or tag)
alerts that do not represent successful attacks.

When a sensor outputs an alert, there are three
possibilities:

1. The sensor has correctly identified a successful
attack. This alert is most likely relevant (i.e., a true
positive).

2. The sensor has correctly identified an attack, but the
attack failed to meet its objectives. This kind of alert
is called a nonrelevant positive or noncontextual
(reflecting the missing contextual information that
the IDS would require to determine a failed attack).
Because some sites might be interested in failed
attack attempts, the alert should be differentiated
from a successful instance.

3. The sensor incorrectly identified an event as an
attack. This alert represents incorrect information
(i.e., a false positive).

The idea of alert verification is to discriminate between
successful and failed intrusion attempts (both false and
nonrelevant positives). This is important for the correlation
process because, although a failed attack indicates mal-
icious intent, it does not provide increased privileges or any
additional information (other than that an attacker learned
that the particular attack is ineffective). Identifying failed
intrusion attempts allows other correlation components to
reduce the influence of these alerts on their decision
process.

The verification of the result of an attack can be
accomplished by extending intrusion detection signatures
with an expected “outcome” of the attack. The “outcome”
describes the visible and verifiable traces that a certain
attack leaves at a host or on the network (e.g., a temporary
file or an outgoing network connection). Verification can be
performed using both passive and active techniques, and
each approach requires different support from the intrusion
detection infrastructure.

Passive techniques depend on a priori information

gathered about the hosts, the network topology, and the

installed services. By relying on a network model, it is

possible to verify whether the target of the attack exists and

whether a (potentially vulnerable) service is running. For

remote attacks, it is also possible to check whether

malicious packets can possibly reach the target, given the

network topology and the firewall rule configuration, or

whether the target host reassembles the packets as expected

by the intruder (e.g., using the tool presented in [43]).

Passive monitoring also allows one to check for outbound

network connections that are initiated from the victim

machine, possibly connecting back to the attacking host.

The advantage of passive techniques is that they do not

interfere with the normal operation of the network. In

addition, it is not necessary to perform additional tests that

delay the notification of administrators or the start of active

countermeasures. A disadvantage of passive mechanisms is

the potential difference between the state stored in the

knowledge base and the actual security status of the

network. New services might have been installed or the

firewall rules might have been changed without updating

the knowledge base. This can lead to attacks being tagged as

nonrelevant, even though the target is vulnerable. Another

disadvantage is the limitation of the type of information

that can be gathered in advance. For example, when the

signature of an attack is matched against a packet sent to a

vulnerable target, the attack could fail for a number of other

reasons (e.g., an incorrect offset for a buffer overflow

exploit).

Active verification techniques need to look for evidence

of the success of an attack by checking information at the

victim machine. These techniques usually require that a

network connection be established to the victim. The

connection enables one to scan the attack target and to

assess whether a target service is still responding or has

become unresponsive. It also enables the alert verification

subsystem to check whether unknown ports accept connec-

tions, which could be evidence that a backdoor has been

installed.

One possible approach to alert verification is to leverage

vulnerability scanners. When an attack has been detected, a

scanner can be used to check for the vulnerability that this

attack attempts to exploit.

Active alert verification has the advantage, compared to

passive mechanisms, that the information is current.

Unfortunately, active actions are visible on the network

and scanning could possibly have an adverse effect on one’s

own machines. Port scanning also consumes network

bandwidth and resources at the scanned host, and tests

run by a vulnerability scanner could crash a service. One

also has to make sure that the alerts generated in response

to the activity of the vulnerability scanner are excluded

from the correlation process. The scope of these scans is also

limited; the identification of some evidence associated with

an attack might require local access to the victim machine.

To address the limitations of vulnerability scanning, it is

possible to rely on techniques that gather evidence about

the result of an attack using authenticated access to the

victim host. The difference with respect to the previous

group of techniques is that the alert verification subsystem

presents authentication credentials to the target host. The

alert verification system then can remotely log in and

execute scripts or system commands. This allows one to

monitor the integrity of system files (e.g., the password file

or system specific binaries) or to check for well-known files

that are created by attacks (e.g., worms usually leave an

executable copy of themselves on the file system). In

addition, programs to collect interesting forensic data such

as open network connections (e.g., netstat), open files

(e.g., lsof), or running processes (e.g., ps) can be invoked.
The advantage of mechanisms in this group is the access

to high-quality data gathered directly from a target
machine. The downside is the need to configure the target
machine for authenticated remote access. This could be
cumbersome in large network installations or when hosts
with many different operating systems are used.

We use an active scanning approach in the verification

component. More specifically, we have implemented an

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

extension for Snort [42], [44] that uses NASL [2] scripts

written for the Nessus vulnerability scanner [33]. When a

Snort rule is triggered, the suspect packet and associated

event data is queued for verification. The appropriate NASL

script is determined using a match on the CVE identifiers

[7], and then the script is run against the target machine. If

Nessus detects that the target is vulnerable to the particular

attack, the Snort alert is tagged as verified. Otherwise, it is

assumed to be unsuccessful. An example of when this

component can tag an attack as unsuccessful is when a

Windows DCOM RPC buffer overrun attack is detected and

the NASL script that checks for this particular vulnerability

(“Microsoft RPC Interface Buffer Overrun KB824146”)

reports that the host that was attacked does not run the

Windows RPC service.
The pseudocode for the verification component is as

follows:

global nasl_scripts

verify(alert) {

scripts get all s:script from nasl_scripts

where s.name = alert.name

if scripts is null:

alert.verified unknown

else:

for each s:script in scripts:

run s on alert.victimhosts

if script reported successful exploit:

alert.verified true

break

else:

alert.verified false

pass alert to next correlation component

}

In our example scenario, the alert corresponding to the
worm attack (Alert 1) is identified as being unsuccessful
because it is an exploit for Microsoft IIS that targets a Linux
service. Thus, the alert is tagged as nonrelevant and
excluded from further correlation, as shown in Table 7.

4.6.1 Data Analysis

The alert verification process requires that the protected
assets be available for real-time verification of the actual
exposure of the system and/or that a detailed model of the
installed network services be available. Unfortunately, this
information is not available for most of the data sets that we
analyzed. Therefore, the only meaningful results reported
here are those collected for our honeypot system.

During a period of 10 days, Snort reported 185,185 alerts

referring to attacks against the RedHat Linux machine and

74,935 alerts referring to attacks against the Windows

machine. Given these alerts, our alert verification compo-

nent, which utilized the active scanning approach, was able

to tag 180,229 attacks against the Linux host (97.3 percent)

and 72,333 attacks against the Windows host (96.5 percent)

as unsuccessful. Out of the 642 different types of attacks we

saw, we had NASL verification scripts for 553 of the

corresponding vulnerabilities. These results are summar-

ized in Table 8.

4.7 Attack Thread Reconstruction

An attack thread combines a series of alerts that refer to
attacks launched by one attacker against a single target. The
goal of this component is to correlate alerts that are caused
by an attacker who tests different exploits against a certain
program or that runs the same exploit multiple times to
guess correct values for certain parameters (e.g., the offsets
and memory addresses for a buffer overflow). Attack
threads are constructed by merging alerts with equivalent
source and target attributes that occur in a certain temporal
proximity. Similar to the fusion component, this component
keeps a sliding time window of alerts. The matching
criteria, however, is more relaxed. Two alerts are consid-
ered a match if the source and target attributes are
equivalent. Different from fusion, the sensor alerts need
not be produced by different sensors. Merging is done by
creating a meta-alert containing only the attributes that are
equal in both sensor alerts. The timestamp of the meta-alert
is assigned the earlier of the two start-times and the later of
the two end-times.

The pseudocode for the thread reconstruction compo-
nent is as follows:

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 11

TABLE 7
Effect of Alert Verification on the Alerts for the Example Attack

TABLE 8
Impact of Alert Verification

parameter window_size

global alert_queue

attack_thread(alert) {

remove all a:alert from alert_queue where

a.start_time <

(alert.start_time - window_size)

pass removed alerts to next correlation

component

al get a:alert with lowest start_time from

alert_queue where

alert.victimhosts = a.victimhosts and

alert.attackerhosts = a.attackerhosts

if al is not null:

replace al in alert_queue with

thread_merge(alert, al)

else:

add alert to alert_queue

}

thread_merge(alert1, alert2) {

r new alert

r.alertid get_unique_id()

r.start_time min(alert1.start_time,

alert2.start_time)

r.end_time max(alert1.end_time,

alert2.end_time)

r.analyzer = alert1.analyzer [
alert2.analyzer

r.reference alert1.alertid [
alert2.alertid

if alert1.name = alert2.name:

r.name alert1.name

else:

r.name ”Attack Thread”

for each attr:attribute except start_time,

end_time, reference, analyzer, alertid:

if alert1.attr = alert2.attr:

r.attr alert1.attr

else:

r.attr null

return r

}

The value of the time window in our experiments was set
to 120 seconds. This value was found to be a good trade-off
between a small value, which would cause several attack
threads to go undetected, and a larger value, which would
slow down the system by requiring the component to keep
a large number of alerts in the queue.

In the example scenario, the meta-alert that was created
by fusing the two portscan alerts (Alert 8), and the remote
Apache exploit (Alert 4) are merged into one attack thread
because both have the same source and target attributes and
are close in time. Note that Alert 4 is not merged with the
individual portscan alerts (Alert 2 or Alert 3). This is
because Alert 8, which is the meta-alert summarizing Alert 2
and Alert 3, has already been used in the merging process
(as explained in Section 4). The two alerts referring to the
local exploit (Alert 6 and Alert 7) are also combined into one
attack thread. Table 9 shows the alerts that are created or
modified by the attack thread reconstruction component.

4.7.1 Data Analysis

Attack thread reconstruction can contribute significantly
to alert reduction when a very large number of alerts has
been generated as the result of a single attack. This is the
case for the Treasure Hunt data set in which several
password brute-force attacks and a number of buffer
overflow attempts created a large number of alerts. This
particular data set is reduced by 99 percent using thread
reconstruction. The MIT/LL 2000 data set, on the other
hand, did not achieve a comparable reduction rate
because the attacks were more focused and did not
generate a large number of alerts. The results for all of the
data sets are shown in Table 10.

4.8 Attack Session Reconstruction

The goal of the attack session reconstruction component is
to link network-based alerts to related host-based alerts.
Identifying relations between these two types of alerts is
difficult because the information that is present in the alerts
differs significantly. Network-based sensors usually pro-
vide the source and destination IP addresses and ports of
packet(s) that contain evidence of attacks. Host-based
sensors, on the other hand, include information about the
process that is attacked and the user on whose behalf the
process is executed. Because it is not straightforward to
relate network-based information (IP addresses and ports)
to host-based information (process and user identifiers), it is
not obvious how a connection between alerts from intrusion
detection sensors operating on different event streams can
be established.

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

TABLE 9
Effect of Attack Thread Reconstruction on the Alerts for the Example Attack

One approach is to require a rough spatial and temporal
correspondence between the alerts. The idea is that a host-
based alert should be linked to a network-based alert when
the host-based attack occurs a short time after the network-
based attack and the network-based attack targets the host
where the host-based attack is observed. This approach is
simple, but has the obvious drawback that it is very
imprecise and might correlate independent alerts. It can,
however, be improved by utilizing a priori information
about the port(s) used by certain network services. For
example, by assuming that a Web server process listens on
port 80, host-based alerts referring to this process are
correlated only to network-based alerts with destination
port 80 on the host where the Web server is running.
Another possibility is to specify that a certain attack is
known to prepare for or to be a precondition for another attack.
This allows network traffic containing a known Web-based
attack to be linked to an alert raised by a sensor monitoring
the victim Web server. To the best of our knowledge, all
current alert correlation systems require such information,
which is manually encoded in a knowledge base (called pre
and postconditions in [5] and prerequisites and conse-
quences in [36]).

We argue that it is useful to extend these manually
defined links between network-based and host-based alerts
with a more general mechanism. This mechanism is based
on information about the network port(s) that processes are
bound to. Given this information, it is possible to determine
if it is likely that the data triggering a network-based alert
reaches the victim process reported in the host-based alert.
The attack session reconstruction component automatically
links a network-based alert to a host-based alert when the
victim process listens to the destination port mentioned in
the network-based alert.

For our implementation, we created a database of
mappings between the network ports that accept connec-
tions and the name and user id of the process listening to
that port. We were able to obtain this information only for
the Treasure Hunt data set, because this was the only
experiment in which real-time access to the monitored
systems was possible and both network-based and host-
based alerts were generated.

Instead of using a simple sliding time window, as was
the case for several of the previous components, the session
reconstruction algorithm uses a sliding time window with
extended timeout model. That is, the window is initially set
to the timeout value, but if an alert arrives that is
determined to be part of the same session, then the window
is extended by timeout units from the time of the latest
correlated alert. If no other alert that is part of the same
session arrives within timeout seconds from the last alert in

the session, then the session is determined to be over, and

the correlated alert information is passed on to the next

component. The timeout value in our experiments was set

to 125 seconds.
The pseudocode for the attack session reconstruction

component is as follows:

parameter timeout

global session_list, service_db

attack_session(alert) {

remove all e:element from session_list where

e.timestamp < (alert.start_time - timeout)

for each removed element e:

if e.state = ”Host”:

pass session_merge(e.alerts)

to next correlation component

else:

pass e.alerts

to next correlation component

if alert is produced by a network-based IDS:

matching_session get s:session with

lowest timestamp

from session_list where

alert.victimhosts = s.victimhosts and

alert.victimservice = s.victimservice and

s.state = ”Network”

if matching_session is null:

matching_session new session

matching_session.victimhosts
alert.victimhosts

matching_session.victimservice
alert.victimservice

matching_session.state ”Network”

matching_session.timestamp
alert.start_time

add alert to matching_session.alerts

else if alert is produced by a host-based IDS:

alert.victimservice get s:service from

service_db where

s.host = alert.victimhosts and

s.process = alert.victimprocess

matching_session get s:session with lowest

timestamp

from session_list where

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 13

TABLE 10
Impact of Attack Thread Reconstruction

alert.victimhosts = s.victimhosts and

alert.victimservice = s.victimservice

if matching_session is null:

pass alert to next correlation component

else:

matching_session.timestamp
alert.start_time

add alert to matching_session.alerts

matching_session.state ”Host”

}

session_merge(alert_list) {

r new alert

r.alertid get_unique_id()

r.start_time min start_time of all alerts in

alert_list

r.end_time max end_time of all alerts in

alert_list

r.analyzer union of all analyzer in

alert_list

r.reference union of all alertid in

alert_list

if name is equal for all alerts in alert_list:

r.name alert_list[1].name

else:

r.name ”Attack Session”

for each attr:attribute except start_time,

end_time, reference, analyzer, name,

alertid:

if attr is equal for all alerts in alert_list:

r.attr alert[1].attr

else:

r.attr null

return r

}

In the example attack scenario, the host-based sensor on

the Linux host detects that Apache listens on port 80. This

allows the session reconstruction to link the application-

based alert (Alert 5) to the meta-alert describing the remote

exploit (Alert 9), creating a new meta-alert as shown in

Table 11.

4.8.1 Data Analysis

Attack session reconstruction requires either real-time

access to the systems being protected or very detailed

auditing information in order to map network traffic to host

activity. For most of the data sets analyzed, this detailed

information was not provided.
Table 12 shows the results of the attack session

reconstruction component on all of the data sets. Even
though attack session reconstruction achieved only a
limited reduction rate, we believe it provides very valuable
information to the network administrator since it allows one
to track the evolution of an attack from the network domain
to the host domain.

4.9 Attack Focus Recognition

The goal of the attack focus recognition component is to

identify hosts that are either the source or the target of a

substantial number of attacks. More specifically, this

component aggregates the alerts associated with single

hosts attacking multiple victims (called a one2many scenar-

io) and single victims that are targeted by multiple attackers

(called a many2one scenario). This correlation component is

effective in reducing the number of alerts caused by

distributed denial-of-service (DDoS) attacks and large-scale

scans. Alerts related to a DDoS attempt can be merged into

a single many2one meta-alert, while alerts related to

individual scans can be combined into a single one2many

meta-alert.
Both the one2many and the many2one scenarios are based

on a sliding time window with extended timeout model. In
the one2many scenario, the number of different targets is
recorded for each attack source during the extended time
window. If this number exceeds an a priori specified

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

TABLE 11
Effect of Attack Session Reconstruction on the Alerts for the Example Attack

TABLE 12
Impact of Attack Session Reconstruction

threshold, an appropriate meta-alert is generated. The
source of the meta-alert is set to be the attacker’s host,
while the target is the union of the targets of the individual
attacks. The many2one scenario operates in a similar way,
the only difference being that the roles of the attacker
(source) and victim (target) are reversed.

When possible, the alerts generated by the one2many and
many2one scenarios are further classified as either scans or
denial-of-service attacks. More precisely, a many2one attack
is classified as a DDoS attack when the total number of
attacks against a victim exceeds a user-defined limit. A
one2many alert is classified as a horizontal scan when a
single port is scanned on all victim machines, or as a
horizontal multiscan when more than one port is scanned.

The pseudocode for the one2many scenario is as follows:

parameter: timeout, report_threshold

global scenarios

one2many(alert) {

remove all s:scenario from scenarios where

s.timestamp < (alert.start_time - timeout)

for each removed scenario s:

if number of distinct victimhosts in

s.alerts > report_threshold:

send onetomany_merge(s.alerts) to

next correlation component

else:

send s.alerts to next correlation component

scenario get s:scenario from scenarios

where s.hosts = alert.attackerhosts

if scenario is null:

scenario new scenario

scenario.hosts alert.attackerhosts

add scenario to scenarios

scenario.timestamp alert.start_time

add alert to scenario.alerts

}

one2many_merge(alert_list) {

r new alert

r.alertid get_unique_id()

r.start_time min start_time of all alerts in

alert_list

r.end_time max end_time of all alerts in

alert_list

r.analyzer union of all analyzer in

alert_list

r.reference union of all alertid in

alert_list

if all alerts in alert_list refer to same port

number:

r.name ”Horizontal Scan”

else:

r.name ”Horizontal Multiscan”

for each attr:attribute except start_time,

end_time, reference, analyzer, name,

alertid:

if attr is equal for all alerts in

alert_list: r.attr alert[1].attr

else:

r.attr null

return r

}

The one2many scenario has two tunable parameters: the

size of the timeout, which is used for the initial window

size, and the minimum number of sensor alerts for a meta-

alert to be generated. For the experiments we used a

timeout of 120 seconds, and the minimum number of sensor

alerts in a meta-alert was two.
The pseudocode for the many2one scenario is similar,

but it is not presented due to space limitations. The

many2one scenario has three tunable parameters: the first

two are the same as for the one2many scenario. The third

parameter is the number of meta-alerts required before a

many2one alert is labeled as a denial-of-service attack. For

the experiments the threshold for a denial-of-service attack

was 500.
In the example scenario, attack focus recognition cannot

be applied to the alerts. Note, however, that if numerous

portscan alerts against multiple targets were received, these

alerts would have been merged into a one2many meta-alert.

4.9.1 Data Analysis

The analysis of the data sets, presented in Table 13, shows

that this component is very effective in achieving alert

reduction for most of the data sets. The reduction is

especially high when DDoS or large-scale scanning

attempts are present in the data sets. The Honeypot data

set achieved a lower reduction rate because only two hosts

were monitored and no large-scale sweep of IP address

blocks could be detected by monitoring such a small

network.

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 15

TABLE 13
Impact of Focus Recognition

4.10 Multistep Correlation

The goal of the multistep correlation component is to

identify high-level attack patterns that are composed of

several individual attacks. For example, consider an

intruder who first scans a victim host, then breaks into a

user account on that host and, finally, escalates privileges to

become the root user. These three steps should be

identified as belonging to one attack scenario performed

by a single intruder. The high-level patterns are usually

specified by using some form of expert knowledge.

In our system, multistep correlation is achieved by

specifying attack scenarios using STATL [13], which is an

extensible language that allows one to express attack

patterns using states and transitions. We chose STATL to

model multistep scenarios because a well-tested intrusion

detection system capable of processing STATL scenarios

was readily available [51].

Our correlation system supports two multistep scenarios:

recon-breakin-escalate and island-hopping. The recon-breakin-

escalate scenario models an attacker who scans for vulner-

abilities in a network or host, breaks into a vulnerable host,

and escalates her privilege after breaking in. The island-

hopping scenario models an attacker who breaks into a host

and then uses that host as a platform to break into other

hosts. This scenario is able to identify chains of alerts in

which the victim in one alert becomes the attacker in the

following one. Both of these scenarios use the sliding time

window with extended timeout model. The timeout value

for the recon-breakin-escalate scenario is 20 minutes.
The pseudocode for the recon-breakin-escalate scenario

is as follows:

parameter timeout

global attack_senarios

recon_breakin_escalate(alert) {

remove all s:scenario from attack_scenarios

where s.timestamp <

(alert.start_time - timeout)

for each removed scenario s:

if s.state is ”Reconnaissance”:

pass s.alerts to next correlation component

else:

pass recon_breakin_escalate_merge

(s.alerts) to next correlation component

scenarios get all s:scenario from

attack_senarios where

alert.victimnodes \ s.nodes is nonempty

if scenarios is null and alert.type is

”Reconnaissance”:

s new scenario

add s to attack_senarios

s.state ”Reconnaissance”

s.timestamp alert.start_time

scenarios s

for each s:scenario in scenarios:

s.timestamp alert.start_time

s.nodes s.nodes [alert.victimhosts

if alert.type is ”Breakin” and s.state is

”Reconnaissance”:

s.state ”Breakin”

else if alert.type is ”Escalation” and

s.state is ”Breakin”:

s.state ”Escalation”

if scenarios is null:

pass alert to next correlation component

}

recon_breakin_escalate_merge(alert_list) {

r new alert

r.alertid get_unique_id()

r.start_time min start_time of all alerts in

alert_list

r.end_time max end_time of all alerts in

alert_list

r.name ”Recon_Breakin_Escalate”

r.analyzer union of all analyzer in

alert_list

r.reference union of all alertid in

alert_list

r.attackerhosts union of all attackerhosts

in alert_list

r.victimhosts union of all victimhosts in

alert_list

for each attr:attribute except start_time,

end_time, name, attackerhost, victimhost,

reference, analyzer, alertid:

if attr is equal for all alerts in

alert_list: r.attr alert_list[1].attr

else:

r.attr null

return r

}

The pseudocode for the island-hopping scenario is as

follows:

parameter windowsize

global victim_graphs

islandhopping(alert) {

remove all g:graph from victim_graphs where

g.timestamp <

(alert.start_time - windowsize)

for each removed graph g:

if g.alerts contains only one alert a:

pass a to next correlation component

else:

pass islandhop_merge(g) to next correlation

component

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

if alert.type = breakin:

for each g:graph in victim_graphs where

g.nodes \ alert.attackerhosts is nonempty:

add alert.victimhosts to g.nodes

g.timestamp alert.start_time

add alert to g.alerts

for each host m in alert.attackerhosts:

for each host n in alert.victimhosts:

add an edge (m,n)

if no graph g is found in previous step:

g new graph

add g to victim_graphs

g.nodes alert.victimhosts

g.timestamp alert.start_time

g.alerts alert

else:

pass alert to next correlation component

}

islandhop_merge(graph) {

r new alert

r.alertid get_unique_id()

r.start_time min start_time of all alerts in

graph.alerts

r.end_time max end_time of all alerts in

graph.alerts

r.name ”Islandhop”

r.analyzer union of all analyzer in

graph.alerts

r.attackgraph graph

r.reference union of all alertid in

graph.alerts

r.attackerhosts union of all attackerhosts

in graph.alerts

r.victimhosts union of all victimhosts in

graph.alerts

for each attr:attribute except start_time,

end_time, name, attackerhost, victimhost,

reference, analyzer, attackgraph, alertid:

if attr is equal for all alerts in

graph.alerts:

r.attr graph.alerts[1].attr

else:

r.attr null

return r

}

When building up the island-hopping meta-alert, a
graph containing the compromised nodes is generated.
This graph has an edge from each attacking host to all
targets compromised from this host. These graphs can be
used in many ways to display the advancing stages of an
attack to the site security officer. The timeout value for the
island-hopping scenario is 20 minutes.

A multistep pattern that includes scanning, break-in, and
escalation of privileges can be applied to our example attack
scenario. The meta-alert that describes the scan and the
remote attack against the Web server can be merged with
the local exploit. The results of this operation are shown in
Table 14.

4.10.1 Data Analysis

While multistep attack analysis may not generate the same
level of alert reduction achieved by other components, it
often provides a substantial improvement in the abstraction
level of the produced meta-alerts. The result of applying the
multistep component to our data sets is shown in Table 15.
In three of the data sets, we were not able to detect any
multistep attacks. The MIT/LL 1999 data set is not believed
to contain any multistep attacks since the data set was not
created with these types of attacks in mind. The Rome
AFRL and Defcon 9 data sets are likely to contain numerous
multistep attacks. However, we were not able to detect any
in the Rome AFRL data set because all alerts classified as
scans did not contain the destination IP of the scanned

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 17

TABLE 14
Effect of Multistep Correlation on the Alerts for the Example Attack

TABLE 15
Impact of Multistep Correlation

hosts. This is believed to be caused by human error when
exporting the alerts from the Air Force database. Note that
the MIT/LL 2000 and Treasure Hunt data sets were created
explicitly to contain evidence of multistep attacks. These
attacks were correctly identified, and even though the
resulting reduction rate is minimal, the correlated meta-
alerts provide a high-level, abstract view of the complex
attacks.

4.11 Impact Analysis

The goal of the impact analysis component is to determine
the impact of an attack on the proper operation of the
protected network. This allows one to link the failure of a
network service to an attack that may at first seem
unrelated. Consider, for example, an attacker that crashes
the RPC (remote procedure call) daemon that is used by the
NFS server. Using impact analysis, the failure of the NFS
(network file system) service can be linked to the RPC
attack, although the NFS server has not been attacked
directly.

The impact analysis process combines the alerts from the
previous correlation components with data from an asset
database and a number of heartbeat monitors. The asset
database stores information about installed network ser-
vices, dependencies among these services, and their
importance to the overall operation of a network installa-
tion. An example of a dependency between two services is a
mail server that requires an operational domain name
server (DNS) to work properly or the NFS server that
requires the RPC services. The purpose of the heartbeat
monitors is to assure that certain services are alive and
functional.

Whenever an alert affects certain network services, the
asset database is consulted to determine all other services
that are dependent on this target (and subsequently, other
services that depend on those services). The heartbeat
monitor then checks whether all dependent services are still
operational. If any service is found to have failed, this
information can be added to the alert as a likely
consequence of the attack.

Consider, for example, an alert that refers to a bandwidth
denial-of-service attack against a network link. Using the
asset database, the correlation system can determine that
the proper operation of the domain name service is
dependent on the availability of this particular link. The
database also contains knowledge that the mail service
requires an operating DNS server. When the heartbeat
monitor detects a failure of the mail system (e.g., by sending
messages to a test account), the failure of both the mail and
DNS servers are linked to the alert as additional con-
sequences of the attack. In our example attack scenario, only
a single service (i.e., the Web server) is present and,
therefore, no dependencies are modeled in the asset
database.

The pseudocode for the impact analysis component is as
follows:

parameter window_size

global asset_database, attack_table

impact_processalert(alert) {

remove all a:alert from attack_table where

a.start_time <

(alert.start_times - window_size)

if alert.type is not ”Reconnaissance”:

add alert to attack_table

pass alert to next correlation component

}

impact_processheartbeat(heartbeat) {

if heartbeat.status = ”Down”:

dependencies get all a:asset from

asset_database where

(heartbeat.victimhost,

heartbeat.victimservice) is

dependent on a

for each dependecy:asset in dependencies:

attacks get all a:alert from attack_table

where dependency.host 2 a.victimhosts and

dependency.service = a.victimservice

for each alert in attacks:

alert.consequence alert.consequence [
(heartbeat.victimhost,

heartbeat.victimservice)

}

4.11.1 Data Analysis

Impact analysis requires a precise modeling of the relation-
ships among assets in a protected network and requires the
constant monitoring of the health of those assets. Therefore,
the data sets used in our experiments cannot be used to
evaluate the effectiveness of this analysis technique.

4.12 Alert Prioritization

Priorities are important to classify alerts and quickly
discard information that is irrelevant or of less importance
to a particular site. The goal of the alert prioritization
component is to assign appropriate priorities to alerts. This
component has to take into account the security policy and
the security requirements of the site where the correlation
system is deployed. Therefore, there is no absolute priority
for an attack. For example, port scans have become so
common on the Internet that most administrators consider
them as mere nuisances and do not spend any time or
resources in tracking down their sources. This suggests that
an alert referring to a scan should be tagged with a low
priority. However, the situation is different when the scan
originates from one’s own network. Also, there are high-
security sites that do not expect any scans at all. In these
cases (and under the corresponding security policies), a
scan would be marked with a high priority.

The alert prioritization component can use the informa-
tion from the impact analysis and the asset database to
determine the importance of network services to the overall
operation of the network. For each network resource, the
asset database contains values that characterize its secrecy,
integrity, and availability properties. For example, a public
Web service owned by a company may have a low secrecy
value, because the information published through the Web

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

service is freely available. However, the integrity and

availability values may be high if it is vital for the company

to keep the information accurate and accessible. As another

example, a mail service might have a high secrecy value if it

is used to exchange confidential email messages. If the mail

system relies on a number of backup mail servers, the

availability value for a single server could be low. Note that

the different values are manually entered into the database

and do not represent an absolute measure of the importance

of any asset, but rather reflect the subjective view of the

security administrator.
The pseudocode for the alert prioritization component is

as follows:

global asset_database, dos_attacks,

read_attacks, write_attacks

prioritize(alert) {

asset_list get all a:asset from

asset_database where:

a.host 2 alert.victimhosts and

a.service = alert.victimservice

if alert.name 2 dos_attacks:

alert.priority max availability_score of

all assets in asset_list

else if alert.name 2 read_attacks:

alert.priority max secrecy_score of all

assets in asset_list

else if alert.name 2 write_attacks:

alert.priority max integrity_score of all

assets in asset_list

}

In our example scenario, the Web service is considered to

be important for the operation of the site. Therefore, the

meta-alert that summarizes the multistep attack against the

Linux machine receives a high priority. All correlated or

failed attacks are, as a default action, assigned a low

priority. The final output of our correlation system for the

sample scenario is shown in Table 16. As desired, only a

single, high-priority alert is presented to the administrator.

This meta-alert summarizes the complete attack scenario

and combines all alerts that are related to this attack. The

remaining alerts are intermediate alerts that are either part

of the attack scenario or indications of nonrelevant intrusion

attempts.

4.12.1 Data Analysis

Alert prioritizing relies on meta-information about the

nature of the attack to determine if one alert or meta-alert

should be considered more critical than another. Thus,

unless a precise description of how to prioritize alerts is

provided (in addition to the data sets), it is difficult to

evaluate the effectiveness of this component. We developed

a very naive alert prioritization policy just to give a rough

idea of how much reduction this step could achieve. In our

policy, Web servers are the only critical assets. This policy

could be suitable for a Web-based business, but in most

cases a much more complex policy is needed. The results

are shown in Table 17.

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 19

TABLE 16
Correlated Output with Priorities for the

Example Attack Scenario

TABLE 17
Impact of Prioritization

4.13 Summary of Experimental Results

Table 18 shows the total reduction rates for each of the data
sets. In this table, the reduction caused by the prioritization
step is not included, since the policy used for prioritization
in our experiments was too simplistic and would have
distorted the results.

None of the data sets have a truth file suitable for
evaluating the correctness of each of the correlation
components. The Lincoln Lab data and the Cyber Technol-
ogy Validation data do have truth files, but the data
contained in them is not complete enough to be used to
determine the correct results for each individual correlation
component. For instance, to evaluate the correctness of the
fusion component a list of alerts representing the same
attack occurrence is needed. This information is not
available from any of the truth files. However, we have
validated the correctness of our approach by manually
analyzing the output of the correlation system. For the data
sets that have a textual description of the contained attacks
(Lincoln Lab, Cyber Technology Validation, and Treasure
Hunt), the output of the correlation system is consistent
with the description provided.

As shown in the data analysis part of the previous
sections, the reduction rate for each step of the correlation
process is heavily dependent on the data set. Several
properties of a data set play a role in determining how
much reduction is achieved at each step. These properties
can roughly be divided into three different groups.

The first group is the topology of the defended network.
For instance, in the honeypot data set the defended network
was very small (two hosts), which made it impossible to
detect any large-scale IP sweeps. These large-scale sweeps
were very common in all the other data sets. The network
topology also includes the type of intrusion detection
sensors that are deployed as well as their configuration
and placement. For instance, in the Defcon 9 data set, the
sensors were placed such that most network traffic was
observed by two sensors. This resulted in a higher fusion
rate than for the other data sets.

The second group of properties is the characteristics of
the attacks. For instance, a brute-force password guessing
attack caused a very high reduction rate in the thread
reconstruction step of the Treasure Hunt data set. Also, we
did not find any multistep attacks in the MIT/LL 1999 data
since the data set was comprised of individual attacks, and
no high-level attack patterns were included when the data
was generated.

Finally, the meta-data available for the correlation
system plays an important role in how well the correlation
is performed. If information about alert classification is not
provided, no multistep attacks are detected in any of the

data sets. Similarly, the session reconstruction step needs
information about which processes are listening to which
ports. Without this information, session reconstruction
cannot be performed reliably. The alert verification step is
also dependent on meta-data. In particular, this component
requires up-to-date information about which hosts are
running services with known vulnerabilities.

5 RELATED WORK

Alert correlation has been advocated by researchers and
vendors as both a means to reduce the number of alerts that
need to be manually analyzed and a way to increase the
relevance and abstraction level of the resulting reports. Even
though the goals of correlation seem to be well-defined, the
correlation approaches proposed so far emphasize different
aspects of the correlation process, making it difficult to
compare the results of each solution [16].

A number of the proposed approaches include a multi-
phase analysis of the alert stream. For example, the model
proposed by Andersson et al. [1] and Valdes and Skinner
[47], [48] present a correlation process in two phases. The
first phase aggregates low-level events using the concept of
attack threads. The second phase uses a similarity metric to
fuse alerts into meta-alerts, in an attempt to provide a
higher-level view of the security state of the system. These
phases correspond to the thread reconstruction and focus
recognition components in our model, respectively. Our
experience with the correlation process shows that these
phases are important, but not sufficient to reduce both false
positives and the number of relevant alerts presented to the
security officer. In particular, an alert verification component
is key to reducing the number of relevant alerts to be
considered in the correlation process and a multistep attack
component allows a security expert to model higher-level
attack scenarios.

The model initially proposed in [47] has been extended
to take into account the impact of alerts on the overall
mission that a network infrastructure supports [39]. This
approach relies on a knowledge base that describes the
security-relevant characteristics of a protected network to
prioritize the alerts and to perform a simple form of
passive alert verification. The information about network
assets is gathered using Nmap and contains only
information that is gathered by this specific tool, such as
IP addresses, installed operating systems, and open ports.
Our system is different in two ways. First, it can use
runtime information to verify if an alert is related to a
successful intrusion. Second, it supports a more compre-
hensive set of mechanisms to gather information about the
security posture of the attack target.

20 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

TABLE 18
Total Alert Reduction

Another extension recently proposed by the same group
is the use of an attack modeling language, called CAML, to
specify the pre and postconditions of an attack [4]. Pre and
postconditions are defined for individual attacks, and alerts
are connected (or correlated) when the postcondition of one
alert matches the precondition of a later one. This allows the
specification of complex chains of attacks without explicitly
modeling complex scenarios. This approach is similar to the
multistep attack component in our model, but it appears that
the integration with the other phases in the correlation
process has not been completed, and there are no available
results to evaluate the effectiveness of the integration of this
component in the correlation process.

Several other researchers have proposed mechanisms
similar to pre and postconditions to model dependencies
between attacks. Ning et al. propose a model that identifies
causal relationships between alerts using prerequisites and
consequences [35], [36]. Graphs of connected alerts, called
hyper-alerts, are created and then graph manipulation
techniques are applied to reduce these hyper-alerts to a
manageable size. The approach proposed by Cuppens and
Miège in [5] also uses pre and postconditions. In addition, it
includes a number of phases including alert clustering, alert
merging, and intention recognition. In the first two phases,
alerts are clustered and merged using a similarity function.
The intention recognition phase is referenced in their
model, but has not been implemented. An interesting
aspect of this approach is the attempt to generate correla-
tion rules automatically. While it may seem appealing, this
technique could generate a number of spurious correlation
rules that, instead of reducing the number of alerts and
increasing the abstraction level of the reports, could
introduce the correlation of alerts that are “close” or
“similar” by pure chance, in this way increasing the noise
in the alert stream.

Another example that uses pre and postconditions to
identify causal relationships between alerts is JIGSAW [45].
In JIGSAW, attack conditions are expressed using capabil-
ities and concepts. Capabilities are used to describe the
information that the attacker must know to perform a
certain attack (e.g., a user name and password for a valid
account) or a condition that represents a necessary context
for an attack (e.g., a particular configuration of the net-
work). Concepts are used to model fragments of complex
attacks (e.g., a denial-of-service attack against a specific
host) and both their requisites and their impact on the
security of the protected network are expressed in terms of
capabilities. By composing the capability provided by a
concept with the capability required by another concept, it
is possible to recognize complex attack scenarios (e.g., a
remote shell connection spoofing that relies on a denial-of-
service attack). Unfortunately, no empirical evaluation of
the effectiveness of the system has been published and,
therefore, it is not possible to compare it to other systems. In
addition, JIGSAW does not provide any additional support
for other components of the correlation process other than
multistep attack detection.

Most of the approaches based on pre and postconditions
are focused on the modeling and detection of multistep
attacks to provide a high-level view of the “attack history”

associated with a security compromise. It is assumed that
the analyzed event stream is composed only of well-
defined, relevant alerts, and that real attacks trigger more
than a single alert. As a result, these systems can focus on
clusters of related alerts and discard all alerts that have not
been correlated. Unfortunately, this assumption has not
been substantiated by experimental data or supported by a
rigorous analysis. Instead, it is often necessary to filter out
nonrelevant alerts that may generate spurious attack
histories. This view is supported by a recent paper [37] on
alert correlation, which states that “false alerts generated by
IDSs have a negative impact [on correlation].”

A limitation of approaches that are based on pre and
postconditions is the need to manually define these
conditions for all alerts. No automatic correlation opera-
tions such as thread reconstruction or session reconstruction
take place. Also, when only dependencies between alerts
are modeled (as opposed to complete scenarios), it is not
possible to monitor the evolution of a particular scenario
instance from state to state in real-time, possibly anticipat-
ing the further progress of an intrusion.

In [8], Debar and Wespi propose a system that performs
both aggregation and correlation of intrusion detection
alerts produced by a number of different sensors. This
approach acknowledges that an alert stream may contain a
large number of false positives, but it does not provide any
specific technique to eliminate these spurious alerts. An
attempt to address this limitation is described as part of the
M2D2 model [31], [32], which relies on a formal description
of sensor capabilities in terms of scope and positioning to
determine if an alert is a false positive. More precisely, the
model is used to verify if all sensors that could have been
able to detect an attack agreed during the detection process,
making the assumption that inconsistent detections denote
the presence of a false alarm. While this approach benefits
from a sound formal basis, it suffers from the limitation that
false alerts can only be detected for those cases in which
multiple sensors are able to detect the same attack and can
participate in the voting process. Unfortunately, many real-
world intrusion detection systems do not provide enough
detection redundancy to make this approach applicable.

Alert verification using vulnerability analysis informa-
tion has been advocated as an important tool to reduce the
noise in the alert stream produced by intrusion detection
sensors in [10], [15], [24]. Unfortunately, these approaches
are preliminary and have not been integrated in the overall
correlation process. In addition, most alert verification
systems rely on information about the security configura-
tion of the protected network that was collected at an earlier
time using vulnerability scanning tools, and most do not
support dynamic mechanisms for alert verification.

6 CONCLUSIONS

In this paper, we described a multicomponent correlation
process and a framework that performs the correlation
analysis. To the best of our knowledge, the approach
described in this paper integrates the most complete set of
components in the correlation process. We applied a tool,
based on our framework, to a large number of diverse data

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 21

sets, to analyze if and how each component contributes to
the overall correlation process.

Our experiments demonstrate that the effectiveness of
each component is dependent on the data sets being
analyzed. As discussed in Section 4.13, the topology of the
network, the characteristics of the attack, and the available
meta-data all significantly influence the performance of the
correlation process. Thus, one cannot, in general, determine
a ranking among components with respect to their effec-
tiveness. Each component can contribute to the overall
analysis. Therefore, the most complete set of components
should be used.

A preliminary version of our correlation tool was one
of five systems that were independently evaluated in
DARPA’s Correlation Technology Validation effort [16].
Even though, at that time, the prototype included only a
subset of the components described in this paper, it was
ranked as one of the top correlators. The prototype
produced two orders of magnitude reduction in the
number of alerts and operated in real-time.

The current implementation of our framework uses a
pipeline architecture. Part of our future work will be to
investigate other architectures to see if we can achieve
better performance or more effective alert correlation.

Other future work will be to more thoroughly investigate
the algorithms currently being used in each of the
components to determine if any improvements can be
made. For instance, the fusion component currently
matches a new alert with the earliest occurrence of the
same alert from a different sensor that is within a specified
time window. Another possibility would be to fuse the new
alert with the temporally closest occurrence of the same
alert from a different sensor.

The verification component in our correlator was limited
in that there were some alerts that could not be verified by
using the active scanning approach. Therefore, we could not
determine if these alerts were true positives. Future work
will investigate the feasibility of using authenticated access
to check the success of an attack, and some of the passive
techniques that were discussed in Section 4.6 will also be
investigated.

ACKNOWLEDGMENTS

This research was supported by the Army Research
Laboratory and the Army Research Office, under agreement
DAAD19-01-1-0484. The US Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.
The authors would also like to thank the anonymous
reviewers. Their insightful comments and suggestions
helped to make this a much better paper.

REFERENCES

[1] D. Andersson, M. Fong, and A. Valdes, “Heterogeneous Sensor
Correlation: A Case Study of Live Traffic Analysis,” Proc. Third
Ann. IEEE Information Assurance Workshop, June 2002.

[2] M. Arboi, The Nessus Attack Scripting Language Reference Guide,
2002, http://www.nessus.org/doc/nasl2_reference.pdf.

[3] S.M. Bellovin, “Packets Found on an Internet,” technical report,
AT&T Bell Laboratories, May 1992.

[4] S. Cheung, U. Lindqvist, and M. Fong, “Modeling Multistep
Cyber Attacks for Scenario Recognition,” Proc. DARPA Information
Survivability Conf. and Exposition (DISCEX III), pp. 284-292, Apr.
2003.

[5] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative
Intrusion Detection Framework,” Proc. IEEE Symp. Security and
Privacy, May 2002.

[6] D. Curry and H. Debar, “Intrusion Detection Message Exchange
Format: Extensible Markup Language (XML) Document Type
Definition,” draft-ietf-idwg-idmef-xml-10.txt+, Jan. 2003.

[7] Common Vulnerabilities and Exposures, http://www.cve.mitre.
org/, 2003.

[8] H. Debar and A. Wespi, “Aggregation and Correlation of
Intrusion-Detection Alerts,” Proc. Int’l Symp. Recent Advances in
Intrusion Detection, pp. 85-103, Oct. 2001.

[9] D.E. Denning, “An Intrusion Detection Model,” IEEE Trans.
Software Eng., vol. 13, no. 2, pp. 222-232, Feb. 1987.

[10] N. Desai, “IDS Correlation of VA Data and IDS Alerts,” http://
www.securityfocus.com/infocus/1708, June 2003.

[11] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo,
“Addendum to Testing and Evaluating Computer Intrusion
Detection Systems,” Comm. ACM, vol. 42, no. 9, p. 15, Sept. 1999.

[12] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo,
“Testing and Evaluating Computer Intrusion Detection Systems,”
Comm. ACM, vol. 42, no. 7, pp. 53-61, July 1999.

[13] S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL: An Attack
Language for State-Based Intrusion Detection,” J. Computer
Security, vol. 10, nos. 1-2, pp. 71-104, 2002.

[14] A.K. Ghosh, J. Wanken, and F. Charron, “Detecting Anomalous
and Unknown Intrusions against Programs,” Proc. Ann. Computer
Security Application Conf. (ACSAC ’98), pp. 259-267, Dec. 1998.

[15] R. Gula, “Correlating IDS Alerts with Vulnerability Information,”
technical report, Tenable Network Security, Dec. 2002.

[16] J. Haines, D.K. Ryder, L. Tinnel, and S. Taylor, “Validation of
Sensor Alert Correlators,” IEEE Security and Privacy Magazine,
vol. 1, no. 1, pp. 46-56, Jan./Feb. 2003.

[17] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber, “A Network Security Monitor,” Proc. IEEE Symp.
Research in Security and Privacy, pp. 296-304, May 1990.

[18] K. Ilgun, “USTAT: A Real-Time Intrusion Detection System for
UNIX,” Proc. IEEE Symp. Research on Security and Privacy, May
1993.

[19] ISS, Realsecure, http://www.iss.net/, 2004.
[20] H.S. Javitz and A. Valdes, “The NIDES Statistical Component

Description and Justification,” technical report, SRI Int’l, Mar.
1994.

[21] K. Kendall, “A Database of Computer Attacks for the Evaluation
of Intrusion Detection Systems,” master’s thesis, MIT, June 1999.

[22] G.H. Kim and E.H. Spafford, “The Design and Implementation of
Tripwire: A File System Integrity Checker,” technical report,
Purdue Univ., Nov. 1993.

[23] C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of
Security-Critical Programs in Distributed Systems: A Specifica-
tion-Based Approach,” Proc. 1997 IEEE Symp. Security and Privacy,
pp. 175-187, May 1997.

[24] C. Kruegel andW. Robertson, “Alert Verification: Determining the
Success of Intrusion Attempts,” Proc. First Workshop the Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA 2004),
July 2004.

[25] C. Kruegel and G. Vigna, “Anomaly Detection of Web-Based
Attacks,” Proc. 10th ACM Conf. Computer and Comm. Security
(CCS ’03), pp. 251-261, Oct. 2003.

[26] MIT Lincoln Laboratory, Lincoln Lab Data Sets, http://
www.ll.mit.edu/IST/ideval/data/data_index.html, 2000.

[27] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M.
Zissman, “Evaluating Intrusion Detection Systems: The 1998
DARPA Off-Line Intrusion Detection Evaluation,” Proc. DARPA
Information Survivability Conf. and Exposition, vol. 2, Jan. 2000.

[28] BugTraq Mailing List, Vulnerabilities by Bugtraq ID, http://
www.securityfocus.com/bid/bugtraqid/, 2004.

[29] J. McHugh, “Testing Intrusion Detection Systems: A Critique of
the 1998 and 1999 DARPA Intrusion Detection System Evalautions
as Performed by Lincoln Laboratory,” ACM Trans. Information and
System Security, vol. 3, no. 4, Nov. 2000.

[30] D.L. Mills Network Time Protocol (Version 3), RFC 1305, 1992.

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2004

[31] B. Morin and H. Debar, “Correlation of Intrusion Symptoms: An
Application of Chronicles,” Proc. Int’l Symp. Recent Advances in
Intrusion Detection, Sept. 2003.

[32] B. Morin, L. Me, H. Debar, and M. Ducasse, “M2D2: A Formal
Data Model for IDS Alert Correlation,” Proc. Recent Advances in
Intrusion Detection, pp. 115-137, 2002.

[33] Nessus Vulnerabilty Scanner, http://www.nessus.org/, 2004.
[34] P.G. Neumann and P.A. Porras, “Experience with EMERALD to

Date,” Proc. First USENIXWorkshop Intrusion Detection and Network
Monitoring, pp. 73-80, Apr. 1999.

[35] P. Ning, Y. Cui, and D.S. Reeves, “Analyzing Intensive Intrusion
Alerts Via Correlation,” Proc. Int’l Symp. the Recent Advances in
Intrusion Detection, pp. 74-94, Oct. 2002.

[36] P. Ning, Y. Cui, and D.S. Reeves, “Constructing Attack Scenarios
through Correlation of Intrusion Alerts,” Proc. ACM Conf.
Computer and Comm. Security, pp. 245-254, Nov. 2002.

[37] P. Ning and D. Xu, “Learning Attack Strategies from Intrusion
Alert,” Proc. ACM Conf. Computer and Comm. Security (CCS ’03),
Oct. 2003.

[38] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” Proc. Seventh USENIX Security Symp., Jan. 1998

[39] P. Porras, M. Fong, and A. Valdes, “A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation,” Proc. Int’l Symp. the
Recent Advances in Intrusion Detection, pp. 95-114, Oct. 2002.

[40] UCSB Reliable Software Group, LinSTAT Webpage, http://
www.cs.ucsb.edu/rsg/STAT/software/linstat.html, 2003.

[41] UCSB Reliable Software Group, collection of ntrusion detection
data sets, http://www.cs.ucsb.edu/rsg/datasets/, 2004.

[42] M. Roesch, “Snort—Lightweight Intrusion Detection for Net-
works,” Proc. USENIX LISA ’99 Conf., Nov. 1999

[43] U. Shankar and V. Paxson, “Active Mapping: Resisting NIDS
Evasion Without Altering Traffic,” Proc. IEEE Symp. Security and
Privacy, 2003.

[44] Snort—The Open Source Network Intrusion Detection System,
http://www.snort.org, 2004.

[45] S.J. Templeton and K. Levitt, “A Requires/Provides Model for
Computer Attacks,” Proc. New Security Paradigms Workshop, pp. 31-
38, Sept. 2000.

[46] A. Valdes and K. Skinner, “Adaptive, Model-Based Monitoring
for Cyber Attack Detection,” Proc. RAID 2000 Conf., Oct. 2000.

[47] A. Valdes and K. Skinner, “An Approach to Sensor Correlation,”
Proc. Int’l Symp. Recent Advances in Intrusion Detection, Oct. 2000.

[48] A. Valdes and K. Skinner, “Probabilistic Alert Correlation,” Proc.
Int’l Symp. Recent Advances in Intrusion Detection, pp. 54-68, Oct.
2001.

[49] G. Vigna, “Teaching Hands-On Network Security: Testbeds and
Live Exercises,” J. Information Warfare, vol. 3, no. 2, pp. 8-25, 2003.

[50] G. Vigna and R.A. Kemmerer, “NetSTAT: A Network-Based
Intrusion Detection System,” J. Computer Security, vol. 7, no. 1,
pp. 37-71, 1999.

[51] G. Vigna, F. Valeur, and R.A. Kemmerer, “Designing and
Implementing a Family of Intrusion Detection Systems,” Proc.
European Software Eng. Conf. and ACM SIGSOFT Symp. the
Foundations of Software Eng. (ESEC/FSE 2003), Sept. 2003.

[52] C. Warrender, S. Forrest, and B.A. Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models,” Proc.
IEEE Symp. Security and Privacy, pp. 133-145, 1999.

Fredrik Valeur is currently a PhD student at the
University of California, Santa Barbara. He
holds a Sivilingeniør degree in computer science
from the Norwegian University of Science and
Technology in Trondheim. His research inter-
ests include intrusion detection, network secur-
ity, penetration testing, and network scanning
techniques.

Giovanni Vigna received the MS degree with
honors and the PhD degree from Politecnico di
Milano, Italy, in 1994 and 1998, respectively. He
is an associate professor in the Department of
Computer Science at the University of California
in Santa Barbara. His current research interests
include network and computer security, intrusion
detection, security of mobile code systems,
penetration testing, and wireless systems. In
particular, he worked on STAT, a framework for

the modular development of intrusion detection systems. He also
published a book on security and mobile agents and he has been the
program chair of the International Symposium on Recent Advances in
Intrusion Detection (RAID 2003). He is a member of the IEEE and the
IEEE Computer Society.

Christopher Kruegel received the PhD degree
with honors in computer science from the
Technical University Vienna while working as
a research assistant for the Distributed Sys-
tems Group. He is an assistant professor with
the Automation Systems Group at the Techni-
cal University Vienna. Before that, he was
working as a research postdoc for the Reliable
Software Group at the University of California,
Santa Barbara. His research interests include

most aspects of computer security, with an emphasis on network
security, intrusion detection, and vulnerability analysis. He is a member
of the IEEE.

Richard A. Kemmerer received the BS degree
in mathematics from the Pennsylvania State
University in 1966, and the MS and PhD degrees
in computer science from the University of
California, Los Angeles, in 1976 and 1979,
respectively. He is a professor and a past chair
of the Department of Computer Science at the
University of California, Santa Barbara. His
research interests include formal specification
and verification of systems, computer system

security and reliability, programming and specification language design,
and software engineering. He is author of the book Formal Specification
and Verification of an Operating System Security Kernel. He is a fellow
of the IEEE and IEEE Computer Society, a fellow of the Association for
Computing Machinery, a member of the IFIP Working Group 11.3 on
Database Security, and a member of the International Association for
Cryptologic Research. He is a past editor-in-chief of IEEE Transactions
on Software Engineering and has served on the editorial boards of the
ACM Computing Surveys and IEEE Security and Privacy.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VALEUR ET AL.: A COMPREHENSIVE APPROACH TO INTRUSION DETECTION ALERT CORRELATION 23

