
Chapter 1

SENSOR FAMILIES FOR INTRUSION

DETECTION INFRASTRUCTURES

Richard A. Kemmerer and Giovanni Vigna
Reliable Software Group

Department of Computer Science

University of California Santa Barbara

[kemm,vigna]@cs.ucsb.edu

Abstract Intrusion detection relies on the information provided by a number of sensors
deployed throughout a protected network. Sensors operate on different event
streams, such as network packets and application logs, and provide information
at different abstraction levels, such as low-level warnings and correlated alerts.
In addition, sensors range from lightweight probes and simple log parsers to
complex software artifacts that perform sophisticated analysis. Therefore, de-
ploying, configuring, and managing, a large number of heterogeneous sensors is
a complex, expensive, and error-prone activity.

Unfortunately, existing systems fail to manage the complexity that is inherent
in today’s intrusion detection infrastructures. These systems suffer from two
main limitations: they are developed ad hoc for certain types of domains and/or
environments, and they are difficult to configure, extend, and control remotely.

To address the complexity of intrusion detection infrastructures, we devel-
oped a framework, called STAT, that overcomes the limitations of current ap-
proaches. Instead of providing yet another system tailored to some domain-
specific requirements, STAT provides a software framework for the development
of new intrusion detection functionality in a modular fashion.

According to the STAT framework, intrusion detection sensors are built by
dynamically composing domain-specific components with a domain-independent
runtime. The resulting intrusion detection sensors represent a software family.
Each sensor has the ability to reconfigure its behavior dynamically. The recon-
figuration functionality is supported by a component model and by a control
infrastructure, called MetaSTAT. The final product of the STAT framework is a
highly-configurable, well-integrated intrusion detection infrastructure.

Keywords: Security, Intrusion Detection, Intrusion Detection Infrastructures, Intrusion De-
tection Frameworks, Software Engineering, STAT.

2

Introduction

In recent years, networks have evolved from a mere means of communi-
cation to a ubiquitous computational infrastructure. Networks have become
larger, faster, and highly dynamic. In particular, the Internet, the world-wide
TCP/IP network, has become a mission-critical infrastructure for governments,
companies, financial institutions, and millions of everyday users.

The surveillance and security monitoring of the network infrastructure is
mostly performed using Intrusion Detection Systems (IDSs). These systems
analyze information about the activities performed in computer systems and
networks, looking for evidence of malicious behavior. Attacks against a sys-
tem manifest themselves in terms of events. These events can be of a different
nature and level of granularity. For example, they may be represented by net-
work packets, operating system calls, audit records produced by the operating
system auditing facilities, or log messages produced by applications. The goal
of intrusion detection systems is to analyze one or more event streams and
identify manifestations of attacks.

Event streams are used by intrusion detection systems in two different ways,
according to two different paradigms: anomaly detection and misuse detection.
In anomaly detection systems [14, 17, 7, 34], historical data about a system’s
activity and specifications of the intended behavior of users and applications
are used to build a profile of the “normal” operation of the system. Then,
the intrusion detection system tries to identify patterns of activity that devi-
ate from the defined profile. Misuse detection systems take a complementary
approach [21, 23, 28, 20, 13]. Misuse detection systems are equipped with a
number of attack descriptions (or “signatures”) that are matched against the
stream of audit data looking for evidence that the modeled attack is occurring.
Misuse and anomaly detection both have advantages and disadvantages. Mis-
use detection systems can perform focused analysis of the audit data and they
usually produce only a few false positives, but they can detect only those at-
tacks that have been modeled. Anomaly detection systems have the advantage
of being able to detect previously unknown attacks. This advantage is paid for
in terms of the large number of false positives and the difficulty of training a
system with respect to a very dynamic environment.

The intrusion detection community has developed a number of different
tools that perform intrusion detection in particular domains (e.g., hosts or net-
works), in specific environments (e.g., Windows NT or Solaris), and at differ-
ent levels of abstraction (e.g., kernel-level tools and alert correlation systems).
These tools suffer from two main limitations: they are developed ad hoc for
certain types of domains and/or environments, and they are difficult to config-
ure, extend, and control remotely.

Sensor Families for Intrusion Detection Infrastructures 3

In the specific case of signature-based intrusion detection systems, the sen-
sors are equipped with a number of attack models that are matched against a
stream of incoming events. The attack models are described using an ad hoc,
domain-specific language (e.g., NFR’s N-code [27]). Therefore, performing
intrusion detection in a new environment requires the development of both a
new system and a new attack modeling language. As intrusion detection is
applied to new and previously unforeseen domains, this approach results in
increased development effort.

Today’s networks are not only heterogeneous; they are also dynamic. There-
fore, intrusion detection systems need to support mechanisms to dynamically
change their configuration as the security state of the protected system evolves.
The configuration and management of a large number of sensors raises multi-
ple issues.

One issue is the static configuration of the data sources used for analysis.
The ad hoc nature of existing IDSs does not allow one to dynamically configure
a running sensor so that new event streams can be used as input for the security
analysis. This is a limitation because new attacks may have manifestations in
event streams that are not currently analyzed by a specific IDS. Being bound
statically to a single source of events may result in limited effectiveness.

A second issue is the static configuration of the attack models used for anal-
ysis. Most existing intrusion detection systems (e.g., [28]) are initialized with
a set of signatures at startup time. Updating the signature set requires stopping
the IDS, adding new signatures, and then restarting execution. Some of these
systems provide a way to enable/disable some of the available signatures, but
few systems allow for the dynamic inclusion of new signatures at execution
time.

A third issue is the relatively static configuration of responses in existing
intrusion detection systems. In most cases it is possible to choose only from a
specific subset of possible responses. In addition, to our knowledge, none of
the systems allows one to associate a response with intermediate steps of an
attack. This is a severe limitation, especially in the case of distributed attacks
carried out over a long time span.

Finally, managing a large number of sensors requires an effective control
infrastructure. Most systems provide some sort of management console that
allows the Security Administrator to remotely tune the configuration of spe-
cific sensors. This reconfiguration procedure is mostly performed manually
and at a very low level. This task is particularly error-prone, especially if the
intrusion detection sensors are deployed across a very heterogeneous environ-
ment and with very different configurations. The challenge is to determine if
the current configuration of one or more sensors is valid or if a reconfiguration
is meaningful.

4

This chapter describes a framework for the development of intrusion detec-
tion systems, called STAT, and a sensor control infrastructure, called MetaS-
TAT, which have been developed to address the issues above and to overcome
the limitations of existing approaches.

The STAT framework includes a domain-independent attack modeling lan-
guage and a domain-independent event analysis engine. The framework can
be extended in a well-defined way to match new domains, new event sources,
and new responses. The framework has been used by the authors to develop
a number of different intrusion detection systems, from a network-based in-
trusion detection system, to host-based and application-based systems, to alert
correlators.

The resulting set of intrusion detection systems can be seen, in Software En-
gineering terms, as a software family. Members of the family share a number
of features, including dynamic reconfigurability and a fine-grained control over
a wide range of characteristics [33]. The STAT framework is the only known
framework-based approach to the development of intrusion detection systems.
Our experience with the framework shows that by following this approach it
is possible to develop intrusion detection systems with reduced development
effort, with respect to an ad hoc approach. In addition, the approach is advanta-
geous in terms of the increased reuse that results from using an object-oriented
framework and a component-based approach.

The configuration of sensors in the STAT family can be controlled at a very
fine grain using the MetaSTAT infrastructure. MetaSTAT provides the basic
mechanisms to reconfigure, at run-time, which input event streams are ana-
lyzed by each sensor, which scenarios have to be used for the analysis, and
what types of responses must be carried out for each stage of the detection
process. In addition, MetaSTAT supports the explicit modeling of the depen-
dencies among the modules composing a sensor so that it is possible to auto-
matically identify the steps that are necessary to perform a reconfiguration of
the deployed sensing infrastructure.

The result of applying the STAT/MetaSTAT approach is a “web of sensors”,
composed of distributed components integrated by means of a communica-
tion and control infrastructure. The task of the web of sensors is to provide
fine-grained surveillance inside the protected network. The web of sensors im-
plements local surveillance against both outside attacks and local misuse by
insiders in a way that is complementary to the mainstream approach where a
single point of access (e.g., a gateway) is monitored for possible malicious ac-
tivity. Multiple webs of sensors can be organized either hierarchically or in a
peer-to-peer fashion to achieve scalability and to be able to exert control over
a large-scale infrastructure from a single control location.

This chapter is structured as follows. Section 1.1 introduces the STAT
framework. Section 1.2 presents a family of intrusion detection systems de-

Sensor Families for Intrusion Detection Infrastructures 5

veloped using the framework. Section 1.3 describes the MetaSTAT control
infrastructure, shared by all the IDSs in the family. Section 1.4 presents rele-
vant related work. Finally, Section 1.5 draws some conclusions.

1. The STAT Framework

The State Transition Analysis Technique [10] is a methodology to describe
computer penetrations as attack scenarios. Each attack scenario is represented
as a sequence of transitions that characterize the evolution of the security state
of a system. In an attack scenario states represent snapshots of a system’s
security-relevant properties and resources. A description of an attack has an
“initial” starting state and at least one “compromised” ending state. States are
characterized by means of assertions, which are predicates on some aspects of
the security state of the system. For example, in an attack scenario describing
an attempt to violate the security of an operating system, assertions would state
properties such as file ownership, user identification, or user authorization.
Transitions between states are annotated with signature actions that represent
the key actions that if omitted from the execution of an attack scenario would
prevent the attack from completing successfully. For example, in an attack
scenario describing a network port scanning attempt, a typical signature action
would include the TCP segments used to test the TCP ports of a host.

The characterization of attack scenarios in terms of states and transitions
allows for an intuitive graphic representation by means of state transition dia-
grams. Figure 1.1 shows a state transition diagram for a pedagogical example
of a STATL attack scenario specification. The attack scenario detects a Tro-
jan horse attack, where an apparently benign program (e.g., an MP3 player)
is first downloaded by a user (first transition), and then installed and executed
(second transition). The Trojan horse program contains “hidden” functionality
(the warriors hidden in the Trojan horse) that allows the creator of the program
to take control of the user’s account. When executed, the Trojan horse opens a
network connection back to an attacker controlled host that is outside the local
network, and it waits for commands to be executed (third transition). When
the scenario reaches the final state (represented as a double circle) the attack
is considered completed. Note that even though this scenario is fairly repre-
sentative of this type of attack, it is not to be considered a complete, detailed
specification.

In the early 1990s, the State Transition Analysis Technique was applied to
host-based intrusion detection, and a system, called USTAT [8, 9, 25], was de-
veloped. USTAT used state transition representations as the basis for rules to
interpret changes in a computer system’s state and to detect intrusions in real-
time. The changes in the computer system’s state were monitored by lever-
aging the auditing facilities provided by security-enhanced operating systems,

6

{source = u.source;

[NetUpload u]: u.source.isOutside()

s2s1s0 s3

[HostExec e]: e.host == target &&

[Delete d]: d.file == file

target = u.target;

file = u.file;}

File file;

IPAddress source;

IPAddress target;

PID trojanPID;

Transition
code block

State assertion Consuming transition

Scenario local variables

global Network myNetwork; Scenario global variable

State code block

Transition action Transition assertion

Final state

{victim = o.target;}

[OpenConnection o]: o.source == target &&

o.processID == trojanPID

File.exists(file)

Nonconsuming transition

Unwinding transition

e.file == file

{trojanPID = e.processID;}

Initial state

file.name(), target.name(), victim.name();}

{log("Possible trojan %s@%s attacking %s",

Figure 1.1. A sample state transition diagram of an attack scenario. The attack is a very
simplified version of a Trojan horse installation attack. The first transition is fired when the
upload of a file from a host outside the local network is detected. The second transition fires
when the same file is executed. The final transition fires when the program being executed opens
a network connection to another host.

such as Sun Microsystems’ Solaris equipped with the Basic Security Mod-
ule (BSM) [30]. The first implementation of USTAT clearly demonstrated the
value of the STAT approach, but USTAT was developed in an ad hoc way and
several characteristics of the first USTAT prototype were difficult to modify or
to extend to match new environments (e.g., Windows NT/2000).

During the 90s, the focus of intrusion detection shifted from the host and
its operating system to the network and the protocols used to exchange data.
Therefore, the natural evolution of state transition analysis was its direct appli-
cation to networks. The NetSTAT intrusion detection system was the result of
this evolution [32]. NetSTAT was aimed at real-time state-transition analysis
of network data. The NetSTAT system proved that the STAT approach could
be extended to new domains. However, NetSTAT was also developed ad hoc,
by building a completely new IDS that would fit the new domain.

In 1998, both NetSTAT and USTAT were used to participate in a DARPA-
sponsored intrusion detection evaluation effort. The evaluation exercises in-
cluded off-line analysis of audit logs and traffic dumps provided by the MIT
Lincoln Laboratory [19] and the installation of the systems in a large testbed at
the Air Force Research Laboratory (AFRL) [3, 4]. Intrusion detection systems
from a number of universities, research centers, and companies were tested
with respect to different classes of attacks, including port scans, remote com-
promise, local privilege escalation, and denial-of-service attacks. A detailed
description of the attacks used in the MIT Lincoln Laboratory evaluation can
be found in [16]. In both efforts the STAT-based systems performed very well
and their combined results scored at the highest level in the evaluations.

Participating in this event gave strong positive feedback on the research that
had been performed so far, and it also gave new insights into the STAT ap-
proach. In particular, running NetSTAT and USTAT at the same time revealed

Sensor Families for Intrusion Detection Infrastructures 7

a number of similarities in the way attack scenarios were represented and in
the runtime architecture of the systems. A closer analysis of the mechanisms
used by the STAT-based systems to match attack scenarios against a stream of
events suggested that the STAT-based IDSs could be redesigned as a family of
systems that leverages an object-oriented framework.

The approach taken was to factor-out the mechanisms and techniques used
by the intrusion detection analysis and to design an extension process that
would support the development of intrusion detection systems for many dif-
ferent target environments. The result of this redesign was the STAT Frame-
work. The STAT Framework consists of a domain-independent language, cal-
led STATL, and a runtime for the language, called the STAT Core. These el-
ements can be extended following a well-defined process to match a specific
target domain. Section 1.1.1 presents STATL, Section 1.1.2 describes the STAT
Core, and Section 1.1.3 describes the framework extension process.

1.1 STATL

A STATL specification is the description of a complete attack scenario. The
attack is modeled as a sequence of steps that bring a system from an initial
safe state to a final compromised state. This modeling approach is supported
by a state/transition-based language. One of the advantages of this approach
is that state/transition specifications can be represented graphically by means
of state transition diagrams (STDs). Therefore, even though STATL is pri-
marily a text-based language, the STATL development environment includes
a graphic editor that allows one to directly visualize the STD representing an
attack scenario.

1.1.1 STATL Overview. The STATL language provides con-
structs to represent an attack as a composition of states and transitions. States
are used to characterize different snapshots of a system during the evolution
of an attack. Obviously, it is not feasible to represent the complete state of a
system (e.g., volatile memory, file system); therefore, a STATL scenario uses
variables to record just those parts of the system state needed to define an attack
signature (e.g., the value of a counter or the ownership of a file). A transition
has an associated action that is a specification of the event that can cause the
scenario to move to a new state. For example, an action can be the opening
of a TCP connection or the execution of an application. The space of possi-
ble relevant actions is constrained by a transition assertion, which is a filter
condition on events that could possibly match the action. For example, an as-
sertion can require that a TCP connection is opened with a specific destination
port or that an application being executed should be part of a predefined set of
security-critical applications.

8

It is possible for several occurrences of the same attack to be active at the
same time. A STATL attack scenario, therefore, has an operational semantics
in terms of a set of instances of the same scenario prototype. The scenario
prototype represents the scenario’s definition and global environment, and the
scenario instances represent attacks currently in progress.

The evolution of the set of instances of a scenario is determined by the type
of transitions in the scenario definition. A transition can be consuming, non-
consuming, or unwinding. A nonconsuming transition is used to represent a
step of an occurring attack that does not prevent further occurrences of attacks
from spawning from the transition’s source state. Therefore, when a noncon-
suming transition fires, the source state remains valid, and the destination state
becomes valid too. An example of a nonconsuming transition is given in Fig-
ure 1.1. The transition between states s1 and s2 represents the execution of a
file. This step does not invalidate the previous state, that is, another execution
of the program may occur. Semantically, the firing of a nonconsuming tran-
sition causes the creation of a new scenario instance. The original instance is
still in the original state, while the new instance is in the destination state of
the fired transition. In contrast, the firing of a consuming transition makes the
source state of a particular attack occurrence invalid. Semantically, the firing
of a consuming transition does not generate a new scenario instance; it simply
changes the state of the original one. The transition between states s2 and s3
in Figure 1.1 is an example of a consuming transition. The transition is fired
when the executed Trojan program opens a connection. This invalidates state
s2. It is no longer necessary to check if the program is opening a network con-
nection since the program has already been identified as a Trojan. Unwinding
transitions represent a form of “rollback” and they are used to describe events
and conditions that invalidate the progress of one or more scenario instances
and require the return to an earlier state. The transition between states s1 and
s0 in the example in Figure 1.1 is an unwinding transition. The deletion of the
uploaded file invalidates the condition needed for the attack to complete, and,
therefore, the scenario instance is brought back to the previous state before the
file was created.

1.1.2 STATL Syntax. This section presents STATL’s syntax. It
also includes fragmentary examples for each of the syntax rules. In the syntax
rules, literal keywords are in boldface and other literal text is enclosed in single
quotes. Optional items are enclosed in square brackets ‘[’, ‘]’, items that may
appear zero or more times are enclosed in curly braces ‘{’, ‘}’. Alternatives
are separated by ‘|’ and grouped with parentheses where necessary to indicate
associativity. Examples may include ellipses (. . .) to indicate that details have
been left out; the ellipses are not part of STATL.

Sensor Families for Intrusion Detection Infrastructures 9

Lexical Elements. STATL identifiers consist of letters, digits, and the
underscore character ‘ ’, and start with a letter. For example host name and
IPaddr2 are identifiers. STATL identifiers are case-sensitive, so IPaddress
is different from IPAddress. STATL compound identifiers use standard
object-oriented dot notation, as in “object.attribute”. STATL keywords are re-
served words and may not be used as identifiers. For example, since scenario
is a keyword, it may not be used as a variable name.

STATL includes two kinds of comments: any text between “/*” and “*/ ”
(except “*/ ”), including the delimiters, is a comment. Any text following “// ”
to the end of the line, including the “// ” marker, is a comment. Whitespace may
appear anywhere in a STATL specification except within tokens (keywords,
identifiers, and multiple-character operators).

Data Types. STATL includes several built-in types: int and u int
in various sizes, bool, string, timeval (for timestamps), and timer.
It also includes arrays, plus containers vector, set, list, and map. It is
not possible to define new data types within a STATL scenario. Application-
specific types must be defined within the application-specific extension library
(see Section 1.1.3). For example, network-based scenarios may use different
types than host-based scenarios, but both use int and timeval.

Scenario. A scenario uses zero or more libraries of application-specific
types, events, functions, and predicates. A scenario has a name, may have
parameters, may contain constant and variable declarations, and most impor-
tantly, contains the states and transitions that define the “attack signature” –
what to match and what to do with matches. A scenario may also define sup-
porting functions to be used in state and transition assertions and code blocks:

Scenario ::=
{ use LibraryID {‘,’ LibraryID} ‘;’ }
scenario ScenarioID
[ScenarioParameters]
‘{’

[FrontMatter]
{State | Transition | NamedAction}

‘}’
{ FunctionDefinition }

A scenario must have at least one transition and two states – the initial state
and a final state. The initial state must have no incoming transitions, and final
states have no outgoing transitions. Scenario parameters are specified as a list
of comma-separated typed identifiers:

ScenarioParameters ::=

10

‘(’ Parameter {‘,’ Parameter} ‘)’
Parameter ::= Type ParameterId

Example:

scenario example (string host, int count)
{ ... }

The example scenario has two parameters, host and count. Parameters are
accessible by the scenario instances as global constants.

Front Matter. Scenarios may declare constants and variables:

Front Matter ::=
{(ConstDecl | VarDecl)}

ConstDecl ::=
const Type ConstId { ’[’ [size] ’]’ } ‘=’ InitialValue ‘;’

VarDecl ::=
[global] Type VarId { ’[’ [size] ’]’ } [‘=’ InitialValue] ‘;’

A variable declared “global” is shared by all instances of the scenario. A vari-
able not declared “global” is instantiated privately in each instance of the sce-
nario. Variables may be assigned initial values.

Example:

use tcpip;
scenario example
{

const int bufsize = 1024;
global int count = 0;
Host server;
...

}

This example declares a constant integer bufsize with value 1024 and de-
clares a global variable countwith initial value 0. This variable will be shared
by all instances of the scenario. That is, if a scenario instance increments the
count variable, the update is seen by all other instances of the scenario. The
variable declaration in the example also includes a variable named server
of type Host (a type defined in the network-based language extension called
tcpip). Because server is a local variable (i.e., its declaration does not
contain the keyword global), each instance of the scenario will have its own
copy of server.

Sensor Families for Intrusion Detection Infrastructures 11

State. “State” is one of the two fundamental concepts in STATL. States
have names so they can be referred to in transitions and in the graphical rep-
resentation of the scenario (i.e., in the STD). Each state may have an assertion
and a code block, but these elements are optional:

State ::=
[initial]
state StateId
‘{’

[StateAssertion]
[CodeBlock]

‘}’

Exactly one state must be designated as the initial state. When a scenario
plugin is loaded into an IDS a first instance is created in the initial state.

The state assertion, if present, is tested before entry to the state, after testing
the assertion of the transition that leads to the state. A state’s assertion is
implicitly True if none is specified. A state’s code block is executed after the
incoming transition’s assertion and the state’s assertion have been evaluated
and found to be True and after the incoming transition’s code block (if it exists)
is executed.

Example:

scenario example
{
const int threshold = 64;
int counter;
...
initial
state s1 { }
...
state s3
{

counter > threshold
{ log("counter over threshold limit"); }

}
...

}

In this example state s1 is designated as the initial state. It has neither an
assertion nor a code block. State s3 has an assertion and a code block. The
assertion specifies that the value of local variable counter is greater than the
value of constant threshold. The code block calls the built-in procedure
log to write a message to the IDS’s log file.

Transition. “Transition” is the second of the two fundamental concepts
in STATL. Each transition has a name and must indicate the pair of states that

12

it connects. Transitions may have the same source and destination state; that
is, loops are allowed. In addition, a transition must specify a type, must specify
an event type to match, and may have a code block:

Transition ::=
transition TransitionID ‘(’ StateId ‘->’ StateId ‘)’
(consuming | nonconsuming | unwinding)
‘{’

(‘[’ EventSpec ‘]’ | ActionId)
[‘:’ Assertion]
[CodeBlock]

‘}’

A transition’s event is specified either directly (see section on EventSpecs) or
by reference to a named signature action (see section on NamedSigAction).
In the former case the transition’s assertion is just the assertion in the transi-
tion. In the latter case, if the named signature action includes an assertion and
the transition also includes an assertion, then the resulting assertion is the con-
junction of the two assertions. An example is given later, after named signature
actions are defined.

A transition’s code block is executed after evaluating the transition’s asser-
tion and the destination state’s assertion, and before executing the destination
state’s code block. More precisely, the order of evaluation of assertions and
the execution of code blocks, after matching an event type (defined later), is as
follows:

1 evaluate the transition assertion. If True, then

2 evaluate the state assertion. If True, then

3 execute the transition code block, possibly modifying local and global
environments, and then

4 execute the state code block, possibly modifying local and global envi-
ronments1 .

Transitions are deterministic, which means that every enabled transition fires
if its assertion and the destination state’s assertion are satisfied. A transition’s
code block may perform any computation supported by STATL and the IDS
extension in use, but is typically used to copy event field values into the global
or local environment for later reference.

Example:

use bsm, unix;

Sensor Families for Intrusion Detection Infrastructures 13

scenario example
{
int userid;
...
transition t2 (s1 -> s2)

nonconsuming
{

[READ r] : r.euid != r.ruid
{ userid = r.euid; }

}
...

}

In this example, t2 is a nonconsuming transition that leads from state s1 to
state s2. The event spec indicates that the transition should match events of
type READ, with a filter condition specifying that the euid and ruid fields
of the event must differ for the transition to fire. The transition’s code block
copies the euid field of event r into the local variable userid for later ref-
erence. Note that this scenario uses both bsm and unix extensions, which
define BSM events and UNIX-related abstractions, respectively.

EventSpec. “Event specs” are the essential elements of transitions.
They specify what events (signature actions) to match and under what condi-
tions.

EventSpec ::= (BasicEventSpec [SubEventSpec]) | TimerEvent

BasicEventSpec ::= EventType EventId

SubEventSpec ::= ‘[’ EventSpec { ‘,’ EventSpec } ‘]’
EventType ::= ANY |

ApplEventType ‘(’ ApplEventType {‘|’ ApplEventType } ‘)’

An event spec is either a basic event spec optionally followed by a subevent
spec, or it is a timer event. A basic event spec identifies the built-in meta-event
“type” ANY, which matches any event, or an application-specific event type
(e.g., READ) or a disjunction of application-specific event types (e.g., (UDP |
TCP)), and a name that will be used to reference the matching event. A basic
event spec identifying a single type matches an event of the same type only. A
basic event spec that is the disjunction of two or more event types matches an
event of any of the types in the disjunction. A subevent spec identifies a set
of event specs. Subevent specs enable complex, tree-structured event patterns.
A subevent spec matches a set of subevents if each event spec in the subevent
spec matches one of the events in the set.

Example:

[(READ | WRITE) access] :

14

access.euid != access.ruid

Example:

[IP d1 [TCP t1]] :
(d1.src == 192.168.0.1) && (t1.dst == 23)

The first example is a USTAT event spec that matches read or write events in
which the effective and real user-ids differ. The second example is a NetSTAT
event spec (with a subevent spec) that matches any IP datagram containing a
TCP segment, with source IP address 192.168.0.1 and destination port 23.

The built-in meta-event type ANY is effectively the same as disjunction over
all application-specific event types, but is easier to specify (and more efficient
to implement as a special case).

NamedSigAction. A named signature action has a name and specifies
an event spec:

NamedSigAction ::=
action ActionId
‘{’

(‘[’ EventSpec ‘]’ | ActionId)
[‘:’ Assertion]

‘}’

Named signature actions may be used to improve clarity and maintainability
when multiple transitions have identical or similar actions; for example, having
the same action type but slightly different assertions. In such cases the common
part can be factored out, put into a named signature action, and then used in
the similar transitions.

Example:

use bsm, unix;
scenario example
{

...
action a1
{
[WRITE r] : r.euid != 0

}

transition t1 (s1 -> s2)
{
a1: r.euid != r.ruid

}

transition t2 (s1 -> s3)
{
a1: r.euid == r.ruid

Sensor Families for Intrusion Detection Infrastructures 15

}
...

}

In this example transitions t1 and t2 both use named signature action a1 as
their event spec, but with different assertions. This is equivalent to:

use bsm, unix;
scenario example
{
...
transition t1 (s1 -> s2)
{

[WRITE r] : (r.euid != 0) && (r.euid != r.ruid)
}

transition t2 (s1 -> s3)
{

[WRITE r] : (r.euid != 0) && (r.euid == r.ruid)
}
...

}

CodeBlock. Transitions and states may have code blocks that are ex-
ecuted after the corresponding transition and state assertions have been evalu-
ated and found to be True. A code block is a sequence of statements enclosed
in braces:

CodeBlock ::=
‘{’

{statement}
‘}’

The statements in a codeblock can be assignments, for and while loops, if -
then-else, procedure calls, etc. Semantically, the statements in a STATL code
block are executed in order, in the context of the global and local environments
of the scenario instance in which the code block is executed.

Timers. Timers are useful to express attacks in which some event or set
of events must (or must not) happen within an interval following some other
event or set of events. Timers can also be used to prevent “zombie” scenarios
– scenarios that have no possible evolution – from wasting memory resources.

Timers are declared as variables using the built-in type timer. There are
both local and global timers. All timers must be explicitly declared. Timers
are started in code blocks using the built-in procedure timer start. Timer
expiration is treated as an event, and these events may be matched by using
“timer events” as transition event specs.

Example:

16

scenario example
{

timer t1;

state s1
{
{ timer_start(t1, 30); }

}

transition expire (s1->s2)
{ [timer t1] }
...

}

The code block of state s1 starts timer t1, which will expire in 30 seconds
(i.e., at a time 30 seconds later than the timestamp on the event that led to state
s1). The timer event timer t1 matches the expiration of the timer named
t1. When timer t1 expires, transition expire will fire, leading to state s2.

Starting a timer that is already “running” resets that timer. A single timer
may appear in multiple transitions; every enabled transition that has timer t
as its event spec fires when the timer expires.

Assertions. Assertions appear as filter conditions in states and in event
specs (which are the matching element of transitions). STATL assertions are
built up from literal constants, variable and constant names, function calls, and
common arithmetic and relational operators. A STATL assertion is evaluated
at runtime in the context of the global and local environments of the scenario
instance where it is evaluated.

Assertions may use, but may not change, the value of any name in the global
or local environment. In addition, transition assertions may refer to the events
named in the event spec and to the fields of those events.

1.2 STAT Core

The STAT Core module is the runtime for the STATL language. The Core
implements the concepts of state, transition, timer, etc. In addition, the Core
performs the event processing task, which is the basic mechanism used to de-
tect intrusions by matching event streams against attack scenarios.

The STAT Core module has an event-based multi-threaded architecture (see
Figure 1.2). Events are sent to or received from the Core through four separate
event queues.

The control queue is used to send control events to the Core. These
events modify the Core’s behavior or its configuration (e.g., by request-
ing the activation of a new attack scenario).

The info queue is used by the Core to publish control-related informa-
tion, such as the result of a reconfiguration request. The events in this

Sensor Families for Intrusion Detection Infrastructures 17

Active Instances

Event
Queue

Event Providers

Event Subscriptions

Output
Queue

Configuration
Engine
Event

Configuration DB

Control
Queue

Info
Queue

Manager

Figure 1.2. The STAT Core Architecture.

queue are used by external components (e.g., a MetaSTAT Proxy, see
Section 1.3) to monitor the status of a Core component.

The input queue is the source of the event stream for the intrusion detec-
tion analysis. Multiple external Event Providers (see Section 1.1.3) can
contribute events to this queue.

The output queue is used by the Core to publish events related to the
intrusion detection process, such as detection alerts. This event queue
can be connected to the input event queue of another Core component to
realize a multi-core pipelined architecture.

The most important task of the Core is to keep track of active attack in-
stances, which are called, in STATL terms, scenario instances. The Core main-
tains a data structure for each scenario instance. The data structure contains the
current state of the scenario, its local environment, and the list of transitions
that are are enabled, that is, the transitions that may possibly fire. These transi-
tions have an associated action and a corresponding assertion, which, together,
represent the subscription for an event of interest. The set of all current event
subscriptions for all the active scenario instances is maintained by the Core in
an internal database.

The Event Engine component of the Core is responsible for extracting events
from the input queue and matching each event against the active event subscrip-

18

tions. For each matching event subscription the tuple 〈scenario, transition,

event〉 is inserted in the set of transitions to be fired. There are three sepa-
rate sets depending on the type of transition: nonconsuming, consuming, and
unwinding.

Once all the enabled transitions have been collected, the transitions are fired
one by one. First, nonconsuming transition are fired. When a nonconsuming
transition of a scenario instance is fired, a new scenario instance is created.
The original instance becomes the parent of the new instance which, in turn,
becomes one of the original instance’s children. The child instance has a copy
of the parent’s local environment and a copy of the parent’s timers. The state
of the child instance is set to the destination state of the transition that fired.
Then, the destination state code fragment is executed in the context of the child
instance. If the destination state is a final state the child instance is removed.
Otherwise, for each outgoing transition of the destination state a subscription
for the associated event is inserted in the event subscription database.

After all the nonconsuming transitions have been fired, consuming transi-
tions are fired. In the most common case, the instance state is changed to the
destination state, previous subscriptions are canceled, and new subscriptions
for the events associated with the transitions outgoing from the new state are
inserted in the event spec database. Then, the destination state code is executed.
If there are multiple enabled consuming transitions to be fired associated with
the same scenario instance, then for each transition firing, except for the last
one, a clone of the scenario instance is created. A cloned instance differs from
a child instance in that a clone instance has the same parent as the original
instance. After the creation of the clone, the execution process follows the
steps of the previous case. Another special case is represented by a scenario
instance that is in a state that can be the destination of an unwinding transition,
that is an unwindable state. In this case, if the instance has any descendants,
it is possible that at some time in the future one of the descendants may want
to unwind to the ancestor instance as it is in its current state. If the instance’s
state changes because of the firing of a consuming transition, the system would
reach an inconsistent state. To avoid this, a clone instance is created and the
original instance is put in an inactive status. In the inactive status, the current
subscriptions of the instance are removed and they are not replaced with new
subscriptions. The instance will be restored to an active status if one of the
children actually unwinds to the instance in the specified state.

After both consuming and nonconsuming transitions have been fired, the
Core proceeds to fire the unwinding transitions. The firing of an unwinding
transition with respect to a scenario instance has the effect of undoing the steps
that brought the scenario instance to its current state. This means that other sce-
nario instances may be affected by the unwinding procedure. More precisely,
if we consider an unwinding transition from state Sx to state Sy we have to

Sensor Families for Intrusion Detection Infrastructures 19

STATL

Language

Language Extension

Domain−specific

Domain−specific

Event Provider

STAT
Core

System

Detection

Intrusion
Domain−specific
Attack Modeling

Language

Attack Scenarios

Module

Language Extension

compilation

compilation

compilation

Scenario

Module

Event Provider

Plugins

STATL−to−C++ translation

Figure 1.3. The STAT Framework extension process. The grayed boxes are the modules that
need to be developed to extend the framework. The other components are generated automati-
cally through either translation or compilation.

remove all the instances that were created by the series of events that brought
the unwinding instance from state Sy to state Sx. In the Core, this is achieved
by traversing back the parent/child chain until an instance in state Sy is found.
Then the instance subtree rooted in the last visited instance is removed.

After all the transitions have been fired, the Configuration Manager compo-
nent takes control of the Core. If a new control message is found in the control
queue, the necessary reconfiguration of the Core is performed, and then the
event processing is resumed in the new configuration.

1.3 STAT Extensions

The STATL language and the Core runtime are domain-independent. They
do not support any domain-specific features that may be necessary to perform
intrusion detection analysis in particular domains or environments. For exam-
ple, network events such as an IP packet or the opening of a TCP connection
cannot be represented in STATL natively. Therefore, the STAT Framework
provides a number of mechanisms to extend the STATL language and the run-
time to match the characteristics of a specific target domain.

The framework extension process is performed by developing subclasses
of existing STAT Framework C++ classes. The framework root classes are
STAT Event,STAT Type, STAT Provider,STAT Scenario, and ST-
AT Response. In the following paragraphs, the extension process is pre-

20

sented in detail. A graphic description of the extension process is given in
Figure 1.3.

The first step in the extension process is to create the events and types that
characterize a target domain. A STAT event is the representation of an element
of an event stream to be analyzed. For example, an IP event may be used
to represent an IP datagram that has been sent on a link. The event stream is
composed of IP datagrams and other event types, such as Ethernet frames and
TCP segments. All event types must be subclasses of the STAT Event class.
Basic event types can be composed into complex tree structures. For example,
it is possible to use a tree of events to express encapsulation, such as Ethernet
frames that encapsulate IP datagrams, which, in turn, contain TCP segments.

All of the types used to describe the components of an event and other auxil-
iary data structures must be subclasses of the STAT Type class. For example,
the IPAddress class is a type used in the definition of the IP event, and,
therefore, it is a subclass of STAT Type.

A set of events and types that characterize the entities of a particular domain
is called a Language Extension. The name comes from the fact that the events
and types defined in a Language Extension can be used when writing a STATL
scenario once they are imported using the use STATL keyword. For example,
if the IP event and the IPAddress type are contained in a Language Exten-
sion called tcpip, then by using the expression use tcpip it is possible to
use IP events and IPAddress objects in attack scenario descriptions.

The events and types defined in a Language Extension must be made avail-
able to the runtime. Therefore, Language Extensions are compiled into dy-
namically linked libraries (i.e., a “.so” file in a UNIX system or a DLL file
in a Windows system). The Language Extension libraries are then loaded into
the runtime whenever they are needed by a scenario.

Attack scenarios are written in STATL, extended with the relevant Language
Extensions. For example, a signature for a port scanning attack can be ex-
pressed in STATL extended with the tcpip Language Extension. STATL
attack scenarios are then automatically translated into a subclass of the ST-
AT Scenario class. Finally, the attack scenarios are compiled into dynami-
cally linked libraries, called Scenario Plugins. When loaded into the runtime,
Scenario Plugins analyze the incoming event stream looking for events or se-
quences of events that match the attack description.

Once Language Extensions and Scenario Plugins are loaded into the Core it
is necessary to start collecting events from the environment and passing them
to the STAT Core for processing. The input event stream is provided by one
or more Event Providers. An Event Provider collects events from the external
environment (e.g., by obtaining packets from the network driver), creates STAT
events as defined in one or more Language Extensions, and inserts these events
into the event queue of the STAT Core.

Sensor Families for Intrusion Detection Infrastructures 21

Event Providers are created by subclassing the STAT Provider frame-
work class. This class defines a minimal set of methods for initialization/fi-
nalization of a provider and the retrieval of events from the environment. An
Event Provider component is compiled into a dynamically linked library. An
Event Provider library module can be loaded into the STAT Core at runtime.
Once a Provider has been loaded, it has to be activated with specific param-
eters. The activated Event Provider will then start collecting events from the
external environment. A single Event Provider can be activated in many in-
stances and many different Event Providers can be loaded and activated at
one time. Each activation of an Event Provider is associated with a dedicated
thread. The thread uses the functions defined in the Event Provider module to
retrieve events from the environment and insert them into the Core event queue
for processing.

A runtime equipped with Language Extensions, Scenario Plugins, and Event
Providers represents a functional intrusion detection system. In addition, the
STAT Framework also provides classes that define Response Modules. A Re-
sponse Module is created by subclassing the STAT Response class. A Re-
sponse Module contains a library of actions that may be associated with the
evolution of a scenario. For example, a network-based response action could
reset a TCP connection, or it could send an email to the Network Security Offi-
cer. Response Modules are compiled into dynamically linked libraries that can
be loaded into the runtime at any moment. Functions defined in a Response
Module can be associated with any of the states defined in a Scenario Plugin
that has been loaded in the runtime. This mechanism provides the ability to
associate different types of response functions with the intermediate steps of
an intrusion.

Figure 1.4 presents the high-level class structure of the STAT Framework.
The classes in the top part of the hierarchy are the STAT Framework classes.
The lower part of the hierarchy is represented by the classes used to create
a simple network-based intrusion detection system. The Language Exten-
sion Module is created by extending STAT Event with subclasses IP, UDP,
and TCP, which represent instances of the corresponding protocol units. The
STAT Type class is subclassed by IPAddress and Port, which are used to
represent IP addresses and TCP/UDP ports, respectively. NetSniffer is an
Event Provider (a subclass of STAT Provider) that reads the packets sent
on a network link and creates instances of the IP, UDP, and TCP events. The
three subclasses UDPFlood, RemoteBufferOverflow, and Portscan
extend the framework with descriptions of three network-based attacks. Fi-
nally, the subclass NetworkResponse contains network-specific response
functions such as firewall reconfiguration directives and TCP connection shut-
down.

22

STAT Framework Classes

Extension Classes

STAT_Provider STAT_Scenario STAT_Response

STAT_Object

RemoteBufferOverflow

STAT_Event STAT_Type

NetSniffer Network_ResponsePortscanUDPFloodIP UDP TCP IPAddressPort

STAT_Extension

Figure 1.4. The STAT Framework class hierarchy.

2. The STAT Family

The framework described in the previous section has been used to develop
a number of STAT-based intrusion detection systems. These IDSs are con-
structed by extending the STAT runtime with a selection of Language Exten-
sions, Event Providers, Scenario Plugins, and Response Modules.

To be more precise, we developed an application, called xSTAT, that acts as
a generic wrapper around the STAT Core runtime. xSTAT can be configured
with different components. For example, xSTAT may load a network-centered
Language Extension (e.g., the tcpip extension described in Section 1.1), a
network-based Event Provider, and some network attack scenarios. The result-
ing system would be a network-based intrusion detection system, similar to
Snort [28] or ISS RealSecure [13]. Note that loading a different set of compo-
nents would create a completely different IDS. In addition, the STAT Frame-
work has been ported to a number of platforms, including Linux, Solaris, Win-
dows NT/2000/XP, FreeBSD, and MacOS X. Therefore, it is possible to create
IDSs for these platforms by recompiling the necessary components.

By extending the STAT runtime with different modules it is possible to pro-
duce a potentially unlimited number of IDSs. In the past few years, we con-
centrated on the most important applications of intrusion detection, and we
developed a family of intrusion detection systems based on the STAT Frame-
work. The following subsections give a brief description of the current toolset.

2.1 USTAT

USTAT was the first application of the STAT technique to host-based in-
trusion detection. Even though the type of analysis that is performed on the
event stream has mostly remained unchanged, the tool architecture has been
completely re-designed [25]. USTAT performs intrusion detection using BSM
audit records [30] as input. The record contents are abstracted into events
described in a BSM-based Language Extension. USTAT also uses a UNIX-
centered Language Extension that contains the definitions of a number of UNIX
entities, such as user, process, and file. USTAT uses a BSM-based Event

Sensor Families for Intrusion Detection Infrastructures 23

Provider that reads BSM events as they are produced by the Solaris audit-
ing facility, transforms them into STAT events, and passes them to the STAT
Core. The events are matched against a number of Scenario Plugins that model
different UNIX-based attacks, such as buffer overflows and access to sensitive
files by unprivileged applications.

2.2 NetSTAT

NetSTAT is a network-based IDS composed of a network-centered Lan-
guage Extension, an Event Provider that collects traffic from traffic dumps or
network links, and a number of scenarios that describe network-based attacks,
such as scanning attacks, remote-to-local attacks, and traffic spoofing. Net-
STAT is similar to other network-based intrusion detection systems. However,
it has some unique features that are the result of being part of the STAT fam-
ily. For example, NetSTAT scenarios can be written in a well-defined language
that has a precise semantics [5]. In addition, it is possible to perform stateful
analysis that takes into account the multi-step nature of some attacks. This is
in contrast to most existing network-based intrusion detection systems, which
are limited to the analysis of single packets and do not provide a well-defined
language for the description of multi-step scenarios.

2.3 WebSTAT and logSTAT

WebSTAT and logSTAT are two systems that operate at the application level.
They both apply STAT analysis to the events contained in log files produced by
applications. More precisely, WebSTAT parses the logs produced by Apache
web servers [1], and logSTAT uses UNIX syslog files as input. In both cases,
Language Extension modules that define the appropriate events and types have
been developed, as well as Event Providers that are able to parse the logs and
produce the corresponding STAT events.

2.4 AlertSTAT and afedSTAT

AlertSTAT is a STAT-based intrusion detection system whose task is to fuse,
aggregate, and correlate alerts from other intrusion detection systems. There-
fore, AlertSTAT uses the alerts produced by other sensors as input and matches
them with respect to attack scenarios that describe complex, multi-step attacks.
For example, an AlertSTAT scenario may identify the following three-step at-
tack. The first step is a scanning attack detected by a network-based intrusion
detection system, such as Snort or NetSTAT. This is followed by a remote
buffer overflow attack against a Web Server (as detected by WebSTAT). Next,
an alert produced by a host-based intrusion detection system (e.g., USTAT)
located on the victim host indicates that the Apache process is trying to ac-
cess the /etc/exports file on the local machine. The resulting alert is an

24

aggregated report that conveys a much higher level view of the overall attack
process.

AlertSTAT operates on alerts formatted according to the IETF’s Intrusion
Detection Message Exchange Format (IDMEF) proposed standard [2]. The
application is built by composing an IDMEF-based Language Extension with
an Event Provider that reads IDMEF events from files and/or remote connec-
tions and feeds the resulting event stream to the STAT Core. A number of at-
tack scenarios have been developed, including the detection of complex scans,
“many-to-one” and “one-to-many” attacks, island hopping attacks, and privi-
lege escalation attacks.

Another correlator, called afedSTAT, has also been developed. The afed-
STAT IDS uses the events contained in a database of alerts, called AFED,
which was developed by the Air Force Research Labs. In this case, the Event
Provider is a format translator. More precisely, the Event Provider used in
afedSTAT reads events from the database and transforms them into IDMEF
events as specified by the IDMEF Language Extension. As a consequence,
it was possible to reuse all of the scenarios developed for AlertSTAT in the
analysis of the AFED data without change.

2.5 WinSTAT and LinSTAT

WinSTAT and LinSTAT are two host-based systems similar to USTAT. Win-
STAT uses the event logs produced by Windows NT/2000/XP. LinSTAT uses
the event logs produced by the Snare Linux kernel module [12]. These two
systems are an interesting example of component reuse to implement similar
functionality in different environments/platforms. The Event Providers for US-
TAT, LinSTAT, and WinSTAT are obviously different. However, some of the
entities used in scenarios are the same, and so are some of the scenarios (e.g.,
a scenario that detects privileged access from unprivileged applications).

2.6 AodvSTAT and AgletSTAT

The versatility of the STAT Framework was tested in developing very dif-
ferent systems. A well-defined framework extension process is not only a good
way to develop a family of systems; it is also useful to produce proof-of-
concept prototypes in a short amount of time. This is the case for two sys-
tems, called AodvSTAT and AgletSTAT. AodvSTAT is an IDS that interprets
AODV [24] protocol messages and detects attacks against ad hoc wireless net-
works. AgletSTAT is an IDS that analyzes the events generated by a mobile
agent system, called Aglets [18], and detects attacks that exploit mobile agents.

Sensor Families for Intrusion Detection Infrastructures 25

2.7 Family Issues

Developing a family of systems using an object-oriented framework has a
number of advantages. First, the members of the program family benefit from
the characteristics of the common code base. For example, all of the STAT
applications use extended versions of STATL, and, therefore, they all have a
well-defined language to describe attack scenarios. Second, it is possible to
embed command and control functionality within the shared part of the frame-
work. As a consequence a single configuration and control paradigm can be
used to control a number of different systems. This is an issue that is particu-
larly relevant for the domain of intrusion detection, and it is explained further
in Section 1.3. Third, by factoring-out the commonalities between members of
the family, it is possible to reuse substantial portions of the code. Finally, the
use of a framework-based approach reduces the development time and allows
one to build complete intrusion detection systems in a small amount of time.

3. MetaSTAT

MetaSTAT is an infrastructure that enables dynamic reconfiguration and
management of the deployed STAT-based IDSs. MetaSTAT is responsible for
the following tasks:

Route control messages to STAT sensors and other MetaSTAT in-
stances. MetaSTAT components can remotely control STAT-based sen-
sors 2 through control messages. These messages may also cross the
boundary of a web of sensors if the infrastructure security policy allows
one to do so.

Collect, store, and route the alerts produced by the managed sen-
sors. Alerts about ongoing attacks are collected in a database associated
with a single web of sensors. In addition, MetaSTAT components and
STAT-based sensors can subscribe for specific alerts. Alerts matching a
subscription are routed to the appropriate MetaSTAT endpoints. Alerts
can also be sent across webs of sensors, to support high-level correlation
and alert fusion.

Maintain a database of available modules and relative dependen-
cies. Every STAT component is stored in a Module Database together
with meta-information, such as the dependencies with respect to other
modules and the operational environment where the module can be de-
ployed.

Manage sensor reconfiguration. MetaSTAT uses the Module Database
and the information regarding the components that are active or installed

26

MetaSTAT

Sensor Database

Module Database

Alert Database

STAT sensor

CommSTAT Proxy

Host

STAT sensor

CommSTAT Proxy

Host

STAT sensor

CommSTAT Proxy

Host

Figure 1.5. Architecture of a web of sensors.

at each STAT-based sensor as the basis for controlling the sensors and
planning reconfigurations of the surveillance infrastructure.

3.1 Control Infrastructure

The high-level view of the architecture of the STAT-based web of sensors
is given in Figure 1.5. MetaSTAT uses a communication infrastructure, called
CommSTAT, to route messages and alerts between the different MetaSTAT end-
points in a secure way. CommSTAT messages are based on the IDMEF format,
which defines two events, namely Heartbeat and Alert. This original set
of events has been extended to include STAT-related control messages that are
used to control and update the configuration of STAT sensors. For example,
messages to ship a Scenario Plugin to a remote sensor and have it loaded into
the Core have been added, as well as messages to manage Language Exten-
sions and other modules.

MetaSTAT-enabled sensors are connected to a MetaSTAT proxy, which serves
as an interface between the MetaSTAT infrastructure and the sensors. The
proxy application performs preprocessing of messages, authentication of the
MetaSTAT endpoints, and integration of third-party applications into the Meta-
STAT infrastructure. When receiving messages from a MetaSTAT controller,
the proxy passes the control message on to the connected sensors, which ex-
ecute the control command. Three different classes of control messages are
supported:

Sensor Families for Intrusion Detection Infrastructures 27

������������ ���
���
������ ����������

������ ���
���
������

	�	�		�	�	

�

�

(a) Bare Sensor

Proxy
CommSTAT

Event queue

Core

Host

(c) Sensor with Scenario Plugin

Proxy
CommSTAT

Event queue

Core

Scenario Plugin library

(d) Scenario Plugin with Responses

Proxy
CommSTAT

Event queue

Core

Response library

Sensor Sensor

Sensor Sensor

(b) Sensor with Event Provider

Proxy
CommSTAT

Event queue

Core

Event Provider library

Language Extension
library

Instances

Scenario Scenario

Response Functions

Specification Specification

Event Provider Event Provider

Event Provider

Figure 1.6. Evolution of a STAT-based sensor.

Install/uninstall messages. An install message copies a software com-
ponent to the local file system of a sensor, and an uninstall message
removes the component from the file system.

Load/unload messages. A load message instructs a sensor to load a
STAT module into the address space of the sensor. After the processing
of the message is completed the loaded module is available for the sensor
to use. An unload message removes an unused module from the address
space of a sensor.

Activate/deactivate messages. An activate message starts an instance
of a previously loaded STAT module. The activate message supports
the passing of parameters to a STAT module. It is common to activate
several instances of the same module with different parameters. A deac-
tivate message stops the execution of an instance.

The configuration of a STAT sensor can be changed at run-time through
control directives sent by the MetaSTAT controller to the proxy component re-
sponsible for the sensor. A set of initial modules can be (and usually is) defined
at startup time to determine the initial configuration of a sensor. In the follow-
ing paragraphs, an incremental configuration of a STAT-based sensor will be
described to better illustrate the role of each sensor module, provide a hint of

28

the high degree of configurability of sensors, and describe the dependencies
between the different modules.

When a sensor is started with no modules, it contains only an instance of
the STAT Core waiting for events to be processed. The Core is connected
to a proxy, which, in turn, is connected to a MetaSTAT controller instance.
This initial “bare” configuration, which is presented in Figure 1.6 (a), does not
provide any intrusion detection functionality.

The first step is to provide a source of events. To do this, an Event Provider
module must be loaded into the sensor and then activated. This is done through
MetaSTAT by requesting the shipping of the Event Provider shared library to
the sensor, and then requesting its loading and activation. An Event Provider
relies on the event definitions contained in one or more Language Extension
modules. If these are not available at the sensor’s host, then they have to be in-
stalled and loaded. Once both the Event Provider and the Language Extensions
are loaded into the sensor, the Event Provider is activated. As a consequence,
a dedicated thread of execution is started to execute the Event Provider. The
provider collects events from an external source, filters out those events that are
not of interest, transforms the remaining events into event objects (as defined
by a Language Extension), and then inserts the event objects into the Core in-
put queue. The Core, in turn, consumes the events and checks if there are any
STAT scenarios interested in the specific event types. At this point, there are
no scenarios, and, therefore, there are no events of interest to be processed.
This configuration is described in Figure 1.6 (b).

To start doing something useful, it is necessary to load one or more Scenario
Plugins into the Core and activate them. To do this, first a Scenario Plugin
module, in the form of a shared library, is installed on the sensor’s host. A
scenario may need the types and events of one or more Language Extension
modules. If these are not already available at the destination host then they
are installed and loaded. Once all the necessary components are available,
the scenario is loaded into the Core and activated, specifying a set of initial
parameters. When a Scenario Plugin is activated, an initial scenario prototype
is created. The scenario prototype contains the data structures representing the
scenario’s definition in terms of states and transitions, a global environment,
and a set of activation parameters. The prototype creates a first instance of
the scenario. This instance is in the initial state of the corresponding attack
scenario. The Core analyzes the scenario definition and subscribes the instance
for the events associated with the transitions that start from the scenario’s initial
state. At this point the Core is ready to perform event processing, as shown in
Figure 1.6 (c).

As a scenario evolves from state to state, it may produce some output. A
typical case is the generation of an alert when a scenario completes. Another
example is the creation of a synthetic event, which is a STAT event that is

Sensor Families for Intrusion Detection Infrastructures 29

generated by a scenario plugin and inserted in the Core event queue. The event
is processed like any other event and may be used to perform forward chaining
of scenarios.

Apart from logging (the default action when a scenario completes) and the
production of synthetic events (that are specified internally to the scenario def-
inition), other types of responses can be associated with scenario states using
response modules. Response modules are collections of functions that can be
used to perform any type of response (e.g., page the administrator, reconfig-
ure a firewall, or shutdown a connection). Response modules are implemented
as shared libraries. To activate a response function it is necessary to install
the shared library containing the desired response functionality on the sensor’s
host, load the library into the Core, and then request the association of a func-
tion with a specific state in a scenario definition. This allows one to specify
responses for any intermediate or final state in any attack scenario. Each time
the specified state is reached by any of the instances of the scenario, the corre-
sponding response is executed. Responses can be installed, loaded, activated,
and removed remotely using the MetaSTAT component. Figure 1.6 (d) shows a
response library and some response functions associated with particular states
in the scenario definition.

At this point, the sensor is configured as a full-fledged intrusion detection
system. Event providers, scenario plugins, language extensions, and response
modules can be loaded and unloaded following the needs of the overall intru-
sion detection functionality. As described above, these reconfigurations are
subject to a number of dependencies that must be satisfied in order to suc-
cessfully load a component into the sensor and to have the necessary inputs
and outputs available for processing. These dependencies are managed by the
MetaSTAT component, and they are discussed in the next section.

3.2 Sensor Reconfiguration

The flexibility and extendibility supported by the STAT-based approach is
a major advantage: the configuration of a sensor can be reshaped in real-time
to deal with previously unknown attacks, changes in the site’s policy, different
levels of concern, etc. Fine-grained configurability requires careful planning
of module installation and activation, and this activity can be very complex
and error-prone if carried out without support. For this reason the MetaSTAT
component maintains a database of modules and their associated dependencies
and a database of the current sensor configurations. These databases provide
the support for consistent modifications of the managed web of sensors. In
the following, the term module is used to denote language extensions, event
providers, scenario plugins, and response modules. The term external compo-
nent is used to characterize some host facility or service that is needed by an

30

event provider as a source of raw events or by a response function to perform
some action. External components are outside the control of MetaSTAT. For
example, a BSM event provider needs the actual BSM auditing system up and
running to be able to access audit records and provide events to the STAT Core.

Dependencies between modules can be classified into activation dependen-
cies and functional dependencies. Activation dependencies must be satisfied
for a module to be activated and run without failure. For example, consider a
scenario plugin that uses predicates defined in a language extension. The lan-
guage extension must be loaded into the Core before the plugin is activated.
Otherwise, the plugin activation will fail with a run-time linking error. Func-
tional dependencies are associated with the inputs of a module. The functional
dependencies of a module are satisfied if there exist modules and/or exter-
nal components that can provide the inputs used by the module. Note that a
module can successfully be activated without satisfying its functional depen-
dencies. For example, suppose that a scenario plugin that uses BSM events
has been successfully activated, but there is no BSM event provider to feed
BSM events to the Core. In this case, the scenario is active but completely
useless. The inputs and outputs of the different module types, and the relative
dependencies are summarized in Table 1.1.

Module Inputs Outputs Activation Dependencies Functional Dependencies

Event
Provider

External
event
stream

STAT
events

Language Extension
modules

External components

Scenario
Plugin

STAT
events,
synthetic
events

Synthetic
events

Language Extension
modules

Scenario plugins, Event
providers

Response
Module

Parameters
from plu-
gin

External
response

Language Extension
modules

External components

Language
Extension

None None Language Extension
modules

None

Table 1.1. Input and output, and dependencies of STAT sensor modules.

Information about dependencies between modules is stored in MetaSTAT’s
Module Database.

Determining the functional dependencies on other modules requires that
two queries be made on the Module Database. The first query gets the in-
puts required by the module. The second query determines which modules are
generating the inputs that were returned from the first query. The results re-
turned from the second query identify the modules that satisfy the functional

Sensor Families for Intrusion Detection Infrastructures 31

dependencies of the original module. The functional dependencies on exter-
nal components are modeled explicitly by the database. In addition to de-
pendencies, the Module Database also stores information such as version and
OS/architecture compatibility information.

The Module Database is used by MetaSTAT to automatically determine the
steps to be undertaken when a sensor reconfiguration is needed. Since sen-
sors do not always start from a “bare” configuration, as shown in Figure 1.6
(a), it is usually necessary to modify an existing sensor configuration. There-
fore, the MetaSTAT component maintains a second database called the Sen-
sor Database, which contains the current configuration for each sensor. This
database is updated at reconfiguration time by querying the current configura-
tion of the sensor.

To be more precise, the term configuration is defined as follows: A STAT
sensor configuration is uniquely defined by a set of installed and activated
modules and available external components. The term installed is used to de-
scribe the fact that a module has been transferred to and stored on a file system
accessible by the sensor and in a location known by the sensor. The term acti-
vated is used to describe the fact that a module has been dynamically loaded in
a sensor as the result of a control command from MetaSTAT. The term loaded
has the same meaning as activated in relation to language extension modules.

A configuration can be valid and/or meaningful. A configuration is valid if
all activated modules have all their activation dependencies satisfied. A con-
figuration is meaningful if the configuration is valid and all functional depen-
dencies are also satisfied.

3.3 Reconfiguration Example

To better describe the operations involved in a reconfiguration and the sup-
port provided by MetaSTAT, an example will be used.

Suppose that the Intrusion Detection Administrator (IDA) noted or was no-
tified of some suspicious FTP activity in a subnetwork inside the IDA’s organi-
zation. Usually, the IDA would contact the responsible network administrator
and would ask him/her to install and/or activate some monitoring software to
collect input data for further analysis. The IDA might even decide to login
remotely to particular hosts to perform manual analysis. Both activities are
human-intensive and require considerable setup time.

MetaSTAT supports a different process in which the IDA interacts with a
centralized control application (i.e., the MetaSTAT console) and expresses an
interest in having the subnetwork checked for possible FTP-related abuse. This
request elicits a number of actions:

32

1 The scenario plugins contained in the Module Database are searched for
the keyword “FTP”. More precisely the IDA’s request is translated into
the following SQL query:

SELECT module_id, name, os_platform, description
FROM Module_Index
WHERE (name LIKE ’%ftp%’ OR

description LIKE ’%ftp%’)
AND type="plugin";

The following information is returned:

module id name os platform description

module 1 wu-ftpd-bovf Linux X86 BOVF attack
against
ftpd

module 2 ftpd-quote-abuse Linux X86 QUOTE
command
abuse

.
module 9 ftpd-protocol-verify Linux X86 FTP

protocol
verifier

The IDA selects the wu-ftp-bovf and ftpd-quote-abuse sce-
nario plugins for installation.

2 The Module Database is examined for possible activation dependencies.
The wu-ftp-bovf activation dependencies are determined by the fol-
lowing query:

SELECT dep_module_id FROM Activation_Dependency
WHERE module_id="module_1";

The query results (not shown here) indicate that the scenario plugin re-
quires the ftp language extension. This is because events and pred-
icates defined in the ftp extension are used in states and transitions
of the wu-ftp-bovf scenario. A similar query is performed for the
ftpd-quote-abuse scenario plugin. The query results indicate that
the syslog language extension is required by the plugin.

3 The Module Database is then searched for possible functional depen-
dencies. For example in the case of the wu-ftp-bovf scenario the
following query is executed:

Sensor Families for Intrusion Detection Infrastructures 33

SELECT input_id FROM Module_Input
WHERE module_id="module_1";

The query returns an entry containing the value FTP PROTOCOL. This
means that the wu-ftp-bovf scenario uses this type of event as input.
Therefore, the wu-ftp-bovf scenario plugin has a functional depen-
dency on a module providing events obtained by parsing the FTP pro-
tocol. A similar query indicates that the ftpd-quote-abuse plugin
has a functional dependency on a provider of SYSLOG events.

4 These new requirements trigger a new search in the Module Database
to find which of the available modules can be used to provide the re-
quired inputs. SYSLOG events are produced by three event providers:
syslog1, syslog2, and win-app-event. The FTP protocol
events are produced, as synthetic events, by the ftp-protocol-ve-
rify scenario.

5 Both the syslog1 and syslog2 event providers require an exter-
nal source, which is the syslog facility of a UNIX system. In particu-
lar, syslog2 is tailored to the syslogkd daemon provided with Linux
systems. Both event providers have an activation dependency on the
syslog language extension. The win-app-event event provider
is tailored to the Windows NT platform. It depends on the NT event
log facility (as an external component) and relies on the NT event log
language extension (winevent). The ftp-protocol-verify is a
network-based scenario and, as such, requires a network event provider
that produces events of type STREAM, which are events obtained by re-
assembling TCP streams. The scenario has two activation dependencies;
it needs both the tcpip and the ftp language extensions. The first is
needed because STREAM events are used in the scenario’s transition as-
sertions. The second is needed to be able to generate the FTP proto-
col synthetic events.

6 Events of type STREAM are produced by an event provider called net-
proc. This event provider is based on the tcpip language extension,
and requires, as an external component, a network driver that is able to
eavesdrop traffic.

7 At this point, the dependencies between the modules have been deter-
mined (see Figure 1.7). The tool now identifies the sensors that need to
be reconfigured. This operation is done by querying the Sensor Database
to determine which hosts of the network under examination have ac-
tive STAT-based sensors. The query identifies two suitable hosts. Host
lucas, a Linux machine, has a bare sensor installed. Host spielberg,

34

ftp FTP PROTOCOL

wu−ftp−bovf

lang ext event

scenario

ftp−protocol−verify

scenario

O

tcpipftp
lang extlang ext

A

A A

STREAM

netproc

network−drivertcpip

A

syslog

ftpd−quote−abuse

SYSLOG

syslog2

syslog syslog

win−app−event

winevent NTlogging

E

O

I

OOOlang ext

lang ext lang ext lang ext

scenario

event

event provider

event provider

lang ext

event

external component

external componentexternal component
syslogd syslogd

A
E

A
E

A

I A

E

I

external component

event providerevent provider
syslog1

Figure 1.7. Dependency graph for scenarios wu-ftp-bovf and ftpd-quote-abuse.
In the figure, arrows marked with the letter “A” are used to represent activation dependencies.
Arrows marked with “I” represent the relationship between a module and the input events re-
quired. Arrows marked with an “O” represent the relationship between an event type and the
module that produce that type of event as output. Arrows marked with “E” represent a depen-
dency on an external component.

another Linux machine, runs a STAT-based sensor equipped with the
netproc event provider, the tcpip language extension, and some sce-
nario plugins. Both hosts provide the network driver and UNIX syslog
external component. The tool decides (possibly with intervention from
the IDA) to install the ftpd-quote-abuse scenario on lucas and
the wu-ftp-bovf scenario on spielberg.

8 The syslog language extension is sent to lucas, and it is installed in
the file system. This is done using the following CommSTAT messages:

<x-stat-extension-lib-install id="1">
<extension_lib name="syslog" version="1.0.1">

[... encoded library ...]
</extension-lib>

</x-stat-extension-lib-install>

<x-stat-extension-lib-activate id="2">
<extension_lib name="syslog" version="1.0.1">
</extension-lib>

</x-stat-extension-lib-activate>

Sensor Families for Intrusion Detection Infrastructures 35

The syslog2 event provider is sent, installed, and loaded in the sensor
by means of similar commands. At this point syslog events are being fed
to the Core of the sensor on host lucas. The ftpd-quote-abuse
scenario plugin is sent to the host, installed on the file system, and even-
tually loaded into the Core.

9 The ftp language extension is sent to host spielberg. The tcpip
language extension is already available, as is the netproc event provi-
der. Therefore, the ftp-protocol-verify scenario plugin can be
shipped to host spielberg, installed, and loaded into the Core. The
scenario starts parsing STREAM events and producing FTP PROTOCOL
synthetic events. As the final step, the wu-ftpd-bovf scenario is
shipped to host spielberg, installed, and loaded into the Core, where
it immediately starts using the synthetic events generated by the ftp--
protocol-verify scenario.

After the necessary reconfigurations are carried out, the IDA may decide to
install specific response functions for the newly activated scenarios. A process
similar to the one described above is followed. Response modules, in the form
of shared libraries, may be installed on a remote host and linked into a sensor.
Additional control commands may then be used to associate states in a scenario
with the execution of specific functions of the response module.

4. Related Work

Object-oriented frameworks are “sets of cooperating classes that make up
a reusable design for a specific class of software” [6]. Generally, frameworks
are targeted for specific domains to maximize code reuse for a class of appli-
cations [15]. The STAT Framework is targeted for the development of event-
based intrusion detection systems. In this context, the use of a framework dif-
fers from traditional approaches [11, 29], because all of the components that
are developed as part of the framework are highly independent modules that
can be composed (almost) arbitrarily through dynamic loading into the frame-
work runtime. In addition, the framework extension process is not limited to
the creation of a domain-specific intrusion detection system. The same pro-
cess produces products for different domains, depending on the events, types,
and predicates defined in the Language Extensions. The product of the STAT
Framework is a family of intrusion detection systems.

The concept of program families was introduced by Parnas in [22] and
has received considerable attention from the Software Engineering commu-
nity ever since. Unfortunately, the criteria, methodologies, and lessons learned
in developing software families in a number of fields have not been applied to
intrusion detection. Even though in recent years the focus of intrusion detec-
tion has moved from single-domain approaches (e.g., network-based only) to

36

multi-domain approaches (e.g., correlation of alerts from both network-level
and OS-level event analysis), this change of focus has not been matched by
a corresponding shift in development methodology. As a consequence, while
IDS are becoming more common, their development is still characterized by an
ad hoc approach. Notable examples are SRI’s Emerald [26, 20], ISS RealSe-
cure [13], and Prelude [31]. All of these toolsets include a number of different
sensor components and high-level analysis engines. For example, Emerald has
a host-based intrusion detection system, two network-based analyzers, and a
correlation/aggregation component. Even though the toolset covers a number
of different domains, there is no explicit mechanism in the Emerald approach
that is exclusively dedicated to support the extension of the system to previ-
ously uncovered domains. The same limitation appears in both RealSecure,
which is a mainstream commercial tool, and Prelude, which is an open-source
project.

5. Conclusions

The STAT Framework is an approach for the development of intrusion de-
tection systems based on the State Transition Analysis Technique. This chapter
described the framework, the corresponding extension process, and the result
of applying the framework to develop a family of systems.

The work reported in this chapter makes contributions in several areas. By
using object-oriented frameworks and by leveraging the properties of program
families it was possible to manage the complexity of implementing intrusion
functionality on different platforms, environments, and domains. The frame-
work supports efficient development of new intrusion detection sensors be-
cause the main mechanisms and the semantics of the event processing are im-
plemented in a domain-independent way. Therefore, the IDS developer has
to implement only the domain/environment-specific characteristics of the new
sensor. Practitioners in the field of intrusion detection can certainly gain from
the lessons learned. Hopefully, they will use the STAT framework or adapt a
component-based software family approach for their own development.

Two areas where the reported work contributes to previous work in the com-
ponent and framework communities is in leveraging the architecture to have a
common configuration and control infrastructure and in having the attack spec-
ification language tightly coupled with the application development. STAT-
based intrusion detection systems that operate on different event streams (e.g.,
OS audit records and network packets) and at different abstraction levels (e.g.,
detection and correlation) share a similar architecture and similar control prim-
itives. As a consequence, a single configuration and control infrastructure can
be used to manage a large number of heterogeneous components.

Sensor Families for Intrusion Detection Infrastructures 37

Language Extension modules extend the domain-independent STATL core
language to allow users to specify attack scenarios in particular application do-
mains. The same Language Extension modules are compiled and used by the
runtime core for recognizing events and types. Because it is the same Lan-
guage Extension module for both, the user automatically gets an attack spec-
ification language along with his/her intrusion detection system. In addition,
because the attack specification languages are an extension of the STATL core
language, a user does not need to learn a new language style when setting up
attack scenarios for a new intrusion detection application.

The STAT tools and the MetaSTAT infrastructure have been used in a num-
ber of evaluation efforts, such as the MIT/Lincoln Labs evaluations and the
Air Force Rome Labs evaluations, in technology integration experiments, such
as DARPA’s Grand Challenge Problem (GCP) and the iDemo technology inte-
gration effort. In all of these very different settings, the STAT tools performed
very well by detecting attacks in real-time with very limited overhead. In most
cases, the STAT tools were run and compared with other tools from both the
research and the commercial worlds. The positive feedback received from the
organizers of these evaluation efforts provided a particularly significant com-
parison of the STAT toolset performance with respect to other state-of-the-art
intrusion detection technologies.

The STAT Framework, the MetaSTAT infrastructure, and the STAT-based
tools are open-source and publicly available at the STAT web site http://www.-
cs.ucsb.edu/∼rsg/STAT.

Acknowledgments

This research was supported by the Army Research Office, under agree-
ment DAAD19-01-1-0484, by the Defense Advanced Research Projects Agen-
cy (DARPA) and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-1-0207, and by the National Security
Agency’s University Research Program, under agreement number MDA904-
98-C-A891. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Army Research Office, the
Defense Advanced Research Projects Agency (DARPA), the National Security
Agency (NSA), or the U.S. Government.

38

Notes

1. An alternative would be to execute the transition codeblock before evaluating the state

assertion. However, this would require backtracking to undo environment changes when the

state assertion is not satisfied. Otherwise, the environment could be changed for “partially”

fired transitions, which would be semantically unsatisfactory.

2. In the remainder of this chapter an instance of an intrusion detection system may be

referred to as a sensor.

References

[1] Apache 2.0 Documentation, 2001. http://www.apache.org/.

[2] D. Curry and H. Debar. Intrusion Detection Message Exchange For-
mat: Extensible Markup Language (XML) Document Type Definition.
draft-ietf-idwg-idmef-xml-06.txt, December 2001.

[3] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo. Adden-
dum to “Testing and Evaluating Computer Intrusion Detection Systems”.
CACM, 42(9):15, September 1999.

[4] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo. Test-
ing and Evaluating Computer Intrusion Detection Systems. CACM,
42(7):53–61, July 1999.

[5] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An Attack Lan-
guage for State-based Intrusion Detection. Journal of Computer Security,
2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

[7] A.K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and
Unknown Intrusions Against Programs. In Proceedings of the Annual
Computer Security Application Conference (ACSAC’98), pages 259–267,
Scottsdale, AZ, December 1998.

[8] K. Ilgun. USTAT: A Real-time Intrusion Detection System for UNIX.
Master’s thesis, Computer Science Department, University of California,
Santa Barbara, July 1992.

[9] K. Ilgun. USTAT: A Real-time Intrusion Detection System for UNIX. In
Proceedings of the IEEE Symposium on Research on Security and Pri-
vacy, Oakland, CA, May 1993.

40

[10] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State Transition Analysis: A
Rule-Based Intrusion Detection System. IEEE Transactions on Software
Engineering, 21(3):181–199, March 1995.

[11] Taligent Inc. Building Object-Oriented Frameworks. White Paper, 1994.

[12] Intersect Alliance. Snare: System Intrusion Analysis and Reporting Envi-
ronment. http://www.intersectalliance.com/projects/
Snare, August 2002.

[13] ISS. Realsecure 7.0. http://www.iss.net/, August 2002.

[14] H. S. Javitz and A. Valdes. The NIDES Statistical Component Descrip-
tion and Justification. Technical report, SRI International, Menlo Park,
CA, March 1994.

[15] R. Johnson and B. Foote. Designing Reusable classes. Journal of Object-
Oriented Programming, 1(2):22–35, June/July 1988.

[16] K. Kendall. A Database of Computer Attacks for the Evaluation of Intru-
sion Detection Systems. Master’s thesis, MIT, June 1999.

[17] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-
Critical Programs in Distributed Systems: A Specification-based Ap-
proach. In Proceedings of the 1997 IEEE Symposium on Security and
Privacy, pages 175–187, May 1997.

[18] D. Lange and M. Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[19] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Ziss-
man. Evaluating Intrustion Detection Systems: The 1998 DARPA Off-
line Intrusion Detection Evaluation. In Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition, Volume 2, Hilton Head,
SC, January 2000.

[20] P.G. Neumann and P.A. Porras. Experience with EMERALD to Date. In
First USENIX Workshop on Intrusion Detection and Network Monitoring,
pages 73–80, Santa Clara, California, April 1999.

[21] NFR Security. Overview of NFR Network Intrusion Detection System,
February 2001.

[22] D.L. Parnas. The Design and Development of Program Families. IEEE
Transactions on Software Engineering, March 1976.

REFERENCES 41

[23] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.
In Proceedings of the 7th USENIX Security Symposium, San Antonio,
TX, January 1998.

[24] C.E. Perkins and E.M. Royer. Ad hoc on-demand distance vector routing.
In C. Perkins, editor, Ad hoc Networking. Addison-Wesley, 2000.

[25] P.A. Porras. STAT – A State Transition Analysis Tool for Intrusion De-
tection. Master’s thesis, Computer Science Department, University of
California, Santa Barbara, June 1992.

[26] P.A. Porras and P.G. Neumann. EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances. In Proceedings of the 1997
National Information Systems Security Conference, October 1997.

[27] M.J. Ranum, K. Landfield, M. Stolarchuck, M. Sienkiewicz, A. Lambeth,
and E. Wall. Implementing a Generalized Tool for Network Monitoring.
In Eleventh Systems Administration Conference (LISA ’97). USENIX,
October 1997.

[28] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the USENIX LISA ’99 Conference, November 1999.

[29] G. F. Rogers. Framework-Based Software Development in C++.
Prentice-Hall, 1997.

[30] Sun Microsystems, Inc. Installing, Administering, and Using the Basic
Security Module. 2550 Garcia Ave., Mountain View, CA 94043, Decem-
ber 1991.

[31] Y. Vandoorselaere. Prelude, an Hybrid Open Source Intrusion Detection
System. http://www.prelude-ids.org/, August 2002.

[32] G. Vigna and R.A. Kemmerer. NetSTAT: A Network-based Intrusion De-
tection Approach. In Proceedings of the 14th Annual Computer Security
Application Conference, Scottsdale, Arizona, December 1998.

[33] G. Vigna, R.A. Kemmerer, and P. Blix. Designing a Web of Highly-
Configurable Intrusion Detection Sensors. In W. Lee, L. Mè, and A. We-
spi, editors, Proceedings of the 4th International Symposiun on Recent
Advances in Intrusion Detection (RAID 2001), volume 2212 of LNCS,
pages 69–84, Davis, CA, October 2001. Springer-Verlag.

[34] C. Warrender, S. Forrest, and B.A. Pearlmutter. Detecting intrusions us-
ing system calls: Alternative data models. In IEEE Symposium on Secu-
rity and Privacy, pages 133–145, 1999.

