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Abstract

In recent years, web applications have become tremendously popular, and nowadays they are rou-
tinely used in security-critical environments, such as medical, financial, and military systems. As the use
of web applications for critical services has increased, the number and sophistication of attacks against
these applications have grown as well. Most approaches to the detection of web-based attacks analyze
the interaction of a web application with its clients and back-end servers. Even though these approaches
can effectively detect and block a number of attacks, there are attacks that cannot be detected only by
looking at the external behavior of a web application.

In this paper, we present Swaddler, a novel approach to the anomaly-based detection of attacks
against web applications. Swaddler analyzes the internal state of a web application and learns the re-
lationships between the application’s critical execution points and the application’s internal state. By
doing this, Swaddler is able to identify attacks that attempt to bring an application in an inconsistent,
anomalous state, such as violations of the intended workflow of a web application. We developed a
prototype of our approach for the PHP language and we evaluated it with respect to several real-world
applications.
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1 Introduction

Web applications are quickly becoming the most common way to access services and functionality. Even
applications such as word processors and spreadsheets are becoming web-based because of the advantages
in terms of ubiquitous accessibility and ease of maintenance.

However, as web applications become more sophisticated, so do the attacks that exploit them. Some
of these attacks are evolutions of well-known attacks, such as buffer overflows or command injections. In
addition, there are attacks that are specific to web applications, such as forceful browsing and parameter
manipulation.

Web applications are usually implemented as a number of server-side components, each of which can
take a number of parameters from the user through both the request parameters (e.g., an attribute value)
and the request header (e.g., a cookie). These components need to share and maintain state, so that the
application can keep track of the actions of a user as he/she interacts with the application as a whole.

There are several attacks that exploit erroneous or inconsistent state management mechanisms in order to
bypass authentication and authorization checks. Unfortunately, even though there are a number of tools and

1



techniques to protect web applications from attacks, these approaches analyze the external behavior of an
application, such as its request/response flow [1, 2] or its interaction with back-end databases [3, 4, 5], and
do not take into account the internal state of a web application in order to identify anomalous or malicious
behavior.

In this paper, we present Swaddler, a novel approach to the detection of attacks against web applications.
The approach is based on a detailed characterization of the internal state of a web application, by means of
a number of anomaly models. More precisely, the internal state of the application is monitored during a
learning phase. During this phase the approach derives the profiles that describe the normal values for the
application’s state variables in critical points of the application’s components. Then, during the detection
phase, the application’s execution is monitored to identify anomalous states.

The approach has been implemented by instrumenting the PHP interpreter and has been validated against
real-world applications. Our experiments show that by modeling the internal state of a web application one
can detect attacks that cannot be identified by examining the external flow of requests and responses only.
For example, attacks that violate the intended workflow of an application cannot be detected by examining
requests and responses in isolation.

The contributions of our paper are the following:

• We introduce a novel approach that analyzes the internal state of a web application using anomaly
detection techniques. To the best of our knowledge, there are no other approaches that are able to
analyze a web application’s state at the granularity that our approach supports.

• We show that anomaly detection based on both the value of single variables and the relationships
among multiple variables is an effective way to detect complex attacks against web applications.

• We demonstrate that our technique is able to detect attacks that mainstream techniques based on
request analysis are unable to detect, such as workflow violations.

The rest of this paper is structured as follows. In Section 2, we describe our threat model and the
type of attacks that our approach detects using a sample application. Then, in Section 3, we present our
approach to modeling the state of a web application to detect complex attacks. In Section 4, we describe the
implementation of our tool, and, in Section 5, we present a number of experiments that we carried out to
evaluate its effectiveness. Finally, Section 6 presents related work and Section 7 concludes.

2 Threat Model

Web applications are the target of many different types of attacks. In this section, we present two common
classes of attacks: the ones that exploit errors in the input validation process and the ones that exploit flaws
in the enforcement of an application’s intended workflow.

2.1 Input Validation Attacks

Input validation attacks exploit the application’s inability to properly filter the values of the parameters
provided by the user, allowing an attacker to inject malicious data (e.g., a piece of JavaScript code) into a
web application. In particular, the two most common attacks that belong to this category are SQL injection
and cross-site scripting (XSS).

A web application is vulnerable to a SQL injection attack when the input provided by the user is used
to compose a database query without being previously sanitized. A SQL injection attack can allow a ma-
licious user to execute arbitrary queries on the database server. As a result, the attacker can steal sensitive
information and/or modify the information stored in the database tables.
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Consider, for example, a typical web application where the authentication module compares the user-
provided credentials with the known accounts contained in the database. The username provided by the user
is used to compose the query, without any checks on its contents:

"SELECT * FROM users WHERE name = ’" + userName + "’;"

Since the username is not sanitized, it can be crafted by the attacker so that arbitrary SQL code is injected
into the query. For example, if the value of the user name is set to ’;DROP TABLE users;, the database
would evaluate the DROP query just after the SELECT one.

In cross-site scripting attacks, an attacker is able to force a user’s web browser to evaluate attacker-
supplied code (typically JavaScript) in the context of a trusted web site. The goal of these attacks is to
circumvent the browsers’ same-origin policy, which prevents scripts or documents loaded from one site
from getting or setting the properties of documents originating from other sites.

In a typical XSS attack, the attacker inserts the malicious code as part of a message that is stored by the
web application (e.g., JavaScript code is added to a blog comment). When a normal user accesses the page
that shows the message, the malicious code is evaluated by the user’s browser under the assumption that
it originates from the vulnerable application rather than from the attacker. Therefore, the malicious code
has access to sensitive information associated with the trusted web site, such as login credentials stored in
cookies.

SQL injection and XSS attacks are very common and very dangerous at the same time. However, there
is a large number of static and dynamic techniques to detect this kind of input validation attacks [6, 5, 7,
8, 9, 10, 11]. For this reason, in this paper we concentrate on the less-known and often-overlooked attacks
against the workflow of web applications.

2.2 Workflow Violation Attacks

Workflow violation attacks exploit logical errors in web applications in order to bypass the intended work-
flow of the application. The intended workflow of a web application represents a model of the expected
user interactions with the application. Examples of workflow violation attacks include authentication and
authorization bypass, parameter tampering, and code inclusion attacks.

To better illustrate this class of attacks, we present a small PHP application that contains a number
of common workflow vulnerabilities. The application is a simple online store that sells different items to
its users. New users can register and, once logged in, browse and buy the items available in the store. The
application uses the standard PHP session mechanism [12] to store the session information and the shopping
carts of the users. In addition, the store provides an administrative interface to manage the inventory and to
review information about its users.

The first example of vulnerability contained in the store application is an authentication bypass vulner-
ability. The program uses two session variables, loggedin and username, to keep track of whether
a user is currently logged in and if she has administrative privileges. A simplified version of the code of
login.php, the application module that initializes these variables, is shown in Figure 1. Every time the
user requests one of the administrative pages, the variables loggedin and username are checked, as
shown in viewusers.php in Figure 1, to verify that the user is correctly authenticated as administrator.

Since the application utilizes the PHP session mechanism, the session variables are kept inside the
superglobal SESSION array. However, if the register globals option of the PHP interpreter is
enabled, an application can refer to a session variable by simply using the variable name, as if it was a
normal global variable. Since our application uses this “shortcut” to access the session variables (unfortu-
nately a common practice among inexperienced developers), an attacker can easily bypass the checks by
providing the required variables as part of the GET request to one of the protected pages. In fact, when
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include ’config.php’;
session_start();
$username = $_GET[’username’];
$password = $_GET[’password’];
if($username == $admin_login

&& $password == $admin_pass) {
$_SESSION[’loggedin’] = ’yes’;
$_SESSION[’username’] = $admin_login;

} else if(checkuser($username,$password)) {
$_SESSION[’loggedin’] = ’yes’;
$_SESSION[’username’] = $username;

} else {
diefooter("Login failed");

}

login.php

include ’config.php’;
session_start();
if($loggedin != ’yes’

|| $username != $admin_login) {
diefooter("Unathorized access");

}
printusers();

admin/viewusers.php

Figure 1: Authentication bypass vulnerability in the store application.

register globals is enabled, the PHP interpreter automatically binds the parameters coming from the
user’s requests to global variables. Thus, if the variable loggedin is not present in the session (i.e, the
user did not authenticate herself), it can be provided by an attacker using the request parameters, as shown
in the following request:

http://store.com/admin/viewusers.php?loggedin=yes&username=admin

The login.php module is the only part of the application that sets the loggedin and username
variables, and, as it can be seen from the code given in Figure 1, the variable username is set to the
administrator’s name only if a user provides the correct administrator’s name and password. Thus, even
if the attacker manages to bypass the authorization check in viewusers.php, she will not be able
to set the SESSION[’username’] to the correct value. Thus, the attack would force the applica-
tion to move into an anomalous state (corresponding to the administrative code being executed with the
SESSION[’username’] not set to the expected admin value).

The store application is also vulnerable to a second workflow violation attack. In this case, the attack
exploits the fact that the application computes the amount of money to be charged to the user’s credit card
in several different steps. During the checkout phase, the user navigates through several pages where she
has to provide various pieces of information, including her state of residency (for tax calculation), shipping
address, shipping method, and credit card number. For simplicity, suppose that the checkout process consists
of four main steps as shown in Figure 2, where the first three steps calculate the purchase total based on the
user-provided information and the final step proceeds with the order submission. Now, suppose that the
application fails to enforce the policy that the Step 3 page should be accessible only after Step 2 has been
completed. As a result of this flaw, an attacker can directly go from Step 1 to Step 3 by simply entering the
correct URL associated with Step 3. In this case, the total amount charged to the attacker’s credit card will
be equal to the shipping cost only.

It is important to note that while this attack would be very difficult to detect analyzing the HTTP traffic,
it clearly manifests itself as an anomaly in the web application state. In fact, under a normal operation, the
total amount charged to the user is always equal to the sum of the purchased price, taxes and shipping cost.
However, if the user is able to change the order of the steps in the checkout process, this relationship will
not hold.

Finally, the store application contains an example of a parameter tampering vulnerability. When a user
chooses a shipping method from a select box, the name of the shipping method and its cost, which are set
as hidden parameters in the form, are submitted to the application. Unfortunately, the application fails to
make additional server-side checks for the shipping costs, and, as a result, an attacker can set the cost of
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$_SESSION['tax'] = $tax
$_SESSION['total'] = 
  $_SESSION['price'] + $tax

$_SESSION['shipcost'] = $shipcost
$_SESSION['total'] += $shipcost

Step 1 Step 2 Step 3 Step 4

Figure 2: Checkout workflow in the store application.

the chosen shipping method to an arbitrary value. This vulnerability is characterized by the fact that, in
a normal execution, the variable containing the shipping cost always assumes the same values, depending
on the shipping method that has been selected by the user. Thus, if an attacker tampers with the hidden
parameter to change the shipping cost to an arbitrary value, the SESSION[’shipcost’] variable will
assume an anomalous value that can be easily detected analyzing the state of the application.

3 Approach

As shown in the previous section, not all web-based attacks rely on sending malicious input to web appli-
cations. Some of them exploit weaknesses in the intended workflow of the application, allowing the user
to navigate through the different application’s modules in a way that leads the application to an insecure
state. In this case, the attacker performs a sequence of actions in which all the provided input values can be
perfectly harmless, and the vulnerability is exploited through the particular order (or timing) of the various
requests.

This type of attacks can be very difficult to detect “from the outside,” that is, using sensors that only
analyze HTTP requests and responses in isolation. Nevertheless, regardless of how the attack is performed,
its final effect is to force the application to enter an insecure state. For this reason, we believe that a more
effective approach to the detection of workflow attacks consists of monitoring, at runtime, the state of the
web application “from the inside.” This is true, of course, under the assumption that there is a strong
relationship between insecure and anomalous states, i.e., any insecure state is also likely anomalous and
vice versa.

Before describing our approach, which we call Swaddler, we need to introduce the concept of web ap-
plication state. We define the state of a web application at a certain point in the execution as the information
that survives a single client-server interaction: in other words, the information associated with the user ses-
sion. Part of this information is kept on the server, while part of it can be sent back and forth between the
user’s browser and the server in the form of cookies, hidden form fields, and request parameters.

Given this definition of application state, it is possible to associate each instruction of the application
with a model of the state in which that instruction is normally executed. For example, code contained
in the admin directory of our sample application shares the fact that, when it is executed, the variable
SESSION[’username’] should always be equal to admin. Any runtime violation of this requirement

represents the evidence that a low-privilege user was able to access an administrative functionality bypassing
the constraints implemented by the application’s developer.

Ideally, a complete set of these relationships among code execution points and state variables would be
provided by the developers as part of the application’s specification. However, since in reality this infor-
mation is never explicitly provided, the models of the normal state for each program instruction have to be
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Figure 3: Description of the training phase.

Figure 4: Description of the detection phase.

inferred from a set of attack-free execution traces. To perform this task, we propose to automatically instru-
ment the web application with the code required to extract the runtime values of state variables. Depending
on the language in which the application is developed, this instrumentation can be performed in several
ways. For example, in our prototype implementation we decided to add the instrumentation as a module
to the PHP interpreter. This solution allows our approach to be applied to a large set of web applications
without the need to modify the source code of the applications.

Swaddler associates a model of the web application state with each instruction executed by the appli-
cation. However, this solution can be optimized by limiting the instrumentation to the first instruction of
each basic block. A basic block is a sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end without halt or possibility of branching except at the end [13]. In fact,
since the control-flow inside a basic block is a simple sequence of instructions without branches, the appli-
cation state at the beginning of the basic block univocally determines the state of each instruction inside the
block. Once the models that describe the normal state associated with each basic block have been properly
extracted, they can be used to detect (and prevent) attacks that violate the normal application state.

Figure 3 and Figure 4 show the architecture of our anomaly detection system during the training and
detection phases. Swaddler consists of two main components: the sensor and the analyzer. The sensor is
represented by the instrumentation code, which collects the application’s state data (i.e., the values of state
variables) at the beginning of each basic block, and encapsulates them in an event that is sent to the analyzer.
An event generated by the sensor defines a mapping between the variable names and their current values.
For each basic block of the application, the analyzer maintains a profile, i.e., a set of statistical models used
to characterize certain features of the state variables. These models can be used to capture various properties
of single variables as well as to describe complex relationships among multiple variables associated with
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a block. In training mode, profiles for application blocks are established using the events generated by the
sensor, while in detection and prevention modes these profiles are used to identify anomalous application
states. When an anomalous state is detected, the analyzer raises an alert message, and, optionally, it can
immediately stop the execution of the application.

Since Swaddler is based on anomaly detection techniques, it can be vulnerable to mimicry attacks [14],
in which an attacker crafts an exploit in a way that closely resembles normal activity (or normal state values).
Therefore, in principle, one could find a way to perform an attack that brings a web application into an
insecure state without triggering any alert. Nonetheless, the fine granularity at which our approach analyzes
the application state makes this type of attacks much more difficult to perform.

Even though our approach is general and, in principle, can be applied to other languages and execution
environments, in the following sections we will describe in detail the solution that we have developed for
the PHP language.

4 Implementation

The implementation of our approach consists of two main components: the sensor, which is an extension of
the PHP interpreter that probes the current state of an executing application, and the analyzer, which is an
anomaly-based system that determines the normality of the application’s state. In the current prototype, the
sensor is implemented as a module of the open-source Zend Engine interpreter [15] and the analyzer is built
on top of the libAnomaly framework [16].

4.1 Event Collection

The Zend Engine is the standard interpreter for the PHP language. It implements a virtual machine that is
responsible for parsing programs written in PHP and compiling them into an intermediate format, which is
then executed.

To probe an application’s state and generate responses to detected attacks, our implementation extends
the Zend Engine in two points of its processing cycle: after the standard compilation step is completed
and before the standard execution step is initiated. Whenever the execution of a PHP script is requested
(e.g., in response to a user’s request to a web application), the Zend Engine parses the script’s source code,
checks for its correctness, and compiles it into a sequence of statements in an intermediate, architecture-
independent language. The binary representation of each statement holds a reference to a handler function,
which interprets the statement and changes the state of the virtual machine accordingly. During execution,
the Zend Engine decodes in turn each statement and dispatches it to its handler function.

Our extension is invoked by the engine after it has produced the compiled version of a program. The
extension performs a linear scan of the sequence of intermediate statements, identifies the corresponding
basic blocks, and associates a unique ID with each of them. The first statement of each basic block is
modified by overwriting its handler with a custom instrumentation handler. The effect of this modification
is that, during the program’s execution, our instrumentation code is invoked each time a basic block is
entered.

The cost of this phase is linear in the number of intermediate statements, which is proportional to the
size of the program. By default, the Zend Engine does not cache the intermediate statements for reuse during
subsequent executions, and, therefore, the compilation and our instrumentation of the application’s code is
repeated for every access of the page. However, if one of the available caching mechanisms is added to the
standard engine, our technique will be able to take advantage of the caching functionality, thus reducing the
cost of the instrumentation.
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After the compilation step, the Zend Engine starts executing the application’s code. Our instrumen-
tation handler is invoked every time the first statement of a basic block is executed. The instrumentation
handler creates an event corresponding to the basic block being executed and makes the event available to
the analyzer for inspection. The event contains the information collected about the current application state.
Since in the current implementation of our approach we focus on the detection of workflow-based attacks,
by default the events contain the values of the variables defined in the application’s session, i.e., the content
of the SESSION array. In our experiments we found this information to be sufficient to detect most of the
workflow attacks. However, the system can be configured to extract other parts of the application’s state.
For example, one could use the content of the REQUEST array (a global array automatically populated by
the interpreter with the values of the user’s input to the application) to detect attacks that exploit insuffi-
cient validation of input parameters. In addition, further customizations of the sensor are possible if more
information is known about an application. For example, if one knows that only some portions of the appli-
cation’s state can be used to attack the application, one could configure the sensor to only extract those parts
of the state. Note that all the configurable settings of the sensor (e.g., the set of state variables to extract or
the models to use) are set by using the standard .htaccess mechanism and, therefore, can be changed
on-the-fly without the need to modify the sensor’s code.

After delivering an event to the analyzer, the instrumentation handler behaves differently depending
on the current execution mode. During training, it takes no further action. However, if the system is in
detection or prevention mode, and it has determined that the state associated with the block about to be
executed is anomalous, an alert is generated, the request is logged, and, in prevention mode, the execution
is automatically blocked.

When the sensor has finished its processing (and the execution has not been abnormally terminated), it
invokes the original handler of the statement, passing the control back to the Zend Engine. The execution of
the statement, then, proceeds as in the normal, unmodified interpreter.

Our implementation, based on the modification of the web application’s interpreter, has several strengths.
First, the sensor has direct access to all of the interpreter’s data structures, and, thus, it has an unambiguous
view of the application’s state. Other implementation strategies of our approach, e.g., those based on the
analysis of request/response traces, would have to infer the application’s state and, thus, in general, would
provide a less precise input to the analyzer component. Second, the sensor has the capability of blocking
attacks before they reach a vulnerable point in the application.

4.2 Anomaly Detection

Our implementation of the detection engine is based on a modified version of the libAnomaly frame-
work [16]. The anomaly detection process uses a number of different models to identify anomalous states
for each basic block of a web application. A model is a set of procedures used to evaluate a certain feature
of a state variable associated with the block (e.g., the range of its possible values) or a certain feature that
involves multiple state variables (e.g., the presence and absence of a subset of them). Each block has an
associated profile that keeps the mapping between variables and models. Consider, for example, a block of
code in a web application whose corresponding state can be described with two variables, username and
password. Suppose that one wants to associate a certain number of different models with each of these
variables in order to capture various properties, such as length and character distribution, that their values
can take under normal execution. In this case there will be a profile, associated with the block, that contains
a mapping between each variable and the corresponding models. Whenever an event is generated for that
block, the profile is used to find the models to evaluate the features of the state variables.

In our implementation, the task of a model is to assign a probability value to a feature of a state variable
or a set of state variables associated with the block that is about to be executed. This value reflects the
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probability of the occurrence of a given feature value with regards to an established model of “normality.”
The assumption is that feature values with a sufficiently low probability indicate a potential attack. The
overall anomaly score of a block is derived from the probability values returned by the models that are
associated with the block and its variables. The anomaly score value is calculated through the weighted sum
shown in Equation 1. In this equation, wm represents the weight associated with model m, while pm is the
probability value returned by model m.

AnomalyScore =
∑

m∈Models

wm ∗ pm (1)

A model can operate in one of two modes, training or detection. The training phase is required to
determine the characteristics of normal events (that is, the profile of a block according to specific models)
and to establish anomaly score thresholds to distinguish between regular and anomalous values of the state
variables. This phase is divided into two steps. During the first step, the system creates a profile and trains
the associated models for each block in the applications. During the second step, suitable thresholds are
established. This is done by evaluating the states associated with the blocks using the profiles created during
the previous step. For each block, the most anomalous score (i.e., the lowest probability) is stored in the
block’s profile and the threshold is set to a value that is a certain adjustable percentage lower than this
minimum. The default setting for this percentage is 10%. By modifying this value, the user can adjust the
sensitivity of the system and perform a trade-off between the number of false positives and the expected
detection accuracy.

Once the profiles have been created—that is, the models have learned the characteristics of normal events
and suitable thresholds have been derived—the system switches to detection mode. In this mode, anomaly
scores are calculated and anomalous states are reported.

libAnomaly provides a number of built-in models that can be combined to model different features.
By default, block profiles are configured to use all the available models with equal weights. However, to
improve performance, if some application-specific knowledge is available, the user can configure profiles to
only use a subset of the models, or fine-tune the way they are combined.

In Swaddler, we used a number of existing libAnomaly models to represent the normal values of
single variables and we developed two additional models to capture relationships among multiple variables
associated with a block. We describe the models we used in the next two sections.

4.3 Univariate Models

In the context of this paper, we will use the term univariate models to refer to the anomaly models that
are used to capture various properties of single variables associated with a block. libAnomaly already
contains a number of univariate models. These models can be used to characterize the normal length of a
variable (Attribute Length model), the structure of its values (Attribute Character Distribution model), the
set of all the possible values (Token Finder model), etc. In the following, we provide a brief description of
some of the univariate models used by the current Swaddler implementation. A more in-depth description
of these and other available models can be found in [17, 10].

4.3.1 Token Finder.

In our implementation, the purpose of the Token Finder model is to determine whether the values of a certain
variable are drawn from a limited set of possible alternatives (i.e., they are elements of an enumeration). In
web applications, certain variables often take one of few possible values. For example, in our shopping cart
application, the variable SESSION[’shipcost’] can be set to one of three predefined values depending
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on which shipping method is chosen by the user. If a malicious user attempts to set her shipping cost to a
value that is not part of the enumeration, the attack is detected. When no enumeration can be identified, it is
assumed that the attribute values are random.

The classification of an argument as an enumeration or as a random value is based on the observation
that the number of different occurrences of variable values is bound by some unknown threshold t in the case
of an enumeration while it is unrestricted in the case of random values. During the training phase, when the
number of different values for a given variable grows proportionally to the total number of its samples, the
variable is characterized as random. If such an increase cannot be observed, the variable is modeled with an
enumeration.

Once it has been determined that the values of a variable are tokens drawn from an enumeration, any
value seen during the detection phase is expected to appear in the set of known values. When this happens,
1 is returned by the model (indicating normality), and 0 is returned otherwise (indicating an anomalous
condition). If it has been determined that the variable values are random, the model always returns 1.

4.3.2 Attribute Length.

The length of a variable value can be used to detect anomalous states, for example when typical values are
either fixed-size tokens (as it is common for session identifiers) or short strings derived from human input.
In these cases, the length of the parameter values does not vary significantly between executions of the same
block. The situation may look different when malicious input is passed to the program. For example, XSS
attacks that attempt to inject scripts in pages whose content is generated dynamically, often require to send
an amount of data that can significantly exceed the length of legitimate parameters.

Thus, the goal of this model is to approximate the actual but unknown distribution of the length of values
of a variable and detect instances that significantly deviate from the observed normal behavior. During the
training phase, the value length distribution is approximated through the sample mean and variance. Then,
during the detection phase, the abnormality of a given value for a variable is assessed by the “distance” of
the given length from the mean value of the length distribution. The calculation of this distance is based on
the Chebyshev inequality [18].

4.3.3 Attribute Character Distribution.

The attribute character distribution model captures the concept of a “normal” or “regular” value of a variable
by looking at its character distribution. The approach is based on the observation that values of variables
in web applications are mostly human-readable and mostly are drawn from a small subset of the ASCII
characters. In case of attacks that send binary data or repetitions of a single character, a completely different
character distribution can be observed.

During the training phase, the idealized character distribution of a variable values (i.e., the distribution
that is perfectly normal) is approximated based on the sorted relative character frequencies that were ob-
served. During the detection phase, the probability that the character distribution of a string parameter fits
the normal distribution established during the training phase is calculated using a statistical test (Pearson
χ2-test).

4.4 Multivariate Models

In the context of this paper, we will use the term multivariate models to refer to anomaly models that are
used to capture relationships among multiple variables associated with a block. In particular, Swaddler adds
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two multivariate models to the libAnomaly framework: a Variable Presence or Absence model1 and a
Likely Invariants model.

4.4.1 Variable Presence or Absence.

The purpose of the Variable Presence or Absence model is to identify which variables are expected to be
always present when accessing a basic block in an application. For example, in our sample store applica-
tion, the variables SESSION[’loggedin’] and SESSION[’username’] have to be always present
when accessing one of the administrative pages. When a malicious user tries to directly access one of the
protected pages, these variables will not be present and the attack will be detected.

During the training phase, the model keeps track of which variables are always set when accessing a
particular block of code. Based on this information, each state variable associated with the block is given a
weight, where variables that were always present are given a weight of 1 and variables that were sometimes
absent are given a weight in the range from 0 to 1, depending on the number of times that the variable has
been seen. The total score for a block is calculated as the sum of all variables scores divided by the number
of variables in the block. This score is always between 0 and 1.

During the detection phase, the total score of the block is calculated based on the established weights.
Therefore, the absence of a variable with a higher weight results in a lower score for the state associated
with the block.

4.4.2 Likely Invariants.

A program invariant is a property that holds for every execution of the program. If the property is not
guaranteed to be always true in all the possible executions, it is called a likely invariant. To be able to
automatically detect and extract state-related likely invariants, we integrated the Daikon engine [19, 20] in
the libAnomaly framework.

Daikon is a system for the dynamic detection of likely invariants, which was originally designed to
infer invariants by observing the variable values computed over a certain number of program executions.
Daikon is able to generate invariants that predicate both on a single variable value (e.g., x == 5) and on
complex compositions of multiple variables (e.g., x > abs(y), y = 5∗x−2). Its ability to extract invariants
predicating on multiple variables is one of the main reasons for including Daikon in our tool.

In training mode, Daikon observes the variable values at particular program points decided by the user.
In order to integrate it in our system, we developed a new component that translates the events generated by
our sensor into the Daikon trace format. Our component is also able to infer the correct data type of each
variable, by analyzing the values that the variables assume at runtime. The output of this type inference
process is required for the correct working of the Daikon system.

At the end of the training phase, the Daikon-based model calculates the set of likely invariants and
computes the probability that each of them appears in a random data set. If this is lower than a certain
threshold (i.e., if it is unlikely that the invariant has been generated by chance) the invariant is kept, otherwise
it is discarded.

For example, in our store application, Daikon detects that the block of code that charges the user’s credit
card is associated with the following invariants on the state variables:

loggedin == ’yes’
total > price

1Even though based on similar idea, this model is different from the Attribute Presence or Absence model described in [10].
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This means that, when the basic block is executed, the loggedin variable is always set to yes (because
the user must be logged in order to be able to buy items) and the total value charged to the user is always
greater than the price of the purchased items (because of the taxes and shipping costs).

When the system switches to detection, all the invariants that apply to the same block are grouped
together. The algorithm then automatically generates the C++ code of a function that receives as a parameter
an event created by the sensor. The function performs three actions:

• it fetches the value of the variables predicated by the invariants (in our example, loggedin, total,
and price);

• it verifies that the runtime type of each variable is correct (in our example, we expect total and
price to be integers and loggedin to be a string);

• finally, it evaluates the invariants, which, in our example, are represented by the following snippet of
C++ code:

if (strcmp(loggedin, "yes")!=0) return 0;
if (total <= price) return 0;
return 1;

The result of the function is a value (0 or 1) that represents whether the application state associated with
the PHP block violates the likely invariants inferred during the training phase. This value is then combined
with the ones provided by the other libAnomaly models to decide if the state is anomalous or normal as
a whole.

5 Evaluation

We evaluated our system on several real-world, publicly available PHP applications, which are summarized
in Table 1. BloggIt is a blog application that allows users to manage a web log, publish new messages,
and comment on other people’s entries. PunBB is a discussion board system that supports the building of
community forums. Scarf is a conference management application that supports the creation of different
sessions, the submission of papers, and the creation of comments about a submitted paper. SimpleCms
is a web application that allows a web site maintainer to write, organize, and publish online content for
multiple users. WebCalendar is an online calendar and event management system. These applications are
a representative sample of the different type of functionality and levels of complexity that can be found in
commonly-used PHP applications.

The evaluation consisted of a number of tests in a live setting with each of the test applications. All the
experiments were conducted on a 3.6GHz Pentium 4 with 2 GB of RAM running Linux 2.6.18. The server
was running the Apache web server (version 2.2.4) and PHP version 5.2.1. Apache was configured to serve
requests using threads through its worker module.

Attack-free data was generated by manually operating each web application and, at the same time,
by running scripts simulating user activity. These scripts controlled a browser component (the KHTML
component of the KDE library [21]) in order to exercise the test applications by systematically exploring
their workflow.

In particular, for each application, we identified the set of available user profiles (e.g., administrator,
guest user, and registered user) and their corresponding atomic operations (e.g., login, post a new message,
and publish a new article), and then we combined these operations to model a typical user’s behavior. For
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Application Name PHP Files Description Known Vulnerabilities
BloggIt 1.01 24 Blog engine CVE-2006-7014

PunBB 1.2.4 67 Discussion board system BID 20786

Scarf 2006-09-20 18 Conference management system CVE-2006-5909

SimpleCms 22 Content management system BID 19386

WebCalendar 1.0.3 123 Calendar application BID 23054

Table 1: Applications used in the experiments. For each application, we report the number of files that
compose the application as an indication of its size, and the known attacks against it, if any. Vulnerabilities
are referenced by their Common Vulnerabilities and Exposures ID (CVE) or their Bugtraq ID (BID).

example, a common behavior of a blog application’s administrator consists of visiting the home page of
the blog, reading the comments added to recent posts, logging in, and, finally, publishing a new entry.
The sequences of requests corresponding to each behavior were then replayed with a certain probability
reflecting how often one expects to observe that behavior in the average application traffic.

In addition, we developed a number of libraries to increase the realism of the test traffic. In particular, one
library was used to create random user identities to be used in registration forms. In this case, we leveraged a
database of real names, addresses, zip codes, and cities. Another library was used to systematically explore
a web site from an initial page in accordance with a selected user profile’s behavior. For example, when
simulating a blog’s guest user, the library extracts from the current page the links to available blog posts,
randomly chooses one, follows it, and, with a certain probability, leaves a new comment on the post’s page
by submitting the corresponding form.

We used this technique to generate three different datasets: the first was used for training the libAno-
maly models, the second for choosing suitable thresholds, and the third one was the clean dataset used to
estimate the false positive rate of our system.

Since our tests involved applications with known vulnerabilities (and known exploits), it was not sensible
to collect real-world attack data by making our testbed publicly accessible. Therefore, attack data was
generated by manually performing known or novel attacks against each application, while clean background
traffic was directed to the application by using the user simulation scripts. We used the datasets produced
this way to assess the detection capability of our system.

5.1 Detection Effectiveness

We evaluated the effectiveness of our approach by training our system on each of the test applications. For
these experiments, we did not perform any fine-tuning of the models, equal weights were assigned to each
model, and we used the default 10% threshold adjustment value. Then, we recorded the number of false
positives generated when testing the application with attack-free data and the number of attacks correctly
detected when testing the application with malicious traffic.

Table 2 summarizes the results of our experiments. The size of the training and clean sets is expressed
as the number of requests contained in each dataset. Coverage represents the number of lines in each ap-
plication that have been executed at least once during training. Note that in all cases the coverage was less
than 100%. Unexplored paths usually correspond to code associated with the handling of error conditions
or with alternative configuration settings, e.g., alternative database libraries or layout themes. The false
positives column reports the total number of legitimate requests contained in the clean set that Swaddler
incorrectly flagged as anomalous during the detection phase. The attack set size illustrates the number of
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Application Training Set Coverage Clean Set False Attack Set Attacks
Size Size Positives Size Detected

(# requests) (%) (# requests) (# requests)
BloggIt 9779 91 1586 0 15 15

PunBB 10200 67 1360 5 1 1

Scarf 9615 86 1000 1 10 10

SimpleCms 9333 95 1969 0 10 10

WebCalendar 19800 66 3300 1 1 1

Table 2: Detection effectiveness.

different malicious requests contained in the attack dataset of each application. This reflects the number of
different attacks we used to exploit the vulnerabilities present in the application. For example, an authenti-
cation bypass vulnerability can be exploited to get access to several restricted pages. In this case, the attack
set contained requests to gain access to each of these pages. Finally, the last column reports how many of
these malicious requests were successfully identified by Swaddler.

In our experiments, all attacks were successfully detected by Swaddler. For each application, we de-
scribe the vulnerability exploited by the corresponding attacks and how our system detected the attacks.

BloggIt is vulnerable to two types of attacks. First, it contains a known authentication bypass vulnerabil-
ity that allows unauthenticated users to access administrative functionality. More precisely, the application
stores in the session variable login the value “ok” if the user has been successfully authenticated. When-
ever a user requests a restricted page, the page’s code correctly checks whether the user has logged in by
inspecting the session variable, and, if not, redirects her to the login page. However, the page’s code fails
to stop the execution after issuing the redirection instruction to the user’s browser, and continues executing
the code that implements the restricted functionality. Our system easily detects this attack: for example, the
Variable Presence or Absence model returns a high anomaly score if the restricted code is accessed when
the session does not contain the login variable; similarly, the Likely Invariant and Token Finder models
produce an alert if the login variable has a value other than “ok”.

The second flaw in BloggIt is a novel file injection vulnerability that we discovered. The application
allows users to upload files on the server. The uploaded files can then be accessed online and their content
(e.g., a picture) be used in blog entries and comments. However, if the uploaded file’s name terminates with
the php extension and a user requests it, the application interprets the file’s content as a PHP script and
blindly executes it, thus allowing an attacker to execute arbitrary commands. Our system detects the attack
since all models report high anomaly scores for the unknown blocks associated with the injected script.

PunBB is vulnerable to a known file injection attack that allows arbitrary code to be executed. In
fact, PunBB utilizes a user-controlled variable to present the site in the language chosen by the user, by
including appropriate language files. Unfortunately, the variable value is not sanitized and, therefore, it can
be modified by an attacker to include malicious code. Also in this case, Swaddler detects the attack when
the blocks corresponding to the injected code are executed.

Scarf is vulnerable to a known authentication bypass attack. One of its administrative pages does not
check the user’s status and allows any user to arbitrarily change site-wide configuration settings (e.g., user
profiles information, web site configuration). The status of a user is stored in the application’s session using
three variables, namely, privilege, user id, and email. The flaw can be exploited by users that do
not have an account on the vulnerable web site or by registered users that lack administrative privileges.
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Application Avg. Instrumentation Avg. Detection
Overhead Overhead

(msec) (msec)
BloggIt 5 8

PunBB 23 115

Scarf 3 13

SimpleCms 1 5

WebCalendar 15 75

Table 3: Detection overhead.

In the first case, during an attack the vulnerable page is accessed with an empty session, and thus all our
models will report a highly anomalous score; in the second case, the session variables contain values that,
for example, are not recognized by the Token Finder model and that do not satisfy the predicates learned by
the Likely Invariant model.

SimpleCms is vulnerable to a known authentication bypass attack. It insecurely uses the register glo-
bals mechanism in a way similar to the example application described in Section 2. An attacker can sim-
ply set the request parameter loggedin to 1 and have access to the administrative functionality of the
application. Note that this allows the attacker to bypass the authorization check but does not modify the
corresponding variable in the session. Therefore, during an attack, all our models report high anomalous
scores.

Finally, WebCalendar is vulnerable to a file inclusion attack. In this case, the vulnerability cannot be
exploited to execute arbitrary code, but it allows an attacker to modify the value of several state variables,
and, by this, to gain unauthorized privileges. Swaddler detects the attack since several models, e.g., the
Token Finder and Likely Invariant, flag as anomalous the modified variables.

In our experiments, Swaddler raised a few false positives. Our analysis indicates that, in all cases, the
false alarms were caused by the execution of parts of the applications that were exercised by a limited
number of requests during the training phase. For example, this is the case with pages that handle the
submission of complex forms containing a large number of input parameters: during training, only a subset
of all the possible combinations of the input parameters were tested, and, therefore, the models associated
with the portions of the page that were least visited were not sufficiently trained.

5.2 Detection Overhead

Our system introduces runtime overhead in two points during the request-serving cycle. First, for each
request, some time is spent to analyze and instrument the compiled code of the requested application’s page.
We refer to this overhead as “instrumentation overhead”. Second, during execution, whenever a basic block
is entered, the analyzer has to determine whether the current state is anomalous. We call the total time spent
performing this operation “detection overhead”.

A test was performed to quantify the overhead introduced by our system. For each application, we ran
again the requests contained in the clean set used during the detection evaluation and we recorded the time
required to perform instrumentation and detection.

Table 3 presents the results of this test. It shows the average overhead per user’s request broken down in
its instrumentation and detection components. A direct comparison of the average request-serving time on
our modified PHP interpreter and the standard interpreter is presented in Figure 5.
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Figure 5: Total overhead for each application.

There are two main factors influencing the performance of our tool: the number of state variables that
need to be analyzed for each basic block and the number of basic blocks that are traversed when serving a
page. To better assess how these factors influence the performance of our system, we measured the Swaddler
overhead on a set of test programs. Each program defines a certain number of variables in its session and
executes a well-defined number of basic blocks. The values of the defined session variables were chosen
carefully in order to avoid artificial simplifications in the trained models (e.g., the values used were not
random to avoid that, in detection mode, the Token Finder model would immediately return a normal value).
Furthermore, the same number of session variables was defined in all basic blocks, so that the corresponding
models had to be trained in all the basic blocks of the program.

We ran the test programs on the standard PHP interpreter and on a version of the interpreter extended
with our tool (after performing the training phase) and recorded the difference in the running time in the two
cases. Figure 6 shows how the overhead introduced by our system changes as a function of the number of
executed basic blocks and the number of examined state variables.

The overhead grows linearly as the number of executed basic blocks increases. This was expected
because there is both an instrumentation and a detection overhead associated with each basic block in the
program. Similarly, the overhead increases roughly linearly with the number of state variables defined. This
can be explained observing that, during detection, the current value of each state variable must be extracted
from the execution context and must be checked with respect to the appropriate anomaly models.

In many cases, by tuning the two performance factors (number of executed blocks and number of mod-
eled state variables), it is possible to limit the overhead caused by our instrumentation. First, sometimes
it is possible to identify state variables whose value is unlikely to be affected by an attack. For example,
an application might store in a state variable the background color preferred by the current user. In this
case, it is reasonable that an attack will not manifest itself with anomalous modifications to that variable.
Therefore, the variable can be excluded from the subset of the monitored application state without affecting
the detection capability of our tool and reducing the detection overhead.

Second, sometimes the number of basic blocks executed by an application causes the overhead to be
larger than it is desired. For example, an application might execute some blocks in a loop a large number
of times. In this case, it is possible to configure our sensor so that, during a request, the instrumentation
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Figure 6: Factors influencing the overhead.

routine is invoked no more than a certain number of times for each block. If an attack manifests itself even
if the analyzer monitors the execution of loops only up to a certain bound, this optimization will reduce the
overhead without introducing false negatives.

The results of the performance tests both on real-world applications and on synthesized programs in-
dicate that our approach introduces an acceptable overhead for most applications. These results are quite
encouraging especially considering that performance was not a priority in the implementation of the current
prototype of our tool.

6 Related Work

The work described in this paper is related to different previous research results in the intrusion detection
field. First of all, there is a corpus of work on detecting intrusions using anomaly detection techniques (see,
for example, [22, 23, 24, 25, 26, 27]), which we cannot discuss in detail here.

However, there are several proposed anomaly detection approaches that are more closely related to the
solution proposed here. First of all, there is the previous work from our group on performing anomaly detec-
tion of web-based attacks by analyzing the requests and replies exchanged between clients and servers [10,
11]. This previous work introduced the idea of using statistical models to characterize the normal values
of the parameters of web requests. This work suggested that this technique could be applied to other event
streams and resulted in the libAnomaly framework, which is used (and extended) in the research pre-
sented here. The main difference between the two approaches resides in the type of attacks that can be
detected. More precisely, the analysis of requests and replies does not allow for the identification of attacks
that subvert the intended, normal workflow of a web application.

Another set of results that this work is related to is in the contextualization of intrusion detection, that
is, the use of detection models that take into account the different phases (or states) in which an application
might be when an attack is executed. The contextualization has been initially introduced in intrusion detec-
tion systems that analyze sequences of system calls as a countermeasure against mimicry attacks [14]. For
example, in [28, 29] the detection of anomalous system call sequences is contextualized using the program
counter value at the moment of the system call invocation. Extensions to this approach leveraged the call
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stack information to characterize different execution states [30, 31, 32, 33].
The combination of contextualization techniques with the detection of anomalous system calls based

on the analysis of their parameters was proposed in [34]. Even though this approach is also based on
libAnomaly [35, 36, 17], our approach is different from the one proposed in [34] because it operates on
the variables that represent the overall state of an application and not on the values used in its interaction
with the underlying operating system. In addition, we introduce the concept of likely invariants as a way to
characterize anomalous states, which was not considered in these previous works.

7 Conclusions

Web applications have become a common way to access information and services. These applications are
vulnerable to a number of attacks that cannot always be detected by observing the application from the
outside.

This paper presented Swaddler, an approach to the detection of attacks against web applications, based
on the analysis of the internal application state. The approach is the first that models the values of session
variables in association with critical execution points in a web application. In addition, we introduced a
novel detection model that relies on multi-variable invariants to detect web-based attacks.

We developed a prototype of our system for the PHP language and we evaluated it against several real-
world applications. The results show that by leveraging the internal, hidden state of a web application it
is possible to detect attacks that violate its intended workflow, confirming our hypothesis that any insecure
state usually corresponds to an anomalous state.

Future work will focus on two directions. First, we will extend our approach to consider other parts of
the internal state of an application. Second, we will focus on optimizations that will reduce the overhead
introduced by the instrumentation of the PHP interpreter.
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