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ABSTRACT

Research on network intrusion detection has produced a
number of interesting results. In this paper, I look back
to the NetSTAT system, which was presented at ACSAC in
1998. In addition to describing the original system, I dis-
cuss some historical context, with reference to well-known
evaluation efforts and to the evolution of network intrusion
detection into a broader field that includes malware detec-
tion and the analysis of malicious behavior.
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1. INTRODUCTION
Network intrusion detection systems (NIDSs) have evolved

from their academic beginnings into mainstream commer-
cial products, and network intrusion detection is now con-
sidered a “mature technology.” From the early network-
based systems (such as EMERALD [13], NSM [3], Bro [11],
and NetSTAT [16]), dozens of network-based systems have
been proposed in research and many have transitioned to
the commercial world to become products (see, for example,
Snort [14], which is the most popular open-source network
intrusion detection system today).

Even though network intrusion detection is considered a
mature technology and research in this field is sometimes
considered “dead,” network attacks are still prevalent, large-
scale abuse of network resources are an everyday reality,
and sophisticated attacks seem to be able to easily bypass
commercial intrusion detection systems. So what happened
to network intrusion detection?

In this paper, I look back to some early research in network
intrusion detection, namely the NetSTAT system, which was
presented at ACSAC in 1998 [16]. I describe the system in
Section 2 and present some interesting contributions which
are still unmatched by the current state-of-the-art tools.

In Section 3, I discuss how, in the late nineties, there
was a push to compare and evaluate the intrusion detection
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research being performed at the time, which culminated in
the MIT Lincoln Laboratory’s intrusion detection system
evaluation effort. Even though the results of this effort were
criticized and misused, they still represent one of the most
systematic and interesting attempts to measure, compare,
and even stimulate research in security.

Then, in Section 4, I describe some of the shortcomings
that gave network intrusion detection a bad name, but I also
discuss how the lessons learned in developing intrusion de-
tection systems have been taken into account in shaping a
larger research field, involved with the detection of compro-
mises at many levels.

2. THE NETSTAT SYSTEM
The NetSTAT system was a network-based intrusion de-

tection system. NetSTAT extended the state transition anal-
ysis technique (STAT) [4] to network-based intrusion detec-
tion in order to represent attack scenarios in a networked
environment. However, unlike other network-based intru-
sion detection systems that monitored a single sub-network
for patterns representing malicious activity, NetSTAT was
oriented towards the detection of attacks in complex net-
works composed of several sub-networks. In this setting,
the messages that are produced during an intrusion attempt
may be recognized as malicious only in particular subparts
of the network, depending on the network topology and ser-
vice configuration. As a consequence, intrusions cannot be
detected by a single component, and a distributed approach
is needed.

The NetSTAT approach models network attacks as state
transition diagrams, where states and transitions are char-
acterized in a networked environment. The network envi-
ronment itself is described by using a formal model based
on hypergraphs [1, 15].

The analysis of the attack scenarios and the network for-
mal descriptions determines which events have to be mon-
itored to detect an intrusion and where the monitors need
to be placed. In addition, by characterizing in a formal
way both the configuration and the state of a network it
is possible to provide the components responsible for intru-
sion detection with all the information they need to perform
their task autonomously with minimal interaction and traffic
overhead. This can be achieved because network-based state
transition diagrams contain references to the network topol-
ogy and service configuration. Thus, it is possible to extract
from a central database only the information that is needed
for the detection of the particular modeled intrusions. More-
over, attack scenarios use assertions to characterize the state
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Figure 1: The NetSTAT architecture.

of the network. Thus, it is possible to automatically deter-
mine the data to be collected to support intrusion analysis
and to instruct the detection components to look only for
the events that are involved in run-time attack detection.
This solution allows for a lightweight, scalable implementa-
tion of the probes and focused filtering of the network event
stream, delivering more reliable, efficient, and autonomous
components.

2.1 Architecture
NetSTAT is a distributed application composed of the fol-

lowing components: the network fact base, the state transi-
tion scenario database, a collection of general-purpose pro-
bes, and the analyzer. A high-level view of the NetSTAT
architecture is given in Figure 1.

2.1.1 Network Fact Base

The network fact base component stores and manages the
security-relevant information about a network. The fact
base is a stand-alone application that is used by the Net-
work Security Officer to construct, insert, and browse the
data about the network being protected. It contains infor-
mation about the network topology and the network services
provided.

The network topology is a description of the constituent
components of the network and how they are connected.
The network model underlying the NetSTAT tool uses in-
terfaces, hosts, and links as primitive elements. A network
is represented as a hypergraph on the set of interfaces [15].
In this model, interfaces are nodes while hosts and links are
edges; that is, hosts and links are modeled as sets of inter-
faces. This is an original approach that has a number of
advantages. Because the model is formal, it provides a well-
defined semantics and supports reasoning and automation.
Another advantage is that this formalization allows one to
model network links based on a shared medium (e.g., Eth-
ernet) in a natural way, by representing the shared medium

as a set containing all the interfaces that can access the
communication bus. In this way, it is possible to precisely
model the concept of network traffic eavesdropping, which
is the basis for a number of network-related attacks. In ad-
dition, topological properties can be described in a simple
way since hosts and links are treated uniformly as edges of
the hypergraph.

The network model is not limited to the description of
the connection of elements. Each element of the model has
some associated information. For example, hosts have sev-
eral attributes that characterize the type of hardware and
operating system software installed. The reader should note
that in this model “host” is a rather general concept. More
specifically, a host is a device that has one or more net-
work interfaces that can be the (explicit) source and/or des-
tination of network traffic. For example, by this definition,
gateways and printers are considered to be hosts. Links
are characterized by their type (e.g., Ethernet). Interfaces
are characterized by their type and by their corresponding
link- and network-level addresses. This information is rep-
resented in the model by means of functions that associate
the network elements with the related information.

The network services portion of the network fact base
contains a description of the services provided by the hosts
of a network. Examples of these services are the Network
File System (NFS), the Network Information System (NIS),
TELNET, FTP, “r” services, etc. The fact base contains a
characterization of each service in terms of the network/trans-
port protocol(s) used, the access model (e.g., request/reply),
the type of authentication (e.g., address-based, password-
based, token-based, or certificate-based), and the level of
traffic protection (e.g., encrypted or not). In addition, the
network fact base contains information about how services
are deployed, that is, how services are instantiated and ac-
cessed over the network.

Figure 2 shows an example network. In the hypergraph
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Figure 2: An example network.

describing the network, interfaces are represented as black
dots, hosts are represented as circles around the correspond-
ing interfaces, and links are represented as lines connecting
the interfaces. The sample network is composed of five links,
namely L1, L2, L3, L4, and L5, and twelve hosts. Here-
inafter, it is assumed that each interface has a single associ-
ated IP address, for example interface i7 is associated with
IP address a7. The outside network is modeled as a compos-
ite host (the double circle in the figure) containing all the
interfaces and corresponding addresses not in use elsewhere
in the modeled network. As far as services are concerned,
host fellini is an NFS server exporting file systems /home
and /fs to kubrick and wood. In addition, fellini is a
TELNET server for everybody. Host jackson exports an
rlogin service to hosts carpenter and lang.

2.1.2 State Transition Scenario Database

The state transition scenario database is the component
that manages the set of state transition representations of
the intrusion scenarios to be detected.

The state transition analysis technique was originally de-
veloped to model host-based intrusions [4]. It describes com-
puter penetrations as sequences of actions that an attacker
performs to compromise the security of a computer system.
Attacks are (graphically) described by using state transition
diagrams. States represent snapshots of a system’s volatile,
semi-permanent, and permanent memory locations. A de-
scription of an attack has a“safe”starting state, zero or more
intermediate states, and (at least) one “compromised” end-
ing state. States are characterized by means of assertions,
which are functions with zero or more arguments returning
Boolean values. Typically, these assertions describe some
aspects of the security state of the system, such as file own-
ership, user identification, or user authorization. Transitions
between states are indicated by signature actions that rep-
resent the actions that, if omitted from the execution of an
attack scenario, would prevent the attack from completing
successfully. Typical examples of host-based signature ac-

tions include reading, writing, and executing files. For a
complete description of the state transition analysis tech-
nique see [12]. For NetSTAT the original STAT technique
has been applied to computer networks, and the concepts of
state, assertions, and signature actions have been character-
ized in a networked environment.

States and Assertions.
In network-based state transition analysis the state in-

cludes the currently active connections (for connection ori-
ented services), the state of interactions (for connectionless
services), and the values of the network tables (e.g., rout-
ing tables, DNS mappings, ARP caches, etc). For instance,
both an open connection and a mounted file system are part
of the state of the network. A pending DNS request that has
not yet been answered is also part of the state, such as the
mapping between IP address 128.111.12.13 and the name
hitchcock. For the application of state transition analysis
to networks the original state transition analysis concept of
assertion has been extended to include both static assertions
and dynamic assertions.

Static assertions are assertions on a network that can be
verified by examining the network fact base; that is, by ex-
amining its topology and the current service configuration.
For example, the following assertion:

service s in server.services|

s.name == "www" and

s.application.name == "CERN httpd";

identifies a service s in the set of services provided by host
server such that the name of the service is www and the
application providing the service is the CERN http daemon1.
As another example, the following assertion:

Interface i in gateway.interfaces|

i.link.type == "Ethernet";

1The only (possibly) nonstandard notation used in the as-
sertions is the use of “|” for “such that”.
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denotes an interface of a host, say gateway, that is connected
to an Ethernet link.

These assertions are used to customize state transition
representations for particular scenarios (e.g., a particular
server and its clients). In practice, they are used to deter-
mine the amount of knowledge about the network fact base
that each probe must be provided with during configuration
procedures.

Dynamic assertions can be verified only by examining
the current state of the network. One examples is NFS-

Mounted(filesys, server, client), which returns true if
the specified file system exported by server is currently
mounted by client. Another example is ConnectionEsta-

blished(addr1, port1, addr2, port2), which returns true
if there is an established virtual circuit between the specified
addresses and ports. These assertions are used to determine
what relevant network state events should be monitored by
a network probe.

Transitions and Signature Actions.
In NetSTAT, signature actions are expressed by leverag-

ing an event model. In this model, events are sequences of
messages exchanged over a network.

The basic event is the link-level message, or message for
short. A link-level message is a string of bits that appears on
a network link at a specified time. The message is exchanged
between two directly-connected interfaces. For example the
signature action:

Message m {i_x,i_y}|

m.length > 512;

represents a link-level message exchanged between interfaces
i_x and i_y whose size is greater than 512 bytes.

Basic events can be abstracted or composed to represent
higher-level actions. For example, IP datagrams that are
transported from one interface to another in an IP network
are modeled as sequences of link-level messages that repre-
sent the intermediate steps in the delivery process. Note
that the only directly observable events are link-level mes-
sages appearing on specific links. Therefore, the IP data-
gram “event” is observable by looking at the payload of one

of the link-level messages used to deliver the datagram. For
example, the signature action:

[IPDatagram d]{i_x,i_y}|

d.options.sourceRoute == true;

represents an IP datagram that is delivered from interface
i_x to interface i_y and that has the source route option
enabled. This event can be observed by looking at the link-
level messages used in datagram delivery along the path(s)
from i_x to i_y. It is also possible to write signature actions
that refer to specific link-level messages in the context of
datagram delivery. For example, the signature action:

Message m in [IPDatagram d]{i_x,i_y}|

m.dst != i_y;

represents a link-level message used during the delivery of
an IP datagram such that the link-level destination address
is not the final destination interface (i.e., the message is not
the last one in the delivery process).

Events representing single UDP datagrams or TCP seg-
ments are represented by specifying encapsulation in an IP
datagram. For example, the signature action:

[IPDatagram d [TCPSegment t]]{i_x,i_y}|

d.dst == a_y and

t.dst == 23;

denotes the sequence of messages used to deliver a TCP
segment encapsulated into an IP datagram such that the
destination IP address is a_y and the destination port is 23.

TCP virtual circuits are higher-level, composite events. A
virtual circuit is identified by the tuple (source IP address,
destination IP address, source TCP port, destination TCP
port) and is composed of two sequences of TCP segments ex-
changed between two interfaces. Each of these two sequences
defines a byte stream. The byte stream is obtained by as-
sembling the payloads of the segments in the corresponding
sequence, following the rules of the TCP protocol (e.g., se-
quencing, retransmission, etc.). The streams are denoted by
streamToClient and streamToServer.

For example, the signature action:
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TCPSegment t in

[VirtualCircuit c]{i_x,i_y}|

c.dstIP == a_y and

c.dstPort == 80 and

t.syn == true;

denotes a segment that has the SYN bit set and belongs
to a virtual circuit established between interfaces i_x and
i_y and that has destination IP address a_y and destination
port 80.

Events at the application level can be either encapsulated
in UDP datagrams or can be sent through TCP virtual cir-
cuits. In the former case, the application-level event can be
referenced by indicating the corresponding datagram and
specifying the encapsulation. For example, the signature
action:

[IPDatagram d

[UDPDatagram u

[RPC r]]]{i_x,i_y}|

d.dst == a_y and

u.dst == 2049 and

r.type == CALL and

r.proc == MKDIR;

represents an RPC request encapsulated in a UDP datagram
representing an NFS command.

In the TCP virtual circuit case, application-level events
are extracted by parsing the stream of bytes exchanged over
the virtual circuit. The type of application event determines
the protocol used to interpret the stream. For example, the
following signature action:

[c.streamToServer [HTTPRequest r]]|

r.method == "GET";

is an HTTP GET request that is transmitted over a TCP
virtual circuit (defined somewhere else as c), through the
stream directed to the server side2.

2.1.3 Probes

The probes are the active intrusion detection components.
They monitor the network traffic in specific parts of the
2This original formulation of the NetSTAT state transition
language was subsequently refined into a general-purpose
state transition language, called STATL [2].

network, following the configuration they receive at startup
from the analyzer, which is described in the following sec-
tion. Probes are general-purpose intrusion detection systems
that can be configured remotely and dynamically following
any changes in the modeled attacks or in the implemented
security policy. Each probe has the structure shown in Fig-
ure 3.

The filter module is responsible for filtering the network
message stream. Its main task is to select those messages
that contribute to signature actions or dynamic assertions
used in a state transition scenario from among the huge num-
ber of messages transmitted over a network link. The filter
module can be configured remotely by the analyzer. Its
configuration can also be updated at run-time to reflect new
attack scenarios, or changes in the network configuration.
The performance of the filter is of paramount importance,
because it has strict real-time constraints for the process of
selecting the events that have to be delivered to the inference
engine. In the current prototype the filter is implemented
using the BSD Packet Filter [8] and a modified version of
the tcpdump application [9].

The inference engine is the actual intrusion detecting sys-
tem. This module is initialized by the analyzer with a set
of state transition information representing attack scenarios
(or parts thereof). These attack scenarios are codified in
a structure called the inference engine table. At any point
during the probe execution, this table consists of snapshots
of penetration scenario instances (instantiations), which are
not yet completed. Each entry contains information about
the history of the instantiation, such as the address and ser-
vices involved, the time of the attack, and so on. On the
basis of the current active attacks, the event stream pro-
vided by the filter is interpreted looking for further evidence
of an occurring attack. Evolution of the inference engine
state is monitored by the decision engine, which is responsi-
ble for taking actions based on the outcomes of the inference
engine analysis. Some possible actions include informing the
Network Security Officer of successful or failed intrusion at-
tempts, alerting the Network Security Officer during the first
phases of particularly critical scenarios, suggesting possible
actions that can preempt a state transition leading to a com-
promised state, or playing an active role in protecting the
network (e.g., by injecting modified datagrams that reset



network connections.)
Probes are autonomous intrusion detection components.

If a single probe is able to detect all the steps involved in
an attack then the probe does not need to interact with
any other probe or with the analyzer. Interaction is needed
whenever different parts of an intrusion can be detected only
by probes monitoring different subparts of the network. In
this case, it is the analyzer’s task to decompose an intrusion
scenario into sub-scenarios such that each can be detected
by a single probe. The decision engine procedures associated
with these scenarios are configured so that when part of a
scenario is detected, an event is sent to the probes that are in
charge of detecting the other parts of the overall attack. This
simple form of forward chaining allows one to detect attacks
that involve different (possibly distant) sub-networks.

2.1.4 Analyzer

The analyzer is used to analyze and instrument a network
for the detection of a number of selected attacks. It takes as
input the network fact base and a state transition scenario
database and determines:

• which events have to be monitored; only the events
that are relevant to the modeled intrusions must be
detected;

• where the events need to be monitored;

• what information about the topology of the network is
required to perform detection;

• what information must be maintained about the state
of the network in order to be able to verify state as-
sertions.

Thus, the analyzer component acts as a probe generator
that customizes a number of general-purpose probes using
an automated process based on a formal description of the
network to be protected and of the attacks to be detected.
This information takes the form of a set of probe configura-
tions. Each probe configuration specifies the positioning of a
probe, the set of events to be monitored, and a description of
the intrusions that the probe should detect. These intrusion
scenarios are customized for the particular sub-network the
probe is monitoring, which focuses the scanning and reduces
the overhead.

The analyzer is composed of several modules (see Fig-
ure 4). The network fact base and the state transition sce-
nario database components are used as internal modules for
the selection and presentation of a particular network and
a selected set of state transition scenarios. The analysis en-
gine uses the data contained in the network fact base and the
state transition scenario database to customize the selected
attacks for the particular network under exam. For example,
if one scenario describes an attack that exploits the trust re-
lationship between a server and a client, that scenario will
be customized for every client/server pair that satisfies the
specified trust relationship3. This customization allows one
to instantiate an attack in a particular context. Using the
description of the topology of that context it is then possible
to identify what the sufficient conditions for detection are or
if a particular attack simply cannot be detected given the
current network configuration.

3Thus, state assertions are treated as if they were universally
quantified.

Once the attack scenarios contained in the state transi-
tion scenario database have been customized over the given
network, another module, called the configuration builder,
translates the results of the analysis engine to produce the
configurations to be sent to the different probes. Each con-
figuration contains a filter configuration, a set of state tran-
sition information, and the corresponding decision tables to
customize the probe’s decision engine.

2.2 Example
Consider, as an example, an active UDP spoofing attack.

In this scenario an attacker tries to access a UDP-based ser-
vice exported by a server by pretending to be one of its
trusted clients, that is, by sending a forged UDP-over-IP
datagram that contains the IP address of one of the autho-
rized clients as the source address. The receiver of a spoofed
datagram is usually not able to detect the attack. For this
example, consider the network presented in Figure 2 and as-
sume that host lang is attacking host fellini by providing
an NFS request that pretends to come from wood, who is
a trusted, authorized client. Host fellini receives the re-
quest encapsulated in a link-level message from chaplin’s
interface i33

to fellini’s interface i4. Host fellini has no
means to distinguish this message from the final link-level
message used to deliver a legitimate request coming from
wood. Therefore, fellini cannot determine if the datagram
is a spoofed one. The spoofing can be detected, however,
by examining the message on link L2. In this case, since
the link-level message comes from bergman’s interface i91

while it should come from wood’s interface i7, the datagram
can be recognized as spoofed. In general, if one considers
a single link-level message that encapsulates a UDP-over-
IP datagram, the datagram may be considered spoofed if
there is no path between the interface corresponding to the
datagram source address and the link-level message source
interface in the network obtained by removing the link-level
message source interface from the corresponding link.

This attack scenario is described in Figure 5 using a state
transition diagram. The scenario assumes that two net-
works have been defined, Network and ProtectedNetwork.
Network is a reference to the network modeled in the fact
base; ProtectedNetwork is a sub-network that contains the
hosts that must be protected against the attack.

The starting state (S1) is characterized by assertions that
define the hosts, interfaces, addresses, and services involved
in the attack. The first assertion states that the attacked
host victim belongs to the protected network. The second
assertion states that there is a service s in the set of services
provided by victim such that the transport protocol used is
UDP, and service authentication is based on the IP address
of the client. The third assertion states that a_v is one of the
IP addresses where the service is available. The fourth as-
sertion says that a_t is one of the addresses that the service
considers as “trusted”. The following assertions characterize
the attacker. In particular, the fifth assertion states that
there exists a host attacker that is different from victim

and that doesn’t have the trusted IP address. The sixth
assertion states that i is one of the attacker’s interfaces.

The signature action is a spoofed service request. That
is, a UDP datagram that pretends to come from one of the
trusted addresses, although it did not originate from the
corresponding interface. Actually the signature action is a
link-level message m that belongs to the sequence of mes-



S
1

Service s in victim.services |

s.protocol == "UDP" and

s.authentication == "IPaddress";

2
S

Message m in [IPDatagram d [UDPDatagram u]]{i, a_v.interface} |

d.src == a_t and

u.dst == s.port and

d.dst == a_v and

  
not (Network.detachFromLink(m.src)).existsPath(m.src, d.src.interface);

Host victim in ProtectedNetwork.hosts;

not attacker.IPaddresses.contains(a_t);

IPAddress a_v in s.addresses;

IPAddress a_t in s.trustedAddr;

Host attacker in Network.hosts |

Interface i in attacker.interfaces;

attacker != victim and

Compromised

Figure 5: UDP spoofing attack scenario.

sages used to deliver an IP datagram from interface i to the
interface associated with the address of the attacked host.
The IP datagram enclosed in the message has source ad-
dress a_t and destination address a_v. The IP datagram
encloses a UDP datagram, whose destination port is the
port used by service s. In addition, the message is such
that, if one considers the network obtained by removing
the message source interface from the corresponding link
(i.e., Network.detachFromLink(m.src)), there is no path
between the interface corresponding to the datagram IP
source address and the link-level message source interface.
For example, consider a link-level message exchanged be-
tween bergman’s interface i91

and chaplin’s interface i32
.

The message is an intermediate step in the delivery of a
UDP-over-IP datagram to fellini; the IP source address
of the datagram is wood’s a7. Intuitively, it is clear that a
message originated by wood and intended for fellini can-
not come from one of bergman’s interfaces, because there is
no path in the network that would require bergman to act
as a forwarder of the datagram. One way to check for this
is by removing the source interface of the message (i91

) and
checking whether or not there still exists a path from the
host whose IP address is the source of the datagram (wood)
to the host that contains the interface that was removed
(bergman). The second state (S2) is a “compromised” state.

The analysis of the attack starts by identifying the possi-
ble scenarios in the context of a modeled network. Thus, the
analysis engine determines all the possible combinations of
victim host, attacked service, spoofed address, and attacker
in a particular network. A subset of the scenarios for the
network in Figure 2 is presented in Table 1. In all scenarios
fellini is the attacked host, NFS is the service exploited,
and the spoofed address can be kubrick’s or wood’s.

The next step in the analysis is to determine where the
events associated with the signature action can be detected.
For each of these scenarios, the analysis engine generates all
the possible datagrams between the interface of the attacker
and the interface of the victim. In practice, the engine finds

all the paths between the interfaces defined by the scenario
and, for each path, generates the sequence of messages that
would be used to deliver a datagram. For each message
the predicate contained in the clause of the signature ac-
tion is applied. The messages that satisfy the predicate are
candidates for being part of the detection of the scenario.
For example, consider the scenario where carpenter is at-
tacking fellini by pretending to be wood. In this case,
the spoofed datagram is generated from interface i11 and
delivered through three messages to fellini’s interface i4.
The first message is between carpenter and bergman, the
second one is between bergman and chaplin, and the third
one is between chaplin and fellini. Of these three mes-
sages only the first two satisfy the predicate of the signature
action. Therefore, to detect this particular scenario one ei-
ther needs a probe on L3 looking for link-level messages
from carpenter’s interface i11 to bergman’s interface i92

, or
a probe on L2 looking for messages from bergman’s interface
i91

to chaplin’s interface i32
. In both cases, the IP source

address is a7, the destination IP address is a4, and the des-
tination UDP port is the one used by the NFS service. By
analyzing all the scenarios, one finds that in order to detect
all possible spoofing attacks it is necessary to set up probes
on links L1, L2, and L4.

3. EVALUATING INTRUSION DETECTION

SYSTEMS
Network intrusion detection systems should not be diffi-

cult to evaluate: given a traffic dump collected during real
or simulated intrusions, a NIDS should be able to detect a
subset of the attacks while producing a certain (hopefully
low) number of false positives. This is not as straightfor-
ward with other types of intrusion detection systems (e.g.,
host-based systems and application-based systems), because
the quantity and quality of information collected about the
actions performed by the OS and its applications can vary
dramatically. In addition, systems that use an anomaly-



victim s a_v a_t attacker i

fellini NFS a4 a5 Outside i0
fellini NFS a4 a7 Outside i0
fellini NFS a4 a5 hitchcock i11

fellini NFS a4 a7 hitchcock i11

. . . . . . . . . . . . . . . . . .
fellini NFS a4 a5 lang i10
fellini NFS a4 a7 lang i10
fellini NFS a4 a5 carpenter i11
fellini NFS a4 a7 carpenter i11

Table 1: Possible scenarios for the UDP spoofing attack.

based approach to intrusion detection necessitate training
data, which should be realistic, complete, and attack-free
(note that “realistic and attack-free” could be considered an
oxymoron). This type of data is particularly hard to collect
and/or generate.

Even though the creation of a dataset that can be lever-
aged to compare the performance of intrusion detection sys-
tems is a challenging task, in 1998 and 1999 a group of re-
searchers from the MIT Lincoln Laboratory courageously
embarked in an effort to produce such a dataset, which in-
cluded both training data and test data (with truth files)
in the form of network packets, OS audit records, and file
system dumps [6, 7].

These datasets were used to evaluate a number of in-
trusion detection systems being developed by academic re-
searchers. At the beginning of the evaluation process, the
attack-free training data was given to the participants, and,
after a while, the test data containing attacks was distributed
(without truth files). The participants then had to identify
the attacks and submit their detection alerts, which were
then evaluated with respect to the truth files.

The results of the evaluation were disclosed only partially,
without declaring a “winner,” and with great care in not
making any single group look bad. Therefore, instead of a
single score, the authors of the evaluation provided a set
of scores that took into consideration various characteris-
tics of the systems involved, creating a no-winner/no-loser
situation. We think that this was a missed opportunity to
foster research by creating a competition with a clear win-
ner, as was later demonstrated by other challenges (e.g., the
DARPA Grand Challenge for unmanned vehicles), which by
having a clear winner motivated the competitors, fostered
innovation and creativity, and provided great publicity for
both the participants and the funding agency.

To determine a winner, a more draconian approach to
evaluation would have been to simply compose the recall
and precision of the intrusion detection systems. More pre-
cisely, in order to evaluate the effectiveness of a system one
could compute the percentage of hits H over the total num-
ber of attacks T , that is, (H/T ) ∗ 100. This is a measure
of how many attacks were actually detected with respect to
the overall set of attacks (i.e., the recall). Then, in order
to characterize how precise the system is, one would com-
pute the percentage of false alarms F over the total number
of detections H + F , that is (H/(H + F )) ∗ 100. For ex-
ample, a system with three detections and no false alarms
would have a precision of 100%, but it would not be very
effective at detecting attacks if the dataset contained hun-

dreds of attack instances. As another example, a system
that flagged every single packet as malicious would have an
effectiveness of 100% because all attacks would be detected,
but it would also have an abysmal precision. Therefore, the
obvious choice is to multiply the two measures above to take
into account these two important aspects of intrusion detec-
tion.

The values of these metrics are shown in Table 2 for the
systems that participated in the 1999 MIT Lincoln Labora-
tory evaluation. According to the proposed metrics, UCSB’s
NetSTAT would be the winner of the 1999 competition,
closely followed by SRI’s EMERALD.

Even though the evaluation failed to declare a clear win-
ner and, in addition, there were some criticisms against the
evaluation process [10], the dataset produced was immensely
popular, and it is without doubt the most used dataset in
the intrusion detection community.

Unfortunately, the MIT/LL dataset and the correspond-
ing truth files were used in a series of scientific publications
in which the performance of intrusion detection systems,
evaluated on the non-blind dataset, were compared to the
performance of the intrusion detection systems that partic-
ipated in the blind evaluation, with nefarious and unfair
results. Since then, the dataset has become outdated, and
nowadays it is used very seldom in research publications.

4. THE DEATH (AND REBIRTH) OF INTRU-

SION DETECTION
In the years following the MIT/LL evaluation, there was

an increased skepticism towards network intrusion detection
and its ability to detect attacks, especially 0-day exploits and
mutations of existing attacks [17]. In addition, researchers
started to develop attacks against stateful intrusion detec-
tion system, exposing the challenge of detecting low-traffic,
slow-paced attacks that last months (if not years).

In general, there was a shift from the analysis of network
data to the analysis of host data, under the assumption
that only by monitoring the end nodes one could possibly
detect sophisticated attacks. Therefore, during the early
2000s, academia started losing interest in network intrusion
detection, while, at the same time, the use of commercial
network intrusion detection systems became an established
best-practice in enterprise networks. This happened some-
times in disguise, for example by relabeling NIDS as “in-
trusion prevention systems” to describe network intrusion
detection systems with traffic-blocking responses.

Around 2003-2004 it looked like research on the “classic”



GMU NYU RST
Elman
Network

RST
State
Tester

RST
String
Transd.

SRI
Derbi

SRI
Estat

SRI
EMERALD

SunySB UCSB
STAT

Hits 43 21 37 26 26 17 29 94 7 88
False Positives 16 74 5351 429 117 48 96 13 2 4
H/T 21.3 10.4 18.3 12.9 12.9 8.4 14.4 46.5 3.5 43.6
H/H + F 72.9 22.1 0.7 5.7 18.2 26.2 23.2 87.9 77.8 95.7
H/T ∗ H/H + F 15.5 2.3 0.1 0.7 2.3 2.2 3.3 40.9 2.7 41.7

Table 2: Hits, false positives (in absolute values), recall, precision, and composition of recall and precision (in
percentages) for the systems involved in the MIT Lincoln Laboratory 1999 IDS evaluation, which contained
202 attacks.

network intrusion detection problem (i.e., detecting attacks
by looking at network packets) was dwindling fast. How-
ever, at the same time, the techniques used to characterize
network attacks were applied to the detection of malicious
code components, such as worms and bots. Both misuse-
based and anomaly-based techniques were readily leveraged
to identify malware of various kinds. In a way, these re-
search efforts resulted in “intrusion detection” system that
were closer to the meaning of the term than the early NIDSs.
In fact, while the early systems focused mostly on detecting
attacks, these new systems focused on detecting the actual
intrusions by identifying malicious behavior that would in-
dicate that a system had been compromised.

This “born-again” network intrusion detection research is
characterized by the heavy use of data-mining and machine-
learning techniques to address one of the main problems
associated with misuse-based NIDS, which is the need for
the manual specification of attack models (note that some
of the seminal work in this field was performed in the late
90’s [5]).

5. CONCLUSIONS
Even though the term “Intrusion Detection” sometimes

is looked-down upon by the academic community, intrusion
detection research will always be a core part of the security
field. It might be the case that the focus of intrusion de-
tection will move towards more semantically-rich domains,
such as the OS and the web. For example, web-based intru-
sion detection systems (normally referred to as “Web Appli-
cation Firewalls”, for marketing purposes) leverage knowl-
edge about the characteristics of web applications and their
logic, in order to identify attacks. Nonetheless, these sys-
tems mostly use concepts that were researched and applied
more than two decades ago.

This “re-invention” of network intrusion detection tech-
niques and approaches shows how intrusion detection (be
it network-based, web-based, or host-based) is still an im-
portant research problem. As new attacks and new ways
of compromising systems are introduced, both researchers
and practitioners will develop (or re-discover) techniques for
the analysis of events that allow for the identification of the
manifestation of malicious activity.

The next challenge will be to expand the scope of intrusion
detection to take into account the surrounding context, in
terms of abstract and difficult-to-define concepts, such as
missions, tasks, and stakeholders, when analyzing data in
an effort to identify malicious intent.
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