
Shellzer: a tool for the dynamic analysis of
malicious shellcode

Yanick Fratantonio1, Christopher Kruegel2, and Giovanni Vigna2

1 Politecnico di Milano, Italy
yanick.fratantonio@mail.polimi.it

2 University of California, Santa Barbara
{chris,vigna}@cs.ucsb.edu

Abstract. Shellcode is malicious binary code whose execution is trig-
gered after the exploitation of a vulnerability. The automated analysis
of malicious shellcode is a challenging task, since encryption and eva-
sion techniques are often used. This paper introduces Shellzer, a novel
dynamic shellcode analyzer that generates a complete list of the API
functions called by the shellcode, and, in addition, returns the binaries
retrieved at run-time by the shellcode. The tool is able to modify on-the-
fly the arguments and the return values of certain API functions in order
to simulate specific execution contexts and the availability of the exter-
nal resources needed by the shellcode. This tool has been tested with
over 24,000 real-world samples, extracted from both web-based drive-
by-download attacks and malicious PDF documents. The results of the
analysis show that Shellzer is able to successfully analyze 98% of the
shellcode samples.

Keywords: Shellcode analysis, Binary instrumentation

1 Introduction

Malware, which is a generic term used to denote software that aims to com-
promise a computer, is the leading threat on the Internet. One of the primary
methods used by the attackers to deliver malware is code injection.

In the case of web-based malware, the user is lured into visiting a malicious
web-page. The JavaScript contained in that page tries to exploit a vulnerability
in the browser. If it succeeds, the exploit triggers the execution of an arbitrary
piece of code, often called shellcode. A shellcode is a small piece of code, whose
goal is to compromise the machine that executes it. The size of shellcode samples
is usually subject to some constraints, and, hence, their actions are commonly
limited. Despite this, they play a fundamental role in the compromise of a host.
The task of the shellcode is often to provide interactive access (through the
invocation of a command line shell, from which the term ”shellcode” is derived),
or download and then execute additional malware.

In this paper, we introduce Shellzer, a tool for the dynamic analysis of mali-
cious shellcode. In particular, we focus our attention on shellcode extracted from

2 Shellzer: a tool for the dynamic analysis of malicious shellcode

web-based malware and from malicious PDF documents. Given a shellcode in
input, Shellzer analyzes it by instrumenting each instruction in the code. This
is done to have complete control over the shellcode’s execution, so that it is pos-
sible to detect the use of evasion techniques and to collect detailed information
about the sample under analysis. Two different optimizations have also been
introduced in order to make this approach feasible in terms of performance.
Furthermore, in order to fulfill some specific conditions required for a correct
analysis, the tool dynamically alters both the arguments and the return value of
some API functions. By doing this, the tool is capable of observing the behav-
ior of the shellcode during a real-attack scenario. This technique is used also to
deal with the attempted malicious actions. In fact, since instrumentation is just
a different form of execution, if no countermeasures were taken, the shellcode
would be able to compromise the host that runs the analyzer.

As output, the tool returns an HTML report that contains the following
information: a complete trace of the API calls (with their most significant ar-
guments and their return values), the URLs from which external resources have
been retrieved, and the evasion techniques used by the shellcode. Furthermore,
the tool returns the additional binaries that have been downloaded at run-time.
It is worth noting that even if the binary retrieved was originally encrypted, the
tool will automatically return its decrypted version. This is a quite important
feature of our work: indeed, having just the encrypted binary would be useless,
since the decryption routine is implemented in the shellcode, and not in the
binary itself. This key feature is useful also when dealing with shellcode sam-
ples extracted from malicious PDF documents. In these cases, the additional
payload is contained in the PDF document itself, and Shellzer will be able to
automatically return it, also if it was originally encrypted.

The tool has been evaluated by running it over 24,000 real-world samples,
which had been previously extracted by Wepawet [5], an on-line service for de-
tecting and analyzing different types of malware, including web-based malware
and malicious PDF documents. The average time for a single analysis is 15 sec-
onds, and only in the ∼ 2% of the cases Shellzer has not been able to analyze the
samples because of one of its limitations. During our discussion, we will provide
an overview about the goals of this kind of shellcode, and we will describe some
interesting samples we found during the analysis.

2 Issues to be addressed

In this section we discuss which are the common issues that make shellcode
analysis difficult.

2.1 Additional resources have to be available

One of the challenges of shellcode analysis is that shellcode often requires that
some additional resources (usually additional malware) have to be available. If
the retrieval of such external resources fails, some samples silently quit, while

Shellzer: a tool for the dynamic analysis of malicious shellcode 3

others behave in an unexpected way (their execution usually crash). In both
cases, this outcome is not desirable since our goal is to analyze the behavior of
shellcode as if it were executed during a real-world attack.

2.2 A specific execution context is required

Many samples can be correctly analyzed only if they are executed in a specific
execution context. A good example that shows why the context is an important
aspect is the case of shellcode extracted from malicious PDF documents. Most of
these samples make use of the GetCommandLineA API. This API returns a string
that contains the command line that has been used to launch the program. The
execution context is important here, because this kind of shellcode assumes that
it is running inside an instance of Adobe Reader, and, therefore, it makes an
assumption about how the string returned by that API is formatted. This point
constitutes a big issue since if the shellcode is not executed in the appropriate
execution context, the string returned by the GetCommandLineA API will be
completely different from the one that shellcode expects, and, in the general
case, this will cause some malfunctions (in the worst case, a crash).

2.3 Dealing with malicious behavior

An important issue is related to the fact that the goal of the shellcode samples is
to compromise the machine that executes it. This fact constitutes a problem for
two reasons: the first is that our system actually executes the malicious shellcode,
and hence there is a concrete possibility that the shellcode under analysis could
be able to take control of the analyzer itself; the second one is related to the fact
that we consider too expensive (in terms of performance) restoring the machine
after the analysis of each sample.

2.4 Performance issues

Despite the fact that shellcode is usually few hundreds of bytes long, the number
of instructions that are actually executed at run-time is in the order of millions.
This is due to the fact that many loops are present, and some of them are exe-
cuted thousands of times. This constitutes a big issue for our approach, since our
system is based on single-instruction instrumentation, and, hence, the overhead
introduced is directly proportional to the number of instructions executed at
run-time.

2.5 Evasion Techniques

Malware authors often try to make shellcode analysis difficult. Specifically, the
techniques that we are going to describe have the following goals: make the static
analysis unfeasible, increase the difficulty of generating a complete trace of the
API functions called, and mislead the analysis tools by performing some specific
assembly-level tricks.

4 Shellzer: a tool for the dynamic analysis of malicious shellcode

shellcode

 mov eax, API_addr
 push ret_addr
 mov edi, edi
 push ebp
 mov ebp, esp
 lea eax, dword [eax+5]
 jmp eax
ret_addr:
 ...

API code

API_addr:
 mov edi, edi
 push ebp
 mov ebp, esp
 ...
 ...
 ret

jmp hook_address

Fig. 1. JUMP OVER THE HOOK technique

Encryption Many of the samples we have analyzed were encrypted. Mainly
two techniques are used. In the first case, the encryption is done by simply xor-
ing all the bytes of the shellcode with a one-byte key. The second technique is
also based on the xor operation, but the shellcode in encrypted in blocks of four
bytes with a four-byte key. Moreover, in these cases, the key is altered for each
iteration. When the second variant is used, encryption makes the analysis tools
based on static approaches unable to extract any useful information.

Uncommon API functions Since the Windows DLLs export a huge numbers
of API functions, many malware analyzers do not monitor the calls to all the
API functions, but only the calls to a subset of them (i.e., the security relevant
ones). Malware authors leverage this bias, and they use certain uncommon API
functions that, with a high probability, are not monitored, despite the fact that
this leads to an increase in the shellcode’s complexity. For example, in order to
run additional executables, the WinExec API is commonly used. Instead, some
samples use the CreateProcessInternalA API, an undocumented function that
takes twelve input arguments.

Assembly-level tricks We will now describe some low-level techniques that
from the behavioral point of view do not add any contributions, but are used by
shellcode authors to mislead analysis tools.

INDIRECT API CALL This technique allows the shellcode to call an API func-
tion A, by jumping into the code of a different API function B, with the aim
of misleading some analysis tools. This is achieved in a simple way. When the
shellcode has to call the API function A, it jumps to a specific point of the API
function B, so that, after few assembly instructions, the API function B will
internally call the API function A.

JUMP OVER THE HOOK This technique is very powerful and it constitutes a
big issue for many analysis tools, since it makes it difficult to generate a complete
trace of the called API functions. Specifically, it affects the monitoring tools that

Shellzer: a tool for the dynamic analysis of malicious shellcode 5

track the API calls by modifying the first bytes of each API, in order to install
a hook on each of them. This technique comes into play when the shellcode calls
an API function, and its goal is to jump over the installed hook. This technique
simply consists in jumping to the fifth byte of the API, instead of jumping to
the first one (as it happens in the normal case). Therefore, in the case a hook is
present, it will be bypassed and the call to that API function will not be traced.
This technique skips the first five bytes because it is the common size of a hook.
Figure 1 shows this technique in action. Before calling the API function, the
shellcode executes those assembly instructions that were at the beginning of the
target function, so that the net effect of calling the API function is not altered.

RETURN ORIENTED PROGRAMMING Occasionally, shellcode uses a simple
form of return-oriented programming. Since this topic has been widely discussed
in literature, we will just discuss an example in order to show the low complexity
of the samples we found.

Listing 1.1. RETURN ORIENTED PROGRAMMING assembly

1 push arg2 n
2 . . .
3 push arg2 0
4 push r e tu r n ad dr e s s
5 push arg1 n
6 . . .
7 push arg1 0
8 push API 2 address
9 jmp API 1 address

Listing 1.1 shows a small excerpt where the shellcode uses this technique to call
two different API functions in a row, without the need to come back to the
shellcode’s code between the execution of the first function and the second one.

3 Overview of the system

In this section, we provide an overview of Shellzer, the shellcode analyzer we
have designed and implemented. From a high-level point of view, Shellzer takes
as input the shellcode that has to be analyzed, and it generates an HTML report
that includes the following information: the trace of all the API functions called
(with their arguments and return values), the DLLs loaded, the URLs contacted,
and the evasion techniques that have been used by the sample under analysis. In
addition to the binary, the analyzer takes as input all the additional resources
that are required at run-time. For example, if a shellcode has been extracted
from a malicious PDF, the PDF itself is usually needed in order to correctly
analyze the sample, and, for this reason, it has to be passed as input to our tool.
Moreover, it often happens that the shellcode tries to retrieve and run external
executables (presumably malware): if this is the case, these additional binaries
are also returned as output. It is worth noting that, even if the binary was orig-
inally encrypted, its decrypted version will be returned, since the tool extracts

6 Shellzer: a tool for the dynamic analysis of malicious shellcode

the binary image of the additional component after it has been decrypted by the
shellcode.

3.1 Architecture

Shellzer dynamically analyzes shellcode samples by instrumenting their execu-
tion at a single-instruction level granularity. The instrumentation is performed
by using PyDbg [7], a Python Win32 debugging abstraction class. In particular,
the core of the analysis is performed in the EXCEPTION SINGLE STEP’s handler
that it is called between the execution of each assembly instruction.

Our goal was to have complete control over the shellcode’s execution, as if
we were using an approach based on emulation. The advantage in using such
a technique is that we can dynamically decide if it is necessary to single-step
through the code or not, so that the overhead caused by the instrumentation is
introduced only when it is strictly required. We will now discuss the three main
components of our system.
Advanced tracing technique. One of the most important aspect that has
to be monitored is related to the Windows API functions that are called by
the shellcode. In particular, it is important to be able to retrieve the names,
the argument values, and return value of all the API functions that are in-
voked. Unfortunately, in the general case, this task cannot be accomplished in
a straightforward way, since the shellcode might use evasion techniques (e.g.,
those presented in Section 2.5). For this reason, we had to develop a quite com-
plex tracing technique through which we are able to automatically handle all
the possible situations and all the evasion techniques known to us. We describe
the details of this technique in Section 4.1.
Dynamic interaction. By using this kind of approach, we are able to inject
custom pieces of code at any moment during the execution of the shellcode that
is instrumented. This is a very powerful feature, since the injected code is exe-
cuted in the same execution context of the shellcode under analysis: this means
that it is possible to dynamically read and write the process memory, read and
write the values of the CPU’s register, and so on. Our tool exploits this capability
to handle three of the major issues we presented in the previous section.

The first issue comes from the fact that the shellcode might try to retrieve
additional resources and, if they are not available, the shellcode might behave
in an unexpected way. Therefore, we dynamically simulate that the required
resources are available by properly altering the return values of some specific
Windows API functions.

The second issue we addressed is related to the fact that some shellcode
needs to be executed in a very specific execution context. In order to solve this
problem, we simulate that the whole analysis is performed within the required
execution context. Also in this case, this is obtained by modifying, at run-time,
the content of some specific memory regions and the return values of certain
Windows API functions.

Finally, since an instrumented execution is still an execution, we have to
handle the malicious nature of the shellcode samples we analyze: if no coun-

Shellzer: a tool for the dynamic analysis of malicious shellcode 7

termeasures are taken, the shellcode under analysis could easily compromise the
machine that runs the tool, and we would be forced to restore the host after each
single analysis. This issue is resolved thanks to the fact that we have complete
control over the shellcode’s execution. Therefore, we modify the argument values
of some security-relevant Windows API functions. We will discuss in more depth
these modifications in Section 4.2.
Performance speed-up. Instrumenting the whole shellcode’s execution with a
single-instruction granularity bears a significant performance overhead. For this
reason, we implemented two optimizations that allow for the disabling of the
single-step mode when it is not necessary. The first aims to disable the single-
step mode during the execution of API functions, while the second is related
to the loops that are often present in shellcode: once the loop’s body has been
analyzed the first time, the single-step instrumentation is often no longer needed
for the other iterations. The details related to these optimizations are discussed
in Section 4.3.

4 Analysis process

We will now describe how the analysis is performed. Our tool takes as input a
shellcode. Since PyDbg does not allow the instrumentation of code fragments, we
first build an executable starting from the shellcode. This is done by dynamically
writing a C program, whose main() just executes the shellcode’s binary. After
the executable is created and loaded by the debugger, we set a breakpoint on the
shellcode’s entry point (i.e., its first byte), whose position in memory is statically
known, and we then run the executable. When the execution reaches the first
byte of the shellcode, the breakpoint is triggered and the remaining initialization
steps are performed.

Firstly, the tool collects some information related to the DLLs and the API
functions whose usage has to be monitored. In particular, it is determined which
DLLs have been loaded and at which addresses in memory they have been
mapped. The system then retrieves from a configuration file which API func-
tions are exported by those DLLs, their addresses in memory, and the arguments
whose values have to be reported in the output trace. For each argument, the
following information is gathered: the name, used as a label to identify it; the
type, necessary in order to properly interpret the bytes read from memory; the
input/output flag, that indicates if the memory has to be read before or after
the API function’s execution; and the offset, which allows one to determine the
argument’s position in memory. Specifically, the offset indicates the argument’s
position with respect to the value assumed by the stack pointer just before the
API function’s first instruction is executed.

At this point, some specific handlers are registered for the most common
Windows exceptions (e.g., EXCEPTION ACCESS VIOLATION) that could be raised
during the analysis. Then, a handler for the EXCEPTION SINGLE STEP exception
is registered. This handler plays a fundamental role in our system, since it is
the place where the analysis happens. Indeed, that function is executed between

8 Shellzer: a tool for the dynamic analysis of malicious shellcode

each shellcode’s assembly instructions. This is achieved by setting the TF flag of
the EFLAGS register before the execution of each instruction: in this way, after
the current instruction will be executed, the processor will execute the int 0x1

interrupt, the EXCEPTION SINGLE STEP exception will be raised by Windows,
and our handler will be then called.

What we have described so far are the operations performed during the ini-
tialization phase. In the remaining of this section, we discuss three important
aspects of our system, namely, how Shellzer traces API functions, how it han-
dles the correct and safe execution of API functions, and how it optimizes the
performance of the shellcode analysis.

4.1 API calls detection and tracing

We now describe how Shellzer detects and traces the API functions called by the
shellcode. The operations discussed here are performed before the execution of
each assembly instruction. First of all, the value of the program counter (PC) is
retrieved. We then determine if the PC points to a memory region where a DLL
has been mapped: if this is the case, the DLL’s name is retrieved. At this point,
we compare the PC’s value with the starting address of all the API functions
exported by that DLL. If a match is found, we are able to determine which
specific API has been called, and we can proceed in reading the arguments’
values, whose position can be calculated by adding their offset attribute to the
current value of the stack pointer (SP). Once this information has been collected,
the API function called by the shellcode can be executed. When the execution
returns (we will see how this can be determined in a reliable way), the API
function’s return value is retrieved by simply reading the value stored in the
eax register. The last operation performed before continuing with the analysis
consists in the retrieval of the API’s output arguments, that can be now read.

The procedure described so far works only if the shellcode called the API
function in a conventional way; however, if the evasion technique we previously
named JUMP OVER THE HOOK is used, additional operations are required. Indeed,
the tool detects that an API function has been called only when the execution
reaches the API’s code, and, in the case such evasion technique is used, this will
occur only after the first three API’s instructions (which represent the first five
bytes of the function) have already been executed by the shellcode (details have
been explained in Section 2.5). This constitutes an issue both in determining
which API function has been called and in properly retrieving the arguments’
values. In fact:

– the current value of the PC will no longer match the starting address of any
API function, since it will point to the fourth API function instruction and
not to the first one;

– the value of the offset attribute of each argument, through which the ar-
gument’s position is found, is relative to the value assumed by the SP just
before the execution of the first API’s instruction, which, in the general case,
will be different from the current value of the SP register.

Shellzer: a tool for the dynamic analysis of malicious shellcode 9

For what concerns the identification of the API called, the problem is solved
by identifying which is the API (if any) that satisfies the following expression:

API’s starting address ≤ PC ≤ API’s starting address + 5.

If such API is found, we assume that the shellcode wanted to call that specific
API and that wanted to avoid a possibly installed hook.

To correctly retrieve the argument values, we calculate the value that would
be assumed by the SP just before the execution of the first API’s instruction.
This is done by considering the current SP and by modifying its value, taking
into account the API’s instructions already executed. For example, if between
the first instruction and the fourth instruction, the shellcode has executed a
push ebp instruction, it means that the SP has been altered by subtracting 4:
so, in order to retrieve the SP’s original value, we add 4 to the current SP.

Note that, it is always possible that the shellcode jumps in the DLL’s code,
but we are not able to identify which API has been called: this can happen,
for example, if the shellcode uses the technique we named INDIRECT API CALL,
described in Section 2.5, or if the shellcode jumps in the code of an API function
after its fifth byte (this circumstance has never occurred during the evaluation
phase). In this case, the tool simply continues with the single-step analysis. At
a certain point, either the execution will come back to the shellcode or an API
will be called.

4.2 API handling

Our system does not perform only passive monitoring of the shellcode’s behavior,
since it would not be sufficient to handle the issues discussed in Section 2. More
precisely, the tool allows one to execute user-specified functions just before and
after the execution of a generic API function. By doing this, the analyzer is able
to read and write the memory and alter the register’s values. As an additional
feature, we designed the system in a way that the shellcode can execute a specific
API function only if that API function has been explicitly labeled to be safe. An
API is considered to be safe in two cases: first, if its execution cannot lead to any
bad consequences; second, if its execution could be problematic, but actually it
is not, thanks to the additional operations performed before and after executing
it. In this way, if the shellcode suddenly start to use a new API that is not
currently handled (i.e., it is not safe), the tool will raise an exception and the
anomaly occurred is signaled in the report generated. We now describe in detail
the additional operations performed and which issues they address.

Resource availability simulation A shellcode sample might try to retrieve addi-
tional resources. If it is not able to do that, it might behave in an unexpected
way. Unfortunately, the retrieval of such external resources is not always pos-
sible. For example, a common reason is that the URL contacted is no longer
operational.

In order to address this issue, we inject our custom code before and after the
execution of the API functions that deal with the downloading of the additional

10 Shellzer: a tool for the dynamic analysis of malicious shellcode

resources. For example, we do so for the URLDownloadToFileA API function.
This API takes as input the URL from which the resource has to be fetched
and the path where the file downloaded has to be stored on the file system.
As output, it returns 0 if the file has been successfully downloaded, while it
returns 1 if an error occurred. After this API function has been executed, the tool
automatically checks its return value, which is stored in the eax register. If the
value indicates that something went wrong, these two operations are performed:
we change the value stored in the eax register to 0, and we create a file where the
shellcode expects to find the resource downloaded. What we found is that these
two operations are sufficient to simulate that the resource has been correctly
downloaded, since the shellcode only checks the return value and not the content
of the file retrieved. Of course, we need to do the same also when similar API
functions are called, such as the InternetReadFile API function.

Environment simulation Some shellcode must run within a specific execution
context. This is especially true when dealing with samples extracted from ma-
licious PDF documents. These samples usually retrieve the additional malware
not from the web, as it commonly happens, but from the PDF document itself.
In order to do this, they first have to access the malicious document. In a real
attack scenario, the shellcode is executed in the same execution context of the
Adobe Reader instance that opened the malicious PDF document. In order to
better explain the motivations behind this observation, we briefly summarize
what happens from the moment the user opens the malicious PDF document,
up to the shellcode’s execution.

When the user opens the PDF document, Adobe Reader is executed and it
reads and interprets the document’s content. Moreover, if the document contains
a piece of JavaScript, the reader executes it. What distinguishes a malicious PDF
document from a benign one, is that the JavaScript tries to exploit a vulnerability
in the reader. If it succeeds, it will able to trigger the execution of a piece of
arbitrary code (in our case, the shellcode) that will be executed in the same
execution context of the PDF reader.

We now present two examples of environment-aware shellcode. The first one
is based on the GetCommandLineA API function. This API returns a string that
contains the command line used to launch the program. If this API is called
inside an instance of Adobe Reader, the output will be something similar to
"c:\Programs\adobe.exe" "c:\Documents\document.pdf", where the first is
the complete path to the Adobe Reader’s executable, and the second one is the
complete path to the PDF file opened. This returned string is important, because
the shellcode uses it to locate and then access the malicious PDF document.

The problem here is that the shellcode analysis is not performed within a
real instance of Adobe Reader. In order to address this issue, we use the same
mechanism we previously described: when the GetCommandLineA’s execution is
terminated, the tool automatically modifies the returned string. Of course, this
is done coherently with respect to what the shellcode expects, so that the PDF
document can be correctly retrieved.

Shellzer: a tool for the dynamic analysis of malicious shellcode 11

In the second example, when the shellcode’s execution is triggered by the
JavaScript code, Adobe Reader should have already opened the malicious PDF
and, hence, a file handler associated with that document should be available
within the current execution context. From a practical point of view, this tech-
nique aims to reuse the file handler associated with the PDF document, pre-
viously obtained by the Adobe Reader instance. In this case, the shellcode has
just to determine which is the correct file handler: this can be done by prop-
erly using the GetFileSize API function. This API function takes as input a
file handler and returns the size of the file associated with it. What shellcode
usually do is a sort of brute-forcing: they repeatedly call the GetFileSize API
function by passing as input all the different possible handlers. The shellcode
will be able to determine which is the correct handler by comparing the API’s
return value, with the size of the malicious PDF document (that is known to the
shellcode): when a match is found and hence the correct handler has been deter-
mined, the shellcode can then access the malicious PDF document and extract
the additional malware.

In order to address this issue, a piece of code that simply opens the PDF
document is executed before starting the shellcode’s analysis. In this way, a
file handler associated with the PDF document is available within the current
context execution, and the shellcode will be able to access the malicious PDF
document.

Security measures There are some API functions that, if called by a shellcode
in a proper way, can compromise the machine that runs the analyzer. We now
discuss two significant examples, and show how we have addressed these issues.

The first one is related to the WinExec API function. Through this API
function (and a few similar ones), the shellcode can run an arbitrary executable.
The problem here is that malicious shellcode uses this API function to run
malware. Therefore, we dynamically alter the API’s argument that indicates the
path to the executable that has to be run. In this way, the shellcode, instead
of running malware, will execute a fake program that simply sleeps for a while.
Therefore, after this substitution, the code of the WinExec API can be safely
executed, without any negative consequences.

The second example is related to the fact that shellcode could create files
in arbitrary places in the file system. Of course, this can be a problem in the
long run, since our tool needs to be able to analyze thousands of samples. We
consider the CreateFile API function as an example for our discussion. This
API function takes as input, among other arguments, the path of the file that
has to be created. Also in this case, as a countermeasure, we modify at run-time
the value of that specific argument: in this way, instead of creating a new file in
an arbitrary directory, the shellcode will create a file in a temporary directory
of our choosing, which is emptied after each analysis. During the analysis, we
also maintain a mapping between the real file paths (the ones specified by the
shellcode) and the temporary file paths (the ones specified by our tool). By doing
this, if the shellcode requires to access a file that has been previously created,
we are able to modify the file path consistently. Finally, it is worth noting that

12 Shellzer: a tool for the dynamic analysis of malicious shellcode

this mechanism comes into play when all those API functions that involve a
file creation are called, including the URLDownloadToFileA API function we
previously discussed.

4.3 Performance Improvements

Instrumenting the execution of all the assembly instructions is not feasible, be-
cause the time required for a single analysis would be too long (several minutes
per sample). This is because the number of instructions executed at run-time
is often in the order of millions, even if the shellcode samples are usually not
bigger than a few hundred bytes.

In order to address this problem, we introduced two different optimizations,
so that the shellcode’s execution is instrumented only when it is really necessary.

Skipping the API’s code Once an API is called, and the specific handlers
(if any) have been executed, we disable the single-step mode (i.e., we do not set
the TF bit of the EFLAGS register). By doing this the API’s execution will not be
instrumented. Of course, when the API function returns, we need to set again
the TF bit in order to resume the normal analysis.

The difficult point here is to detect, in a reliable way, when the API function’s
execution is finished. To do this, we exploit the following observation: when an
API is called, the caller has to push onto the stack the return address, i.e., where
the execution has to jump once the API function returns. This implies that, just
before the execution of the API function’s first instruction, the return address
will be the value on the top of the stack. When the tool detects that an API has
been called, it performs the following operations:

1. it retrieves the return address pushed by the shellcode (that is the value on
the top of the stack);

2. it sets a breakpoint on the return address;
3. it clears the TF bit, and it resumes the execution.

When the API’s code will be completely executed, the execution will jump to
the return address, and the breakpoint will be hit: at this point, the tool sets
again the TF bit and the normal analysis is resumed.

Unfortunately, these operations are sufficient only if the shellcode normally
calls the API. If a technique like the one we named JUMP OVER THE HOOK is
used, the value assumed by the SP just before the execution of the first API’s
instruction has to be determined (we previously described how this is done): once
that value is known, the return address can be retrieved in a straightforward way.

Furthermore, we need to resolve another problem: if the shellcode uses the
technique we named INDIRECT API CALL or even simple cases of return oriented
programming, it is possible that the breakpoint is hit and the API’s execution is
not finished yet. In order to understand if the API function has really returned,
we exploit the following information: the value assumed by the stack pointer
when the API’s execution has really ended (expected SP) can be calculated
starting from the current value of the SP, by using the following expression:

Shellzer: a tool for the dynamic analysis of malicious shellcode 13

expected SP = current SP + (#args + 1) * 4,

where #args represents the number of arguments to the specific API function
called. Specifically, when the breakpoint is hit, the tool determines that the
execution really came back from the API function’s code to the caller, only
if the SP matches the expected SP. If this is not the case, it means that the
API’s execution has not terminated yet, and the breakpoint is set again (on the
same return address). Then, the analysis can continue with the single-step mode
disabled, until the API’s execution has really ended.

Loop handler algorithm When analyzing shellcode, the number of the in-
structions executed at run-time is in the order of millions, despite the fact that
the code is usually constituted of a few hundred bytes. This is because the
shellcode often contains some loops whose body is executed thousands of times:
in particular, loops are used for implementing the decryption routines and the
techniques used to resolve the API addresses, as fully explained in [19]. Since
single-step instrumenting all the iterations of each loop significantly hurts the
performance, we designed a loop handler algorithm. Its goal is to provide a
mechanism to disable the single-step instrumentation while the loop’s body is
repeatedly executed, and to re-enable it once the iterations are ended.
Overview. The algorithm is structured as follows. The first step is to determine
if the execution is in a loop. If this is the case, the loop’s body is analyzed in or-
der to determine which are the exit points, i.e., the set of addresses such that at
least one of them has to be reached once the loop’s execution is terminated. Once
this is done, a hardware breakpoint is set on each of them, the single-step mode
is disabled, and the shellcode’s execution is resumed. When the loop’s iterations
end, one of the breakpoint will be hit, and the tool will be able to re-enable the
single-step mode in order to continue with the normal analysis. Furthermore, the
tool maintains a structure that maps the first address of the loop’s body with
the set of the associated exit points. This is done for optimization purposes (if
the execution reaches again the loop’s starting address, the loop’s body does not
have to be re-analyzed), and, as we will see, for properly handling nested loops.
Loop detection. In order to detect when the execution is in a loop, the tool
maintains an ordered list of the addresses of the instructions executed. In order
to build this list, the value of the program counter is retrieved and appended to
the list, before the execution of each instruction. Then, the list is walked back-
wards in order to find if the current instruction has been already executed in
the past. If this is the case, the execution is in a loop, and the loop’s body will
be constituted by the list’s entries between the two occurrences of the current
instruction’s address (i.e., the one that triggered the loop’s detection). Actually,
our algorithm is not currently able to handle loops that contain instructions like
jmp eax, since the exit points cannot be statically determined if such instruc-
tions are present. What we do to handle this problem is to clear the list each time
this kind of instructions has to be executed. In this way, the tool will lose the
information related to which instructions have been executed in the past, and
this will prevent the detection of a loop that includes such dynamic instructions.

14 Shellzer: a tool for the dynamic analysis of malicious shellcode

Listing 1.2. calc exit points()

1 def c a l c e x i t p o i n t s (loop body , l o o p s d e t e c t e d) :
2 e x i t p o i n t s = s e t ()
3 cand idate s = s e t ()
4 for address in loop body :
5 i f address in l o o p s d e t e c t e d . keys () :
6 cand idate s . add (l o o p s d e t e c t e d [address])
7 continue
8 i n s = di sas semble (address)
9 i f i n s in branches :

10 taken , not taken = g e t d e s t a d d r e s s e s (i n s)
11 cand idates . add (taken)
12 i f not taken not None :
13 cand idates . add (not taken)
14 for candidate in cand idate s :
15 i f candidate not in loop body :
16 e x i t p o i n t s . add (candidate)
17 l o o p s d e t e c t e d [loop body [0]] = e x i t p o i n t s
18 return e x i t p o i n t s

Similarly, the list is cleared also when an API function is called, so that, if a
loop contains a call to an API function, its execution will be always single-step
instrumented.
Determining the exit points. Listing 1.2 shows how the exit points are deter-
mined starting from loop body (that is the list of the addresses that constitutes
the loop’s body), and from loops detected (that is a map between the starting
address and the associated exit points of the loops previously detected). What
we do is to first build a set of candidates. For each instruction that constitutes
the loop’s body, we check if it is the starting address of an already-detected
loop: if this is the case, the exit points associated with it are added to the candi-
dates set. This is done because only the instructions whose execution has been
single-step instrumented will appear in the loop body variable. Therefore, in the
case of nested loops whose execution is skipped thanks to the loop handler, only
their starting addresses will be included in the loop body list. For this reason,
we have to consult the loops detected variable in order to take into account
the contributions (in terms of exit points) of the nested loops.

Then, we check if the current instruction is a branch instruction: if this is
the case, we determine its two target addresses (or just one, if the instruction is
an unconditional jump), and we add them to the candidates set.

Starting from this intermediate set, we are now ready to build the exit points
set: this set will be populated by all those addresses contained in the candidates
set that point outside the loop’s body.
Final steps. At this point, a hardware breakpoint is set on each of the exit
points, the single-step mode is disabled and the shellcode’s execution is resumed.

Shellzer: a tool for the dynamic analysis of malicious shellcode 15

When the loop’s iterations will be terminated, one of the breakpoints will be hit,
and the tool will be able to resume the single-step instrumentation.

The main reason for using hardware breakpoints is that the shellcode can
easily detect the usage of software breakpoints by calculating a CRC (since
these breakpoints need to modify the memory), while the presence of hardware
breakpoints is much more difficult to be detected. But the usage of hardware
breakpoints carries a big disadvantage: due to a processor’s limit, only four of
them can be used at the same time. This implies that our loop detector algorithm
will not be able to handle more than four exit points: if a situation like this
occurs, the tool will continue the single-step analysis, instead of trying to skip
the loop. This circumstance has never occurred during the evaluation phase.

4.4 Evasion possibilities

We now make some considerations about how shellcode could detect our tool
and evade our analysis. We also discuss some possible countermeasures.

Firstly, shellcode could determine that its execution is single-stepped. This
can be done by checking if the TF bit of the EFLAGS register is set. The EFLAGS can
be read by executing the pushfd instruction, that pushes the register’s content
onto the stack. As a countermeasure, when the shellcode executes that specific
instruction, we modify the value pushed onto the stack by overwriting the TF

bit with 0, so that the single-step mode will always appear to be disabled.
The shellcode could detect the usage of hardware breakpoints. One way would

consist in reading the content of the Debug registers, but this cannot be done by
processes executing with non-kernel privileges. Another way would be to install
a custom exception handler and then execute an instruction that voluntarily
raises an exception. By properly reading the Context structure, that is passed
as a parameter to the exception handler, the content of the Debug registers can
be read (this procedure is fully explained in [18]). As a countermeasure, the tool
could act in the following way. When an exception is raised, the tool checks if a
custom exception handler has been installed: if this is the case, the execution is
redirected to the handler’s code, and the Context structure is altered by properly
overwriting the Debug registers’ content. Actually, the technique that consists
in installing a custom exception handler and then raising an exception could be
used not only to detect breakpoints, but also to mislead tools based on debugging
(like ours). But since the presence of custom exception handlers can be always
determined, the tool could properly redirect the execution to the handler’s code.
More in general, there are many other anti-debugging techniques (like the ones
described in [17]) that could affect our tool. But since Shellzer has the complete
control over the shellcode’s execution, it should be always possible to implement
specific countermeasures.

Another way to mislead our tool could be to modify the API function’s code.
However, these modifications can be easily detected by a trivial integrity check
and, if the shellcode calls an API that has been previously altered, the tool
simply executes its code with the single-step mode enabled.

16 Shellzer: a tool for the dynamic analysis of malicious shellcode

Finally, a problem that affects Shellzer, as well as most of the tools based on
a dynamic approach, lies in the fact that only one execution path is examined
during a specific analysis run. Therefore, if a shellcode expresses its malicious
behavior non-deterministically, the report generated might be incomplete. To
address this issue, we are planning to add to the output report an estimation of
the code coverage, that should give an idea about how many shellcode’s instruc-
tions have not been executed, and hence how much of the functionality might
have been remained hidden during the analysis.

5 Evaluation

We will now describe how Shellzer performs at analyzing real-world samples.
As a dataset, we used the Wepawet’s shellcode database. Wepawet [5, 10] is an
online service for detecting and analyzing different types of malware (web-based
malware, malicious PDF documents, and others), and several thousands of re-
sources have been submitted during the past few years. Its shellcode database
has been filled with all the shellcode detected during the analysis of those sub-
missions. Specifically, the detection is performed by applying several heuristics
on strings longer than a certain threshold that contain non-printable characters.
We now present the results we obtained. In the following, we will also discuss
some interesting samples we found during the analysis.

5.1 Tool Evaluation

Our dataset is constituted by 29,873 samples. Unfortunately, it turned out that
not all of them were actually valid shellcode. In particular, we found that 5659
entries were not valid shellcode: many of them are pieces of NOP-sleds that
Wepawet wrongly considered to be complete shellcode. We analyzed the remain-
ing 24,214 samples by setting a timeout of 60 seconds, after which the process
is forced to be terminated. Table 1 summaries the analysis results. Shellzer has
been able to fully analyze 20,306 (84%) of them. With the term fully, we mean
that three requirements are satisfied: it has been possible to analyze the shellcode
from the beginning to the end; no exceptions were raised during the analysis; no
external resources required for the correct analysis were missing.

The average time needed for a single analysis is about 15 seconds, but it
can greatly vary from case to case. If the shellcode simply downloads and ex-
ecutes an external resource, the analysis usually lasts about 5 seconds. How-
ever, if such external resource is not available, the time needed increases, since
some Windows API functions (e.g., the URLDownloadToFileA API function),
wait ∼ 5 seconds before the execution returns to the shellcode (a sort of internal
timeout is implemented). Furthermore, the time required is higher than usual
also when the shellcode downloads a big file by calling thousands of times the
InternetReadFile API function to fetch only few bytes at a time.

As we said, we obtained such great results in terms of performance, thanks to
the two optimizations introduced. Table 2 helps to understand their importance.

Shellzer: a tool for the dynamic analysis of malicious shellcode 17

Table 1. Analysis results

Label Description Number

A Not valid 5659

B Correctly analyzed 20306

C Missing resources 2580

D Corrupted samples 896

E Timeout expired 400

F Not safe API usage 32

Table 2. Optimizations’ impact

Optimizations # of single-stepped
enabled assembly instructions

None 37232470

API Skipping 1173338

API Skipping
639

Loop Handler

Specifically, the table shows the number of instructions that had to be single-step
instrumented during the analysis of a simple shellcode, depending on the enabled
optimizations: if both are used, the number of the single-stepped instructions is
tremendously reduced.

With reference to Table 1, we now discuss which are the causes that prevent
a complete analysis of the remaining 3908 samples.
C - Missing resources. Some samples download a binary into a buffer in
memory, and then the execution jumps there. In 2580 cases (10%), the external
binary was no longer available, and hence the analysis had to be stopped.
D - Corrupted samples. During the analysis of 896 samples (4%), an unex-
pected exception has been raised. To the best of our knowledge, these samples
are somehow corrupted.
E - Time constraint. In 400 cases (2%), 60 seconds have not been sufficient
in order to perform a complete analysis. Usually, this is caused by the fact that
some samples implement loops in a way that our algorithm cannot handle them:
in those cases, Shellzer has to single-step instrument the execution of all their
iterations, and this causes a huge performance overhead. In these cases, the time
required for the analysis usually varies between 4 and 5 minutes.
F - Not safe API usage. If, during the analysis, a shellcode sample calls an
API function that is not considered to be safe (i.e., an API function that is not
handled), the execution is interrupted as a safety measure, and hence the anal-
ysis is stopped. It is interesting how this happened only in 32 cases (∼ 0.1%),
even if the tool considers safe only 74 API functions. The API functions that
are currently not handled by Shellzer are the ones exported by the ws2 32 DLL
(needed to perform remote connections), the advapi32 DLL (useful to interact
with the Windows Registry), and some others low-level API functions, such as
VirtualQueryEx, CreateRemoteThread, and SetUnhandledException.

In conclusion, the analysis fails due to a Shellzer ’s limitation, just in the
cases labeled with E and F (∼ 2.1%), while in the other two cases (labeled with
C and D) the tool has been able to continue the analysis as far as even manual
debugging has to stop.

5.2 Shellcode’s database analysis

We now discuss what we found during the evaluation phase. The vast majority
of the samples we analyzed, aim to retrieve and execute an additional payload.

18 Shellzer: a tool for the dynamic analysis of malicious shellcode

In 3,124 cases, they try to retrieve more than one payload. Interestingly, in 1,445
cases the payload was still available, and Shellzer has been able to return its de-
crypted version. Furthermore, not always the resource downloaded is a malware
in the form of a common Windows executable. Instead, in 898 cases, a mali-
cious DLL is retrieved. We also found 2 samples that aim to execute HTA files
(HTML applications) by launching mshta.exe, the HTA Windows interpreter.
3,429 samples allocate a new region of memory, they copy into it a portion of
their own code, and then they jump there. Interestingly, some shellcode samples
do this trick for up to six times in a row, and they download and execute an
additional malware only in the last stage. Some samples contain two distinct
shellcodes, where the first is in clear, while the second is heavily encrypted. This
is probably done to mislead static analyzers that, after detecting and analyzing
the first shellcode, will consider their job completed. In 1,327 cases, the shellcode
calls the API #101 exported by shdocvw.dll (#101 is its ordinal number; it
does not have an associated symbol). To the best of our knowledge, this should
avoid the crash of the browser after the shellcode’s execution. We also found 306
samples that make use of the UNICODE version of some Windows API func-
tions: in these cases, the shellcode’s complexity is increased, but it is more likely
that the calls to those API functions are not monitored.

29 samples extracted from malicious PDF documents, perform the following
additional operations (besides retrieving and running the malware): they first de-
termine the path of the PDF Reader executable (through the GetCommandLineA

API); they access again the malicious PDF document in order to extract a benign
PDF document; they launch the PDF reader executable and, as an argument,
they pass the path to the benign PDF document. In this way, the shellcode’s
execution, instead of ending with a crash, will result in a valid PDF document
that is correctly opened, and this is often sufficient to fool an unsuspecting user.

We also found two samples that try to inject another shellcode in a different
process, by properly using the CreateRemoteThread API function; 14 samples
that try to perform a remote connection; and only 2 samples that interact with
the Windows Registry. This shows how this kind of shellcode is infrequent when
dealing with web-based malware and malicious PDF documents.

6 Related Work

Much work has been done that addresses the problem of shellcode’s detection
in a generic stream of bytes ([3, 14–16, 13, 11]), but relatively few attempts have
been proposed that focus on shellcode’s analysis.

One of the most popular way to analyze shellcode is to perform manual
analysis by using debuggers (such as OllyDbg [20], Immunity Debugger [1], and
WinDbg [2]) and static code analyzers, such as IDA Pro [12]. Unfortunately,
this process is too slow to deal with a large number of samples, and it requires
significant domain expertise. Furthermore, static analyzers cannot produce any
meaningful results if strong encryption is used. This makes clear why automatic
programs that dynamically analyze shellcode are needed.

Shellzer: a tool for the dynamic analysis of malicious shellcode 19

A common way to dynamically analyze a binary consists in emulating its ex-
ecution, by using tools like QEMU [8] or a library such as libemu [3]. Moreover,
a tool named Spector [9] has been recently proposed: it focuses on shellcode’s
analysis and it uses an approach based on symbolic execution. These works car-
ried big advantages with respect to manual analysis, but they suffer from some
limitations. One of the issues is related with the big overhead introduced by
emulation. This represents a problem since the execution of millions of instruc-
tions has to be emulated, due to the frequent presence of loops whose bodies
are iterated thousands of times. Spector addresses this problem by using signa-
tures that associate a known sequence of instructions to an equivalent high-level
procedure, in a way that just such simple procedure is emulated, instead of em-
ulating the execution of thousands of instructions. But if a simple unseen loop is
introduced, this approach cannot give any performance speed-up. On the other
hand, Shellzer does not have to use signatures to perform well. Indeed, thanks
to the loop handler algorithm, our tool automatically switches from single-step
instrumentation (that is analog to emulation) to normal execution, in a way that
during the loops’ iterations no overhead is introduced. Furthermore, Spector is
limited to the execution of deterministic code, while Shellzer does not suffer
from this problem since the shellcode is really executed. Another issue that af-
fects some emulation-based approaches is that no real-data is downloaded from
the network. This represents a problem, especially when analyzing samples ex-
tracted from web-based malware, since the shellcode must be able to access the
retrieved binaries in order to be properly executed and analyzed. On the other
hand, this kind of limitation provides some advantages. For example, while Spec-
tor can analyze shellcode samples that aim to open a remote command shell for
an attacker, Shellzer is currently not able to do that. A simple solution would
be to emulate the behavior of those specific API functions.

Another advantage of Shellzer with respect to other tools, is that we made
possible to properly analyze shellcode samples that require to be executed in
a specific environment, like the ones extracted from malicious PDF documents.
This is why generic malware analyzers (like Anubis [4] and Threat Expert [6])
cannot provide accurate results in these cases.

7 Conclusion and Future Work

In this paper, we have presented Shellzer, a tool for the dynamic analysis of
shellcode extracted from web-based malware and malicious PDF documents.
Thanks to a series of optimizations, the single-step instrumentation turned out
to be a successful approach, as confirmed by the high success rate achieved
during the analysis of more than 24,000 real-world samples. As output, the tool
returns a detailed report, which includes a complete trace of the API calls, and
the payloads retrieved during the analysis (in their decrypted form). Shellzer
also satisfies all the constraints required to properly analyze shellcode extracted
from malicious PDF documents, and handle all the evasion techniques we found
in the wild. In the near future, this tool will be integrated with Wepawet, and it

20 Shellzer: a tool for the dynamic analysis of malicious shellcode

will hence receive public attention. For this reason, our future work will focus on
how shellcode samples could detect Shellzer and evade our analysis. Moreover,
we are planning to introduce the possibility to analyze shellcode extracted from
different sources, other than web-based malware and malicious PDF documents,
and hence to extend the support for different execution contexts.

Acknowledgments. This work was partially supported by ONR grant
N000140911042, ARO grant W911NF0910553, NSF grants CNS-0845559 and
CNS-0905537, and Secure Business Austria.

References

1. Immunity debugger. http://www.immunityinc.com/products-immdbg.shtml
2. Ms debugging tools. http://www.microsoft.com/whdc/devtools/debugging/
3. Libemu. http://libemu.carnivore.it (2007)
4. Anubis. http://anubis.iseclab.org (2008)
5. Wepawet. http://wepawet.cs.ucsb.edu/ (2008)
6. Threat expert. http://www.threatexpert.com (2009)
7. Amiri, P.: Pydbg. http://pedram.redhive.com/PyDbg/ (2005)
8. Bellard, F.: Qemu. http://www.qemu.org (2005)
9. Borders, K., Prakash, A., Zielinski, M.: Spector: Automatically analyzing shell

code. In: Proceeding of the Annual Computer Security Applications Conference
(ACSAC) (2007)

10. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In: Proceedings of the World Wide Web
Conference (WWW) (2010)

11. Gu, B., Bai, X., Yang, Z., Champion, A.C., Xuan, D.: Malicious shellcode detec-
tion with virtual memory snapshots. In: Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM) (2010)

12. Hex-Rays: Ida pro disassembler and debugger. http://www.hex-rays.com/

idapro/
13. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymorphic shellcode de-

tection. In: Proceedings of the Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA) (2005)

14. Polychronakis, M., Anagnostakis, K., Markatos, E.: Network-level polymorphic
shellcode detection using emulation. In: Proceedings of the Conference on Detection
of Intrusions and Malware and Vulnerability Assessment (DIMVA) (2006)

15. Polychronakis, M., Anagnostakis, K., Markatos, E.: Emulation-based detection of
non-self-contained polymorphic shellcode. In: Proceedings of Recent Advances in
Intrusion Detection (RAID) (2007)

16. Polychronakis, M., Anagnostakis, K., Markatos, E.: Comprehensive shellcode de-
tection using runtime heuristics. In: Proceeding of the Annual Computer Security
Applications Conference (ACSAC) (2010)

17. Shields, T.: Anti-debugging - a developers view
18. Singh, A.: Identifying Malicious Code Through Reverse Engineering. Springer

(2009)
19. Skape: Understanding windows shellcode. http://www.hick.org/code/skape/

papers/win32-shellcode.pdf
20. Yuschuk, O.: Ollydbg. http://www.ollydbg.de/ (2005)

