
FlashDetect: ActionScript 3 malware detection

Timon Van Overveldt1, Christopher Kruegel23, and Giovanni Vigna23

1 Katholieke Universiteit Leuven, Belgium,
timon.vanoverveldt@student.kuleuven.be

2 University of California, Santa Barbara, USA,
{chris,vigna}@cs.ucsb.edu

3 Lastline, Inc.

Abstract. Adobe Flash is present on nearly every PC, and it is in-
creasingly being targeted by malware authors. Despite this, research into
methods for detecting malicious Flash files has been limited. Similarly,
there is very little documentation available about the techniques com-
monly used by Flash malware. Instead, most research has focused on
JavaScript malware.
This paper discusses common techniques such as heap spraying, JIT
spraying, and type confusion exploitation in the context of Flash mal-
ware. Where applicable, these techniques are compared to those used in
malicious JavaScript. Subsequently, FlashDetect is presented, an off-
line Flash file analyzer that uses both dynamic and static analysis, and
that can detect malicious Flash files using ActionScript 3. FlashDetect
classifies submitted files using a naive Bayesian classifier based on a set
of predefined features. Our experiments show that FlashDetect has
high classification accuracy, and that its efficacy is comparable with that
of commercial anti-virus products.

Keywords: Flash exploit analysis, malicious ActionScript 3 detection,
Flash type confusion

1 Introduction

Adobe Flash is a technology that provides advanced video playback and anima-
tion capabilities to developers through an advanced scripting language. The files
played by Flash, called SWFs, are often embedded into webpages to be played
by a browser plugin, or are embedded into a PDF file to be played by a copy of
the Flash Player included in Adobe’s Acrobat Reader. The technology is nearly
ubiquitous on the desktop: over 99% of all PC users have the Flash browser
plugin installed, according to Adobe [1]. However, over the last couple of years,
the Flash Player has increasingly become the target of exploitation [18,23,10],
with at least 134 high-severity vulnerabilities that have been identified in the
Flash Player since January 2009 [15].

Since version 9 appeared in 2006, the Flash Player has supported two script-
ing languages, ActionScript 2 (AS2) and ActionScript 3 (AS3), each with its
own virtual machine. Traditionally, exploits have targeted the older AS2 virtual



2 Timon Van Overveldt et al.

machine. However, a number of critical vulnerabilities discovered in the AS3 vir-
tual machine have resulted in an ever growing number of exploits targeting this
virtual machine. Even exploits targeting the AS2 virtual machine increasingly
turn to AS3 to perform part of the attack. For example, a heap spray might be
performed in AS3 before running an AS2 script that exploits an old vulnerability.

Despite the increasing importance of successful solutions to Flash exploit
detection, academic research describing such solutions has been scarce. A lot of
research has instead focused on JavaScript malware detection. However, without
a sound detector for Flash malware, even the most advanced JavaScript malware
detector could be circumvented by performing all or part of the attack in Flash.

In this paper, we present FlashDetect, an offline Flash file analyzer and
malware detector. FlashDetect combines static bytecode analysis with dy-
namic analysis using an instrumented version of the Lightspark flash player [19]
to enable a high detection rate while maintaining a low false positive rate. The
analysis of a Flash file is based on a set of simple yet effective predefined features.
These features are used to classify a Flash file using a combination of a naive
Bayesian classifier and a single vulnerability-specific filter. FlashDetect is an
evolution of OdoSwiff, presented by Ford et al. in [6]. However, in contrast to
OdoSwiff, FlashDetect focuses solely on the analysis Flash files using AS3,
while OdoSwiff mainly covered AS2 exploits. Given the significant differences
between AS2 and AS3, we had to develop an entire new set of features and de-
tection techniques. Additionally, OdoSwiff did not employ a naive Bayesian
classifier, instead relying solely on threshold-based filters.

The contributions made by this paper include:

– Insight into common Flash exploit techniques.
Techniques commonly used in malicious Flash files, such as obfuscation, heap
spraying, and type confusion exploitation are discussed.

– Detection based on a combination of static and dynamic analysis.
A hybrid approach to analyzing Flash files is presented, in which the strengths
of static and dynamic analysis are combined.

– Classification based on predefined features.
Classification is performed by a combination of a naive Bayesian classifier
and a single vulnerability-specific filter. The naive Bayesian classifier is based
on a set of predefined features.

– Evaluation.
The merits of our approach are confirmed. Tests performed on 691 benign
files and 1,184 malicious files show low false negative and false positive rates
of around 1.87% and 2.01%, respectively. These rates are shown to be com-
parable with or better than those of commercial anti-virus products

The rest of this paper is organized as follows. A number of common techniques
employed by ActionScript 3 malware are outlined in Section 2. FlashDetect’s
implementation details are discussed in Section 3, while Section 4 lists the set
of features used for classification. Section 5 presents the experimental results.
Finally, FlashDetect’s limitations are discussed in Section 6, while Section 7
discusses related publications.



FlashDetect: ActionScript 3 malware detection 3

2 Common Flash exploit techniques

This section provides a brief overview of some common techniques employed
by Flash malware. Where applicable, comparisons are made with techniques
common to JavaScript malware.

2.1 Obfuscation

Obfuscation is often employed by malicious JavaScript or shellcode, and ma-
licious Flash files are no exception. Obfuscation techniques differ according to
the technology available for obfuscation. For example, JavaScript is an inter-
preted language lacking a bytecode representation. Consequently, obfuscation in
JavaScript often consists of identifier mangling and/or repeated calls to eval().
Shellcode obfuscation, on the other hand, is often achieved by packing the binary
data in a specific format, possibly using the XOR operation

We have examined hundreds of malicious Flash files to determine if and how
they perform obfuscation, and to develop ways of detecting such obfuscation.
The description that follows is the result of that effort.

Flash files are created by compiling ActionScript 3 scripts into a bytecode rep-
resentation and wrapping that bytecode in an SWF container. Because the Ac-
tionScript 3 virtual machine interprets bytecode, a JavaScript-style eval() func-
tion is not supported. Consequently, Flash obfuscation techniques have more in
common with obfuscation techniques for shellcode than with those for JavaScript.

Note that we distinguish two types of obfuscation. The first type is source-
code level obfuscation (e.g. identifier renaming). This type of obfuscation is heav-
ily used in JavaScript malware, but given that ActionScript is distributed in
bytecode form, it is less prevalent in Flash malware. The second type of ob-
fuscation consists of multiple levels of embedded code. Since our detector will
analyze the bytecode of a Flash file, we are most interested in the latter form of
deobfuscation.

Though ActionScript 3 does not support eval(), it does support the runtime
loading of SWF files. This is achieved by calling Loader.loadBytes() on a
ByteArray containing the SWF’s data. Using the DefineBinaryData SWF tag,
arbitrary binary data can be embedded into an SWF file. At runtime, the data
becomes available to ActionScript in the form of a ByteArray instance.

The DefineBinaryData SWF tag is often used in combination with the
Loader.loadBytes() method to implement a primitive form of obfuscation.
However, given that static extraction of DefineBinaryData tags is fairly easy
using a range of commercial or open-source tools, obfuscation almost never stops
there. Instead, malicious Flash files often encode or encrypt the embedded binary
data and decode it at runtime before calling Loader.loadBytes().

As is the case with JavaScript [8], obfuscation is actively used by both be-
nign and malicious Flash files, as evidenced by commercial obfuscators such as
DoSWF [5] and Kindi [11]. Thus, the mere presence of obfuscated code is not
a good indicator of the maliciousness of a Flash file. Therefore, a need for a



4 Timon Van Overveldt et al.

dynamic extraction method arises, allowing static analysis to be performed af-
ter deobfuscation. To this end, we have modified the Lightspark flash player so
that each time Loader.loadBytes() is called, the content of the ByteArray is
dumped into a file for later analysis. This allows for reliable extraction of embed-
ded SWFs, as long as the deobfuscation code path is reached. In cases where the
deobfuscation code path is not reached and no files are dynamically extracted,
we fall back to a simple static extractor.

2.2 Heap spraying

Heap spraying is an extremely common technique found in contemporary mal-
ware, and as such, it is commonly employed in ActionScript 3 malware. As is the
case with obfuscation techniques, the way a heap spray is performed depends on
the environment in which it needs to be performed. For example, in JavaScript,
heap sprays are often performed by creating a string, and repeatedly concatenat-
ing the string with itself. In ActionScript 3, the most common way to perform
a heap spray is through the use of a ByteArray.

The ByteArray class available in ActionScript 3 provides byte-level access to
a chunk of data. It allows reading and writing of arbitrary bytes, and also allows
the reading and writing of the binary representation of integers, floating point
numbers, and strings. The implementation of the ByteArray class in the Action-
Script 3 virtual machine uses a contiguous chunk of memory that is expanded
when necessary to store the contents of the array. Therefore, the ByteArray class
is a prime candidate for performing heap sprays.

Heap spraying code often uses one ByteArray containing the shellcode to be
written, and a second ByteArray to perform the actual heap spray on. A simple
loop is then used to repeatedly copy the first array’s contents into the second.
This results in the second array’s memory chunk becoming very large, covering
a large portion of the process’s memory space with shellcode. Another common
way to perform a heap spray is to use a string that contains the hexadecimal,
base64, or some other encoding of the shellcode. This string is then decoded
before being repeatedly written into a ByteArray, until it covers a large portion
of the memory space.

2.3 JIT spraying

The concept of JIT spraying in ActionScript 3 has been introduced in [2]. In
that paper, the author shows how the JIT compiler in the ActionScript 3 virtual
machine can be forced to generate executable blocks of code with almost identical
semantics to some specified shellcode. It is shown that a chain of XOR operations
performed on a set of specially crafted integers is compiled to native code in such
a way that, when the code is jumped into at an offset, it is semantically equivalent
to the given shellcode. The concept of JIT spraying is significant because it allows
bypassing the Data Execution Protection (DEP) feature present in most modern
operating systems.



FlashDetect: ActionScript 3 malware detection 5

We have observed that exploits targeting the Flash Player and using JIT
sprays are fairly common. It seems that the most common way in which a JIT
spray is performed consists of repeatedly loading an embedded SWF file contain-
ing the bytecode that performs the repeated XOR operations. This repetition
ensures that multiple blocks of executable shellcode are present in the memory
of the Flash player. Furthermore, the shellcode itself often contains a NOP-sled
to further enhance the chances of successful exploitation.

2.4 Malicious ActionScript 3 as exploit facilitator

Although a range of vulnerabilities have allowed the ActionScript 3 virtual ma-
chine to be a target for exploitation, another common use of Flash malware
seems to be that of a facilitator of other exploits. We have observed instances
where a malicious Flash file merely performs a heap spray, without trying to
gain control of execution. This seems to indicate that the malicious file is meant
to facilitate another exploit, for example one targeting a JavaScript engine. The
rationale behind this behavior is that Flash files are often embedded in other
resources, and as such, they can facilitate exploits targeting the technologies
related to those resources.

For example, exploits targeting a JavaScript engine might use ActionScript 3
to perform a heap spray, after which the actual control of execution is gained
through a vulnerability in the JavaScript engine. However, the value of such
types of exploits is declining, as browsers are increasingly separating the browser
from its plugins by running those plugins in separate processes. Another possible
scenario in which a malicious Flash file acts as an exploit facilitator is that in
which a Flash file is embedded in a PDF. In such a case, the Flash file might
perform a heap spray, while the actual control of execution is gained through
a vulnerability in the JavaScript engine in Adobe’s Acrobat Reader. Finally,
as mentioned in the previous section, ActionScript 3 is often used to facilitate
exploits targeting the ActionScript 2 virtual machine.

These examples illustrate that Flash is a versatile tool for malware authors,
as Flash files can be used both to launch full-fledged attacks, as well as to act
as a facilitator for the exploitation of other technologies.

2.5 Type confusion exploitation

A relatively recent development has been the exploitation of type confusion
vulnerabilities present in both the ActionScript 2 and ActionScript 3 virtual
machine. These types of exploits are interesting since they often allow an attacker
to construct a very reliable exploit that completely bypasses both Data Execution
Protection and Address Space Layout Randomization, without relying on heap or
JIT spraying. There are a number of vulnerabilities for which the exploit code,
or at least parts of it, have been published. Among these are CVE-2010-3654
and CVE-2011-0609, which relate to the ActionScript 3 virtual machine, and
CVE-2011-0611, which relates to the ActionScript 2 virtual machine. Other



6 Timon Van Overveldt et al.

Listing 1.1. Implementation of the 3 classes used to exploit CVE-2010-3654.

1 class OriginalClass {
2 static public function getPointer (o:Object):uint { return 0; }
3 static public function tagAsNumber (u:uint):* { }
4 static public function fakeObject (p:uint):SomeClass { return null; }
5 }
6
7 class ConfusedClass {
8 static public function getPointer(o:Object):Object { return o; }
9 static public function tagAsNumber(p:uint):uint { return p | 0x7 }

10 static public function fakeObject(p:uint):uint { return p; }
11 }
12
13 class SomeClass {
14 public function someMethod():* {}
15 }

security advisories, such as CVE-2012-0752, are also known to relate to type
confusion vulnerabilities, although their exploit code is not public yet.

An exploit for CVE-2010-3654 is presented by Li in [13]. We present a
slightly simplified adaption of this exploit, to illustrate the way in which a type
confusion exploit works.

ActionScript 3 virtual machine implementation The ActionScript 3 vir-
tual machine operates on data types called ‘atoms.’ Atoms consist of 29 bits
of data followed by a 3-bit type-tag. The data can either be an integer or an
8-byte-aligned pointer to some larger data (as is the case for atoms representing
objects or floating point numbers). The type-tags allow the virtual machine to
support runtime type detection when a variable’s type is not specified in the
source code.

The ActionScript 3 virtual machine also contains a JIT compiler that com-
piles ActionScript 3 methods to native code. The native code for such a method
works solely with native data types, not atoms. Thus, native code methods re-
turn ActionScript objects as pointers, integers as 32-bit integers, and floating
point numbers as pointers to IEEE 754 double precision numbers. Code calling
a native code method then wraps the result into a type-tag to form an atom, so
that the result can be used by the virtual machine. The type-tag that is used
when wrapping native code results depends on the method’s return type, which
is specified by the class definition.

Elements of a CVE-2010-3654 exploit. An exploit for CVE-2010-3654
consists of three classes. Listing 1.1 lists the implementation of those three
classes. To trigger the vulnerability, the list of identifiers in the compiled byte-
code is modified such that the name of ConfusedClass’s identifier is changed



FlashDetect: ActionScript 3 malware detection 7

to OriginalClass. After this modification, the list of identifiers will have two
entries named OriginalClass. The result is that in vulnerable version of the
Flash player, the ConfusedClass is ‘type confused’ with the OriginalClass.

When ConfusedClass is confused with OriginalClass, calls to methods
of OriginalClass instead end up calling the native code implementations of
ConfusedClass’s corresponding methods. However, when wrapping the results
of these native code methods, the type-tag that is used depends on the re-
turn types defined in OriginalClass. This mismatch, where on the one hand
ConfusedClass’s native code methods are called, while on the other hand
OriginalClass’s return types are used, results in an exploitable vulnerability.

The following sections show how this vulnerability can be used to leak addresses
of objects, read arbitrary memory and gain control of execution.

Leaking objects’ memory addresses. Because of the type confusion, the
pointers to the Objects returned by ConfusedClass.getPointer are wrapped
in uint type-tags (as specified by OriginalClass), exposing the pointer to
the ActionScript 3 runtime. For example, OriginalClass.getPointer(new
ByteArray()) will actually call ConfusedClass.getPointer and return the
memory address of the ByteArray in the form of an integer.

Reading arbitrary memory addresses. Similarly, the integers returned by
ConfusedClass.tagAsNumber end being used as if they are atoms with a type-
tag. This is because the type of the returned value needs to be inferred at run-
time, as no type is specified in OriginalClass. The 0x7 type-tag that is added
by ConfusedClass.tagAsNumber is that of a floating point number atom.

In the ActionScript 3 virtual machine, the data of a floating point number
atom is an 8-byte-aligned pointer to an IEEE 754 double precision number.
Thus, after a call to tagAsNumber, the given integer will be used as if it is an
8-byte-aligned pointer pointing to valid IEEE 754 data.

This effectively allows an attacker to read arbitrary memory locations by
passing the memory location to tagAsNumber and then writing the ‘fake’ floating
point number to a ByteArray. This results in the 8 bytes at the given location
being written into the ByteArray. These bytes can then be read separately using
the methods provided by the ByteArray class.

Gaining control of execution. Finally, by passing a memory address to the
fakeObjectmethod, one can create a ‘fake’ object of type SomeClass whose rep-
resentation is supposedly stored at the given memory location. When someMethod
is called on this fake object, the virtual machine will access the object’s vtable at
a certain offset from the given memory address, look up the method’s address,
and then jump to it. Thus, by specifically crafting the memory at the given
memory location, the attacker can make the virtual machine hand over control
of execution to a piece of memory under his control. Crafting such a chunk of
memory can easily be done by using a ByteArray instance and then leaking



8 Timon Van Overveldt et al.

the address of that ByteArray’s data using a combination of the previous two
techniques.

Bypassing DEP. It is clear that by being able to leak pointers to objects,
read arbitrary memory addresses and gain control of execution, one can easily
create a basic exploit that bypasses ASLR. However, DEP still prevents such
exploits from working, since any shellcode produced in ActionScript will be non-
executable.

There is, however, an important element that circumvents this last hurdle:
the first 4 bytes of an ActionScript object’s representation point to a memory
address in the Flash player DLL that is always at constant offset to the start of
the DLL. Thus, by reading these 4 bytes, an attacker can infer the base address
of the Flash player DLL in the process’s memory.

Since the DLL contains a call to VirtualProtect, an attacker can use the
information to discover the address of that function. Therefore, all an attacker
needs to do to circumvent DEP is to create a return-oriented programming attack
that calls VirtualProtect on some shellcode, using the gadgets available in the
DLL. Afterwards, the shellcode, which can be arbitrarily large, can be jumped
to and executed.

2.6 Environment-identifying code

Environment-identifying code reads some property and compares it to some
constant. The result is then used in a conditional branch. Such code is often
used to selectively launch an exploit only if the Flash file is being executed
by a vulnerable version of the Flash player. Therefore, a malicious Flash file
might not exhibit distinctive behavior if such environment-identifying code fails
to identify a vulnerable Flash player instance. From our observations we have
concluded that environment-identifying code is fairly common in malicious Flash
files. Since environment-identification is often used to target specific versions of
the Flash runtime, it is not possible to instrument the Lightspark player to return
a single version string that is vulnerable to all exploits.

To improve the detection rate and to maximize the chances of successfully
deobfuscating any embedded SWF files, we have instrumented the Lightspark
player to taint all environment-identifying properties. More precisely, all prop-
erties of the Capabilities class are tainted. These taint values are propagated
through all basic ActionScript 3 operations (e.g., string concatenation). Subse-
quently, whenever an ifeq (‘if equals’) branch depends on a tainted value, that
branch is forcibly, taken no matter what the actual result of the comparison
operation is. On the other hand, complementary ifne (‘if not equals’) branches
depending on tainted values are never taken.

Listing 1.2 contains a simplified excerpt of a real malicious sample performing
environment-identification. The sample matches the Flash player’s version (ob-
tained from the Capabilities.version property) to a predefined set of versions.
Each version has an accompanying embedded SWF file containing an exploit tar-
geting that version. With the original Lightspark player, chances are high that



FlashDetect: ActionScript 3 malware detection 9

Listing 1.2. Excerpt of a sample using environment-identifying bytecode

1 getlex flash.system::Capabilities
2 getproperty version
3 coerce String
4 setlocal 15
5 getlocal 15
6 pushstring "WIN 9,0,115,0"
7 ifne L1
8
9 // load exploit targeting Windows Flash Player version 9.0.115

10
11 L1: getlocal 15
12 pushstring "WIN 9,0,16,0"
13 ifne L2
14
15 // load exploit targeting Windows Flash Player version 9.0.16
16
17 L2: // this Flash player is not vulnerable, do not load any exploit

both ifne conditional branches would be taken, resulting in the malicious Flash
file not launching any exploit. However, because of the use of taint-propagation,
none of the ifne branches are taken in our analysis environment, resulting in
the last exploit being loaded.

Note that this simple approach works well, as most environment-identifying
code uses inclusive rules to determine vulnerable Flash players. That is, in-
stead of determining that a given Flash player instance is not vulnerable, most
environment-identifying code determines that a given instance is vulnerable.
However, it is clear that this approach can be circumvented, a scenario that is
discussed in more detail in Section 6.

3 Detector implementation

FlashDetect’s analysis of a Flash file is split into three phases. In the first
phase, the Flash file is dynamically analyzed using an instrumented version of
the Lightspark flash player. The second phase leverages a static analysis of the
ActionScript 3 bytecode of the Flash file (including any bytecode found through
deobfuscation during the dynamic analysis phase). Finally, in the last phase, the
Flash file is classified using the set of features described in Section 4.

3.1 Phase I: dynamic analysis

The dynamic analysis of submitted Flash files is performed by an instrumented
version of the Lightspark flash player that saves a trace of interesting events, such
as the calling of methods, access to properties, or the instantiation of classes.



10 Timon Van Overveldt et al.

After the dynamic analysis, this trace is analyzed to determine the values of the
features used for classification.

Additionally, the instrumented Lightspark version saves every SWF file that
is loaded at runtime. This allows the subsequent static analysis to take into
account both the original SWF file and any other embedded, possibly obfuscated,
SWF files that were loaded at runtime.

During the dynamic analysis, as soon as the first bytecode instruction is
executed, a timer is started with a given timeout value. When the timer runs
out, the dynamic analysis ends. This way, each Flash file is analyzed for more
or less the same amount of time. At the same time, starting the timer only after
the first instruction has executed ensures that the time spent loading a Flash file
has no effect on the actual amount of time for which the file’s scripted behavior
is analyzed.

3.2 Phase II: static analysis

After performing the dynamic analysis, we perform a static analysis of both the
original SWF file as well as any deobfuscated SWF files. The majority of the
static analysis phase is spent analyzing the ActionScript 3 bytecode found in the
SWFs. However, a small part of the static analysis checks for commonly exploited
vulnerabilities in the Flash player’s SWF parser, such as integer overflows in
SWF tags.

As is the case with the dynamic analysis, the goal of the static analy-
sis is to determine the values for the set of features used for classification.
Some feature values are determined during both the dynamic and static anal-
ysis phase. For example, the feature that captures a Flash file accessing the
Capabilities.version property, commonly used for environment-identification
purposes, is detected during both analysis phases.

Checking the same feature during both phases might seem redundant, but
it has a practical advantage. As the Lightspark flash player is a fairly recent
project, it does not yet run all Flash files correctly. Hence, it is possible that
the dynamic analysis phase will be cut short because of an unexpected error.
However, because the same feature is also checked in the static analysis phase,
chances are high that the feature will still be correctly detected. On the other
hand, since it is possible to obfuscate property or method names, static analysis
might fail to detect certain features. However, as long as the dynamic analysis
succeeds, that feature will still be detected correctly.

3.3 Phase III: classification

A naive Bayesian classifier is used to classify submitted samples using the set of
features mentioned earlier. The classifier accepts features with both a Boolean
value domain and a continuous value domain. A Laplacian correction is applied
to Boolean features to convert zero-probabilities to very small probabilities.



FlashDetect: ActionScript 3 malware detection 11

As is common with naive Bayesian classifiers, the normal distribution is used
to model continuous features. Thus, the probability of continuous features is
estimated using the normal probability density function.

f(x, µ, σ2) =
1

σ
√
2π
exp

(−(x− µ)2
2σ2

)
Additionally, calculated probabilities are clamped to a minimum probability of
1e-10 , so as to prohibit any single feature from influencing the classification
decision too much.

Finally, there is one feature that we consider a definitive indicator of mali-
ciousness, and for which we bypass the naive Bayesian classifier. This feature is
discussed in Section 4.

4 Features used for classification

Our features can be grouped according to the type of behavior they characterize.
Boolean features are marked by (B), while continuous features are marked by
(C).

Features related to embedded and obfuscated SWF files or shellcode.
The group consists of the following features:

– shellcode (B): indicates whether the sctest tool from the Libemu library
detected shellcode embedded in the Flash file.

– load-loadbytes, loader-load (B): indicate whether the Flash file uses the
loadBytes or loadmethods of the Loader class to load SWF files at runtime.

– obfuscation-method-ratio (C): represents the ratio of deobfuscation-
related method calls to the overall number of method calls; the methods
are fromCharCode(), charCodeAt and slice() of the String class, in ad-
dition to parseInt. These methods are frequently used in deobfuscation in
the wild.

– bytearray-method-ratio (C): the ratio of ByteArray-related method calls
to the total number method calls. A large ratio is indicative of deobfuscation
and/or heap spraying.

– bytearray-callprop-ratio (C): the ratio of ByteArraymethod-calling byte-
code instructions to the total number method-calling instructions. A large
ratio is indicative of deobfuscation and/or heap spraying.

– avg-pushstring-char-range (C): the average range of characters in
pushstring instructions; indicative of strings containing binary data such
as shellcode.

– avg-base64-pushstring-length (C): the average length of strings pushed
by pushstring instructions that match the base64 character set; indicative
of obfuscated data.



12 Timon Van Overveldt et al.

Of the above features, the shellcode, bytearray-callprop-ratio, avg-pushstring-
char-range and avg-base64-pushstring-length features are only checked during
the static analysis phase. The obfuscation-method-ratio and bytearray-method-
ratio features are only checked during the dynamic analysis phase. The loader-
loadbytes and loader-load features are checked during both phases of the analysis.

Features related to environment-awareness.

– checks-url (B): indicates whether the Flash file checks the URL of
the webpage it is embedded in; the feature indicates access to the
LoaderInfo.url property or access through the ExternalInterface class
to the window.location property of the embedding HTML page. Most ma-
licious files do not check the URL, while a lot of benign files do, so this
feature is indicative of benign behavior rather than malicious behavior.

– external-interface (B): indicates whether the Flash file uses any of the
methods of the ExternalInterface class to communicate with the external
host of the Flash plugin, such as the web browser. Most malicious files do
not use ExternalInterface, while a lot of benign files do, so this feature is
indicative of benign behavior rather than malicious behavior.

– checks-capabilities (B): indicates whether the Flash file uses any of the
properties of the Capabilities class; indicative of environment-identification
often used by malicious files in the wild. Additionally, there are five fea-
tures that specifically indicate access to the version, playerType, and
isDebugger properties of the Capabilities class.

All features in this group are checked during both analysis phases.

Features related to general runtime behavior. The features in this group
all provide an indication how a given Flash file behaves in very general terms.
For example, a very high amount of method calls or high ratio of push opcodes
is often indicative of deobfuscation or heap spraying.

– method-calls-per-second, method-calls-per-cpusecond (C): the num-
ber of built-in methods (provided by the Flash Player runtime) called during
the dynamic analysis phase, normalized by the running time in terms of wall
clock or CPU time, respectively. These features each have another variant
in which the value is additionally normalized by the size of the bytecode
present in the SWF file.

– avg-opcode-ratio (C): a group of features that indicate the ratio of a
certain opcode to the total number of opcodes. The opcodes for which ratios
are determined are bitxor, the push opcodes used to push data on the stack,
and the call opcodes used to call methods.

The values to the avg-opcode-ratio features are determined during the static anal-
ysis phase, while the other features’ values are determined during the dynamic
analysis phase.



FlashDetect: ActionScript 3 malware detection 13

Vulnerability-specific features.

– bad-scene-count (B): indicates whether an invalid SceneCount value was
detected inside the DefineSceneAndFrameLabelData SWF tag. This is in-
dicative of an exploit targeting the CVE-2007-0071 vulnerability.

The value to this feature is determined during the static analysis phase.
This feature is used because some malicious files only trigger the CVE-2007-

0071 vulnerability, without containing any other malicious content or bytecode.
These files are probably meant to be embedded inside other files that do contain
malicious content (e.g. shellcode), to act as exploit triggers.

Given that these types of malicious files would not be detected by the other
features, we use this vulnerability-specific feature, enabling a fair comparison
with other detection products. Given that the presence of this feature is such
a definitive sign of maliciousness, we immediately consider files exhibiting the
feature to be malicious, bypassing the naive Bayesian classifier, as mentioned
earlier in Section 3.3.

5 Evaluation

5.1 Sample selection

To evaluate the accuracy of FlashDetect, we tested the classifier on a set of
Flash files that are known to be malicious or benign.

Benign samples. The benign samples were manually verified to be benign and
were gathered by crawling the following sources:

– Miniclips.com, an online games website.
– Various websites offering free Flash webdesign templates.
– Google search results for the query filetype:swf.

Additionally, the benign sample set includes Flash files submitted to Wepawet
that, after manual verification, were found to be benign. In total, the benign
sample set consists of 691 Flash files.

Malicious samples. The malicious samples were gathered from files submitted
to Wepawet, and they were manually verified to be malicious. Hence, the samples
were categorized according to their similarity, as shown in Table 1. The table also
shows whether or not the files in each category contain embedded/obfuscated
SWF files, and whether or not the environment-identifying Capabilities class
is accessed. Note that 7 out of 12 categories use embedded, possibly obfuscated,
SWFs, while 4 out of 12 categories perform environment-identification.

Table 2 shows the fraction of benign and malicious files that access the
different properties of the Capabilities class that are used for environment-
identification, and that are also used as features for classification.



14 Timon Van Overveldt et al.

Table 1. Categorization of malicious samples with the number of samples. Also shown
is whether or not embedded SWF files are used, and whether or not the environment-
identifying Capabilities class is accessed.

Group Number of Embedded Capabilities
samples files access

zasder 1016 X X
corrupt-obfuscated-avm1 49 X X
uncategorized 24 X X
loaderinfo-parameters-sc 16
pop 15
hs 14 X
woshi2bbd-jitspray 11 X X
jitegg 10 X
flashspray 9
badscene 9
doswf-sc1 6 X
heapspray-1 5

Total 1184

Table 2. Fraction of files that access the different properties of the Capabilities class.

isDebugger playerType version

Benign files 0.330 0.378 0.421
Malicious Files 0.003 0.872 0.870

Finally, some of the categories are notable for the way the exploits work.

– Zasder. Contains files that employ environment-identification and multiple
levels of obfuscation, and eventually try to exploit CVE-2007-0071 [14].

– Corrupt-obfuscated-avm1. Contains files that load an obfuscated Action-
Script 2 Flash file with a corrupt structure that presumably triggers some
vulnerability in the Flash player. As such, these files are good examples of
ActionScript 3 being used as an ActionScript 2 exploit facilitator.

– Woshi2bbd-jitspray. These files repeatedly load an obfuscated SWF that
contains JIT spraying bytecode, after which a final SWF is loaded that
presumably tries to exploit some vulnerability.

– Flashspray. These files only call a JavaScript function called FLASHSPRAY
in the HTML page embedding the file. They are presumably used to circum-
vent JavaScript malware detectors. Again, these files are good examples of
malicious ActionScript 3 in an exploit facilitating role, this time probably
facilitating an exploit targeting a browser vulnerability.

5.2 Experimental results

To test the efficacy of the classifier, we hand-picked a set of training samples from
the malicious samples. This set of 47 samples includes at least one sample from



FlashDetect: ActionScript 3 malware detection 15

each category. This way, no single category is over-represented in the training
data, even if that category has many more samples than the others. For the
benign training data, we randomly selected 47 benign samples. The classifier was
then trained on the training samples, and tested on the remaining 1781 samples.
We repeated this test 20 times, each time with a different set of randomly selected
benign training samples.

In addition to testing the classifier using manually selected malicious train-
ing samples, we tested the classifier using randomly selected samples. For this
purpose, we partitioned the randomized malicious samples into 20 disjunct sets.
Subsequently, we used each set in turn as the malicious training sample set. An
equal number of benign training samples accompanying the malicious training
samples were again randomly selected. By the pigeonhole principle, this setup
ensures that for all but the three largest malicious categories, there is at least
one test in which such a category is not represented in the training samples. This
provides a way to test the classifier’s performance on malicious flash files of a
previously unknown category.

Error rates. Figure 1 contains the ROC curves displaying the accuracy of our
classifier at various classification thresholds, using both manually selected and
randomly selected malicious training samples. These ROC curves show the true
positive rate as a function of the false positive rate, visualizing the trade-offs
required to achieve a given accuracy.

86
88
90
92
94
96
98
100

0 25 50 75 100

T
ru
e
po

si
ti
ve
s
(%

)

False positives (%)

90

92

94

96

98

100

0 2 4 6 8 10

False positives (%)

Manually selected malicious training samples
Randomly selected malicious training samples

Fig. 1. ROC curves displaying FlashDetect’s accuracy at various classification
thresholds, when using manually or randomly selected training samples. The right-
hand plot zooms in on the upper corner of the left-hand plot.

As shown in the plot, when using manually selected training samples, a false
positive rate of 0% is reached at a true positive rate of around 91.5% (i.e. a
false negative rate of around 8.5%). A true positive rate of more than 99.9% is



16 Timon Van Overveldt et al.

reached at a false positive rate of around 16%. However, a true positive rate of
exactly 100% is only reached at a false positive rate of around 88.7%. Also note
that an equilibrium between false positive and false negative rates is achieved
at around 2%, at a classification threshold of 25 (marked with an ‘x’). It is at
this equilibrium that the classifier’s accuracy is most balanced, and as such, this
is the threshold we use in the next experiment, comparing our performance to
that of commercial anti-virus products.

The plot also shows the performance of the classifier using randomly selected
training samples, as described earlier. It is clear that the classifier is less accurate
when using randomly selected samples than when using manually selected sam-
ples. However, the performance is not significantly worse, with an equilibrium
between false positive and false negatives at around 3%, compared to 2% when
using manually selected samples. Thus, we conclude that while manual sample
selection increases the classifier’s accuracy, it does not significantly bias towards
malicious files of known categories.

Comparison with commercial anti-virus products. To support our claim
that FlashDetect’s performance is comparable with or better than that of
commercial anti-virus (AV) products, we include a comparison of FlashDetect’s
efficacy with that of AV products. We used the VirusTotal [24] service to run 43
commercial and open-source AV products on our test sample set. The results of
the five best-performing AV products, as determined by the false negative rate,
are compared to FlashDetect’s results, at a set classifier threshold of 25.

The first row of Table 3 lists the false negative rates for the five best-
performing AV products, together with FlashDetect’s rates. As shown, Flash-
Detect’s average false negative rate is less than that of four out of the five
best-performing AV products. It is also interesting to note that out of the 43 AV
products we tested, 35 products had a false negative rate in excess of 65%, and
32 products had a false negative rate in excess of 90%.

The second row of Table 3 lists the false positive rates. Note that Flash-
Detect’s false positive rate is worse than that of the top five AV products. This
can be explained by the fact that these AV products probably use signature-
based detection methods (confirmed for four out five). However, given that
FlashDetect is able to reach a comparable false negative rate with a rela-
tively low false positive rate, we conclude that FlashDetect’s performance is
certainly competitive with that of commercial AV products.

Table 3. FlashDetect’s false negative and false positive rates at a classifier threshold
of 25 compared to the five best-performing AV products.

FlashDetect AV1 AV2 AV3 AV4 AV5

False negatives 1.87% 0.97% 2.64% 2.73% 2.74% 2.81%

False positives 2.01% 0.42% 0.00% 0.27% 0.27% 0.27%



FlashDetect: ActionScript 3 malware detection 17

6 Limitations

Identifying the presence of FlashDetect. Malicious Flash files might
try to identify the presence of FlashDetect. The Lightspark player is still a
relatively young project, and thus, it still has a long way to go before its behavior
perfectly matches that of the official Flash player. This provides malware writ-
ers with a number of ways to detect the presence of Lightspark, and as a result,
FlashDetect. This limitation is inherent to the implementation of Flash-
Detect’s dynamic analysis phase. However, we assume that as the Lightspark
project matures it will become increasingly harder to differentiate Lightspark
from the official Flash player.

Environment-identifying code circumvention. The method for handling
environment-identifying code described in Section 2.6 is obviously not very ro-
bust. For example, the current method can easily be circumvented by using
exclusive matching instead of inclusive matching. That is, matching against non-
vulnerable version instead of vulnerable versions. Additionally, comparison in-
structions besides ifeq and ifne are not checked for environment-identification.

However, from our observations we conclude that, since most malicious Flash
files currently found in the wild use inclusive environment-identification based on
direct equality instructions, the current method is quite effective at enhancing
detection rates. Nevertheless, in the future, a more robust method to handle
environment-identifying code would be in order. Such a method could consist of
a multi-execution virtual machine capable of simultaneously analyzing multiple
code branches, such as described for JavaScript in [12].

Dependence of certain features on a measure of time. During the dy-
namic analysis phase, the Flash file is run for a limited amount of time. There-
fore, the usefulness of the dynamic analysis phase inherently depends on the
fact that, in general, malicious files will attempt exploitation as soon as possi-
ble. Additionally, certain dynamic features (e.g., method-calls-per-second) used
for classification are inherently dependent on a measure of time.

The usefulness of time-dependent features and indeed, the dynamic analysis
phase in general, could be reduced if malicious files were to delay the start of
exploitation for a certain amount of time. Therefore, the dependence of certain
features on a measure of time is an inherent limitation of our system.

However, launching an exploit as soon as possible is advantageous to malware
authors as it increases the chances of the exploit being successful. Consequently,
one can argue that maximizing the number of successful exploitations is more
important to malware authors than evading detection. Indeed, the complete lack
of obfuscation in some of the malicious samples we have observed indicates that
some malware authors do not even bother to evade detection anymore.

Overall robustness of features. Some of the individual features used for
classification may not be very robust. Examples are the time-dependent dynamic



18 Timon Van Overveldt et al.

features. However, the combination of all features being used together results in
a robust system. Indeed, the features used detect a number of different types of
behavior, such as obfuscation, JIT spraying, or environment-identification. Most
of these types of behavior are detected by more than one feature, and they are
often detected during both the dynamic and static analysis phase. This results
in a robust system capable of detecting a wide range of low-level exploits.

7 Related work

7.1 Exploit techniques

Blazakis [2] discusses JIT spraying attacks against the ActionScript 3 virtual
machine. Li [13] discusses the exploitation of the type confusion vulnerability
CVE-2010-3654, while [9] discusses a very similar vulnerability CVE-2011-
0609. An exploit using sophisticated obfuscation techniques that targets CVE-
2007-0071 is dissected by Liu in [14].

7.2 Malware detection

FlashDetect’s implementation is an evolution of OdoSwiff described by
Ford et al. [6]. Additionally, [6] is one of only a very limited set of publications
on the specific topic of malicious Flash file detection. Instead, most of the closest
related research discusses malicious JavaScript detection approaches.

Cova et al. describe JSAND [3], a tool for analyzing JavaScript with an
approach that is related to FlashDetect’s approach, using classification based
on a set of dynamic and static features. However, JSAND and FlashDetect
use different features, due to the different nature of JavaScript and ActionScript.

Ratanaworabhan et al. [21] discuss Nozzle, a dynamic JavaScript analyzer
that specifically focuses on detecting heap spraying code injection attacks. Noz-
zle’s approach consists of interpreting individual objects on the heap as code
and statically analyzing that code for maliciousness. This approach differs sub-
stantially from FlashDetect’s approach, as FlashDetect’s analysis is based
on determining the general behavior of a Flash file through indicators such as
the methods called by the file. Additionally, FlashDetect is not specifically
focused on the detection of heap spraying exploits, but instead focuses on the
more broader set of low-level exploits.

Zozzle [4] is a static JavaScript analyzer by Curtsinger et al. that also uses
a naive Bayesian classifier to detect malicious files. However, the features used
by Zozzle for classification are automatically extracted from the JavaScript’s
abstract syntax tree. In contrast, FlashDetect’s static features are predefined,
and it also uses predefined, dynamically extracted features.

The recent work on Rozzle by Kolbitsch et al. [12] describes an imple-
mentation for multi-execution in JavaScript. Their approach to multi-execution
could be applied to Lightspark to enable the robust handling of Flash files using
environment-identification.



FlashDetect: ActionScript 3 malware detection 19

There are several malware detection systems that use low-interaction or
high-interaction honeyclients. Examples are HoneyMonkey [25], Capture-
HPC [22], Moshcuk et al. [16,17], Provos et al. [20], and Monkey-Spider [7].
FlashDetect differs from such systems in that it does not automatically crawl
websites. Instead, FlashDetect is designed to be used in conjunction with
some other analyzer that feeds samples into FlashDetect for further analy-
sis. Additionally, in contrast to high-interaction honeyclients, FlashDetect’s
analysis provides more insight into how an exploit works. High-interaction honey-
clients on the other hand provide more insight into the effects of an exploit, some-
thing which FlashDetect does not currently do. However, in high-interaction
honeypots, exploits must succeed for them to be detected, while this is not the
case for FlashDetect.

8 Conclusion

We discussed several techniques commonly used by Flash malware. We have
discussed how malware using ActionScript 3 often takes on a role of exploit fa-
cilitator, showing that a successful solution to detecting malicious Flash files is
crucial. Subsequently, we have introduced FlashDetect, which uses a novel
approach combining static and dynamic analysis to examine Flash files. Flash-
Detect’s classification is based on a combination of predefined features. We
have shown how these features, when used with a naive Bayesian classifier and
a single vulnerability-specific filter, allow for high classification accuracy with a
minimal amount of false negatives.

References

1. Adobe: Statistics: PC penetration, http://www.adobe.com/products/
flashplatformruntimes/statistics.edu.html, accessed on 2012-06-15

2. Blazakis, D.: Interpreter exploitation: Pointer inference and JIT spraying (2010),
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf, ac-
cessed on 2012-06-15

3. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In: Proceedings of the World Wide Web
Conference (WWW). Raleigh, NC (April 2010)

4. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Low-overhead mostly
static JavaScript malware detection. In: Proceedings of the Usenix Security Sym-
posium (Aug 2011)

5. DoSWF.com: DoSWF - Flash encryption, http://www.doswf.com/doswf, accessed
on 2012-06-15

6. Ford, S., Cova, M., Kruegel, C., Vigna, G.: Analyzing and detecting malicious flash
advertisements. In: Proceedings of the 2009 Annual Computer Security Applica-
tions Conference. pp. 363–372. ACSAC ’09, IEEE Computer Society, Washington,
DC, USA (2009)

7. Ikinci, A., Holz, T., Freiling, F.: Monkey-spider: Detecting malicious websites with
low-interaction honeyclients. In: In Proceedings of Sicherheit, Schutz und Zuver-
lässigkeit (2008)

http://www.adobe.com/products/flashplatformruntimes/statistics.edu.html
http://www.adobe.com/products/flashplatformruntimes/statistics.edu.html
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.doswf.com/doswf


20 Timon Van Overveldt et al.

8. JavaScript-Source.com: JavaScript obfuscator, http://javascript-source.com,
accessed on 2012-06-15

9. Joly, N.: Technical Analysis and Advanced Exploitation of Adobe Flash 0-Day
(CVE-2011-0609) (2011), http://www.vupen.com/blog/20110326.Technical_
Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php, ac-
cessed on 2012-06-15

10. Keizer, G.: Attackers exploit latest Flash bug on large scale, says researcher,
http://www.computerworld.com/s/article/9217758/Attackers_exploit_
latest_Flash_bug_on_large_scale_says_researcher, accessed on 2012-06-15

11. Kindi: secureSWF, http://www.kindi.com, accessed on 2012-06-15
12. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking internet mal-

ware. In: IEEE Symposium on Security and Privacy (May 2012)
13. Li, H.: Understanding and Exploiting Flash ActionScript Vulnerabilities.

CanSecWest 2011 (2011), http://www.fortiguard.com/sites/default/files/
CanSecWest2011_Flash_ActionScript.pdf, accessed on 2012-06-15

14. Liu, B.: Flash mob episode II: Attack of the clones (2009), http://blog.fortinet.
com/flash-mob-episode-ii-attack-of-the-clones/, accessed on 2012-06-15

15. MITRE Corporation: Common Vulnerabilities and Exposures (CVE), http://cve.
mitre.org, accessed on 2012-06-15

16. Moshchuk, A., Bragin, T., Deville, D., Gribble, S.D., Levy, H.M.: Spyproxy:
execution-based detection of malicious web content. In: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium. pp. 3:1–3:16.
SS’07, USENIX Association, Berkeley, CA, USA (2007), http://dl.acm.org/
citation.cfm?id=1362903.1362906

17. Moshchuk, E., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of
spyware on the web (2006)

18. Paget, F.: McAfee Blog: Surrounded by Malicious PDFs, http://blogs.mcafee.
com/mcafee-labs/surrounded-by-malicious-pdfs, accessed on 2012-06-15

19. Pignotti, Alessandro, e.a.: Lightspark flash player (2008), http://lightspark.
github.com, accessed on 2012-06-15

20. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us. In: Proceedings of the 17th conference on Security symposium. pp. 1–15. SS’08,
USENIX Association, Berkeley, CA, USA (2008), http://dl.acm.org/citation.
cfm?id=1496711.1496712

21. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-
spraying code injection attacks. In: Proceedings of the Usenix Security Symposium
(Aug 2009)

22. The HoneyNet Project: CaptureHPC, https://projects.honeynet.org/
capture-hpc, accessed on 2012-06-15

23. Tung, L.: Flash exploits increase 40 fold in 2011, http://www.cso.com.au/
article/403805/flash_exploits_increase_40_fold_2011, accessed on 2012-06-
15

24. VirusTotal: VirusTotal service, https://www.virustotal.com, accessed on 2012-
06-15

25. Wang, Y.M., Beck, D., Jiang, X., Roussev, R.: Automated web patrol with strider
honeymonkeys: Finding web sites that exploit browser vulnerabilities. In: IN NDSS
(2006)

http://javascript-source.com
http://www.vupen.com/blog/20110326.Technical_Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php
http://www.vupen.com/blog/20110326.Technical_Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php
http://www.computerworld.com/s/article/9217758/Attackers_exploit_latest_Flash_bug_on_large_scale_says_researcher
http://www.computerworld.com/s/article/9217758/Attackers_exploit_latest_Flash_bug_on_large_scale_says_researcher
http://www.kindi.com
http://www.fortiguard.com/sites/default/files/CanSecWest2011_Flash_ActionScript.pdf
http://www.fortiguard.com/sites/default/files/CanSecWest2011_Flash_ActionScript.pdf
http://blog.fortinet.com/flash-mob-episode-ii-attack-of-the-clones/
http://blog.fortinet.com/flash-mob-episode-ii-attack-of-the-clones/
http://cve.mitre.org
http://cve.mitre.org
http://dl.acm.org/citation.cfm?id=1362903.1362906
http://dl.acm.org/citation.cfm?id=1362903.1362906
http://blogs.mcafee.com/mcafee-labs/surrounded-by-malicious-pdfs
http://blogs.mcafee.com/mcafee-labs/surrounded-by-malicious-pdfs
http://lightspark.github.com
http://lightspark.github.com
http://dl.acm.org/citation.cfm?id=1496711.1496712
http://dl.acm.org/citation.cfm?id=1496711.1496712
https://projects.honeynet.org/capture-hpc
https://projects.honeynet.org/capture-hpc
http://www.cso.com.au/article/403805/flash_exploits_increase_40_fold_2011
http://www.cso.com.au/article/403805/flash_exploits_increase_40_fold_2011
https://www.virustotal.com

	FlashDetect: ActionScript 3 malware detection
	1 Introduction
	2 Common Flash exploit techniques
	2.1 Obfuscation
	2.2 Heap spraying
	2.3 JIT spraying
	2.4 Malicious ActionScript 3 as exploit facilitator
	2.5 Type confusion exploitation
	ActionScript 3 virtual machine implementation
	Elements of a CVE-2010-3654 exploit.
	Leaking objects' memory addresses.
	Reading arbitrary memory addresses.
	Gaining control of execution.
	Bypassing DEP.

	2.6 Environment-identifying code

	3 Detector implementation
	3.1 Phase I: dynamic analysis
	3.2 Phase II: static analysis
	3.3 Phase III: classification

	4 Features used for classification
	Features related to embedded and obfuscated SWF files or shellcode.
	Features related to environment-awareness.
	Features related to general runtime behavior.
	Vulnerability-specific features.


	5 Evaluation
	5.1 Sample selection
	Benign samples.
	Malicious samples.

	5.2 Experimental results
	Error rates.
	Comparison with commercial anti-virus products.


	6 Limitations
	Identifying the presence of FlashDetect.
	Environment-identifying code circumvention.
	Dependence of certain features on a measure of time.
	Overall robustness of features.


	7 Related work
	7.1 Exploit techniques
	7.2 Malware detection

	8 Conclusion


