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ABSTRACT
We present SARVAM, a system for content-based Search
And RetrieVAl of Malware. In contrast with traditional static
or dynamic analysis, SARVAM uses malware binary con-
tent to find similar malware. Given a malware query, a fin-
gerprint is first computed based on transformed image fea-
tures [19], and similar malware items from the database are
then returned using image matching metrics. The current
SARVAM database holds approximately 4.3 million samples
of malware and benign executables. The system is demon-
strated using a desktop computer with Ubuntu OS, and takes
approximately 3 seconds per query to find the top match-
ing malware. SARVAM has been operational for the past 15
months during which we have received approximately 212,000
queries from users. In this paper, we describe the design and
implementation of SARVAM and also discuss the nature and
statistics of queries received.

Keywords
Malware similarity, Content based search and retrieval, Mal-
ware images, Image similarity

1. INTRODUCTION
With the phenomenal increase in malware (on the order of

hundreds of millions), standard techniques to analyze mal-
ware like static code analysis and dynamic analysis have
become a huge computational overhead. Moreover, most of
the new malware are only variants of already existing mal-
ware. Hence, there is a need for faster identification of these
variants to catch up with the malware explosion. This in
turn requires faster and compact signature extraction meth-
ods. For this, techniques from signal and image processing,
data mining and machine learning that handle such large
scale problems can play an effective role.

In this paper, we utilize signature extraction techniques
from image processing and build a system, SARVAM, for
large scale malware search and retrieval. Leveraging on
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Figure 1: Web Interface of SARVAM

past work in finding similar malware based on image simi-
larity [17], we use these compact features for content-based
search and retrieval of malware. These features are known
to be robust, highly scalable and perform well in identify-
ing similar images in a web-scale dataset of natural images
(110 million) [7]. They are fast to compute and are shown
to be 4000 times faster than dynamic analysis while hav-
ing similar performance in malware classification [18] and
also used in malware detection [12]. These image similar-
ity features are computed on a large dataset of malware
(more than 4 million samples) and stored in a database.
For fast search and retrieval, we use a scalable Balltree-
based Nearest Neighbor searching technique. This reduces
the average query time to 3 seconds for a given query. We
built SARVAM as a public web-based query system, (acces-
sible at http://sarvam.ece.ucsb.edu), where users can upload
queries and obtain similar matches for that query. The sys-
tem has been active since May 2012 and we have received
more than 212,000 samples since then. For a large portion of
the uploaded samples, we were able to find variants in our
database. Currently, there are only a few public systems
that allow users to upload malware samples and obtain re-
ports. To the best of our knowledge, SARVAM is the only
system among them in finding similar malware. We briefly
give an overview below.

1.1 SARVAM Overview
A content-based search and retrieval system is one in which

the content of a query object is used to find similar objects in
a larger database. Such systems are common in the retrieval
of multimedia objects such as images, audio and video. The
objects are usually represented as compact descriptors or



fingerprints based on the their content [24].
SARVAM uses image similarity fingerprints to compactly

describe a malware. These effectively capture the visual
(structural) similarity between malware variants and are
used for search and retrieval. There are two phases in the
system design as shown in Fig. 2. During the initial phase,
we first obtain a large corpus of malware samples from vari-
ous sources [1,3]. The compact fingerprints for all the sam-
ples in the corpus are then computed. To obtain similar
malware, we use Nearest Neighbor (NN) method based on
the shortest distance between the fingerprints. But the high
dimensionality of the fingerprints makes the search slow. In
order to perform Nearest Neighbor search quickly and effi-
ciently, we construct a Balltree (explained in Sec. 2), which
significantly reduces the search time. Simultaneously, we
obtain the Antivirus (AV) labels for all the samples from
Virustotal [4], a public service that maintains a database of
AV labels. These labels act as a ground truth and are later
used to describe the nature of a sample, i.e., how malicious
or benign a sample is. During the query phase, the finger-
print for the new sample is computed and matched with
the existing fingerprints in the database to retrieve the top
matches. The various blocks of SARVAM are explained in
the following sections.
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Figure 2: Block schematic of SARVAM

The rest of the paper is organized as follows. In Sec. 2,
the steps to compute the compact fingerprint from a mal-
ware and the fast Balltree-based Nearest Neighbor search
method are explained. Sec. 3 explains the implementation
details. The details on the uploaded samples are briefed in
Sec. 4 while the limitations, related work and conclusion are
mentioned in Sec. 5, Sec. 6 and Sec. 7 respectively.

2. COMPACT MALWARE FINGERPRINT

2.1 Feature Extraction
Our objective is to compute a robust and compact signa-

ture from an executable that can be used for efficient search
and retrieval. For this, we consider techniques from sig-
nal and image processing where such compact signature ex-
traction methods have been extensively studied. Our ap-
proach is based on a feature extraction technique as de-
scribed in [17], which uses the GIST image features. The
features are based on the texture and spatial layout of an
image. These have been widely explored in image process-
ing for contest-based image retrieval [16], scene classifica-
tion [19, 28], and large scale image search [7]. The binary
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Figure 3: Block diagram to compute feature from a
malware

content of the executable is first numerically represented as
a discrete one dimensional signal by considering every byte
value as an 8 bit number in the range 0-255. This signal is
then “reshaped” to a two dimensional grayscale image. Let
d be the width and h be the height of the “reshaped” image.
While reshaping, we fix the width d and let the height h
vary depending on the number of bytes in the binary. The
horizontally adjacent pixels in the image correspond to the
adjacent bytes in the binary and the vertically adjacent pix-
els correspond to the bytes spaced by a multiple of width
d in the binary. The image is then passed through various
filters that capture both the short-range and long-range cor-
relations in the image. From these filtered images, localized
statistics are obtained by dividing the filtered images into
non-overlapping sub-blocks, and then computing the aver-
age value on those blocks. This is called sub-block averaging
and the averages computed from all the filters are concate-
nated to form the compact signature. In practice, the fea-
tures are usually computed on a smaller “resized” version
of the image. This is done for faster computation and usu-
ally does not affect the performance. Feature computation
details are given below.

Let I(x, y) be the image on which the descriptor is to be
computed. The GIST descriptor is computed by filtering
this image through a filter bank of Gabor filters. These
filters are band pass filters whose responses are Gaussian
functions modulated with a complex sinusoid. The filter
response t(x, y) and its Fourier transform T (u, v) are defined
as:

t(x, y) =
1

(2πσxσy)
exp[−1

2
(
x2

σx
2

+
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σy
2

) + 2πjWx] (1)

T (u, v) = exp[−1

2
(
(u−W )2

(σu)2
+

v2

(σv)2
)] (2)

where σu = 1/2πσx and σv = 1/2πσy. Here, σx and σy

are the standard deviations of the Gaussian functions along
the x direction and y direction. These parameters deter-
mine the bandwidth of the filter and W is the modulation
frequency. (x, y) and (u, v) are the spatial and frequency
domain coordinates.

We create a filter bank by rotating (orientation) and scal-
ing (dilation) the basic filter response function t(x, y), re-
sulting in a set of self-similar filters. Let S be the number
of scales and O be the number of orientations per scale in a
multiresolution decomposition of an image. An image is fil-



tered using k such filters to obtain k filtered images as shown
in Fig. 3. We choose k = 20 filters with 3 scales (S = 3), out
of which first the two scales have 8 orientations (O = 8) and
the last one has 4 (O = 4). Our experiments showed that
having more scales or orientations did not improve the per-
formance. Each filtered image is further divided into B×B
sub-blocks and the average value of a sub-block is computed
and stored as a vector of length L = B2. This way, k vec-
tors of length L are computed per image. These vectors are
then concatenated to form a kL-dim feature vector called
GIST. In SARVAM, we choose B = 4 to obtain a 320-dim
feature vector. While computing the GIST descriptor, it is a
common pre-processing step to resize the image to a square
image of dimensions s × s. In our experiments, we choose
s = 64. We observed that choosing a value of s less than
s = 64 did not result in a robust signature. Larger value of
s increased the computational complexity, however, because
of the sub-band averaging, this did not effectively strengthen
the signature.

2.2 Illustration on Malware Variants
Here, we consider two malware variants belonging to Back-

door.Win32.Poison family. The grayscale visualizations of
the variants are shown in Fig. 4. We can see that these two
variants have small variations in their code. The difference
image on the right shows that most parts in the difference are
zero (shown as white). We compute features for these vari-
ants and then overlay the absolute difference of the first 16
coefficients of these features on the difference image (Fig. 4).
One can see that there is a difference in features only in sub-
blocks which also have a difference (shown in red in Fig. 4).
Although only the difference is shown for one filtered image,
this pattern holds for all other filtered images as well.

2.3 Feature Matching
Consider a dataset of M samples: {Qi}Mi=1, where Qi de-

notes a sample. We extract a feature vector G = f(Q),
where f(.) is the feature extraction function s.t.

Sim(Qi, Qj)→ Dist(Gi, Gj) < δ (3)

where Sim(Qi, Qj) represents the similarity between sam-
ples Qi and Qj , Dist(.) is the distance function, and δ
is a pre-defined threshold. Given a malware query, SAR-
VAM first computes its image feature descriptor as explained
above, and then searches the database for other feature vec-
tors that are close to the query feature in the descriptor
space. Straight forward way of doing this is to perform a
brute-force search on the entire database, which is time con-
suming. Hence, we use an approximate Nearest Neighbor
searching algorithm, which we explain in the next section.

2.4 Fast Nearest Neighbor Search
The dimensionality of the GIST feature vector is 320. For

efficient nearest-neighbor search in high dimensional space,
we use Balltree data structures [20]. A Ball, in n-dim Eu-
clidean space Rn, is defined as a region bounded by a hyper
sphere. It is represented as B = {c, r}, where c is an n-dim
vector specifying the coordinates of the ball’s centroid, and
r is the radius of the ball. A Balltree is a binary tree where
each node is associated with a ball. Each ball is a minimal
ball that contains all balls associated with its children nodes.
The data is recursively partitioned into nodes defined by the
centroid and the radius of the ball. Each point in the node

lies within this region. As an illustration, Fig. 6 shows a
binary tree, and a Balltree over four balls (1,2,3,4). Search
is carried out by finding the minimal ball that completely
contains all its children. This ball also overlaps the least
with other balls in the tree. For a dataset of M samples
and dimensionality N , the query time grows approximately
as O[N log(M)] (as opposed to O[NM ] for a brute force
search). We conduct a small experiment to compare the
query time and build time. We choose 500 pseudorandom
vectors of dimension 320. These are sent as queries to a
larger pseudorandom feature matrix of varying sample sizes
(from 100,000 to 2 Million) and same dimension. The total
build time and total query time are computed for the cases
of brute force search and Balltree-based search (Fig. 5). We
see that there is a significant difference in the query time
between the Balltree-based search and brute force search as
the number of samples in the feature matrix increases. In
the case of build time, the time taken to build a Balltree
increases as the sample size increases. In practical systems,
however, the query time is given more priority than the build
time.
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Figure 6: Illustration of: (a) Binary tree (b) Corre-
sponding Balltree

3. SYSTEM IMPLEMENTATION
SARVAM is implemented on a desktop computer (DELL

Studio XPS 9100 Intel Core i7-930 processor with 8MB L2
Cache, 2.80GHz and a 20 GB RAM) running on Ubuntu 10.
The web server is built using Ruby on Rails framework with
MySQL backend. Python is used for feature computation
and matching. A MySQL database stores information about
all the samples such as MD5 hash, file size and number of
Antivirus (AV) labels. When a new sample is uploaded, its
MD5 hash is updated in the database. All the uploaded sam-
ples are stored on disk and saved by their MD5 hash name.
A Python script (daemon) checks the database for unpro-
cessed keys and when it finds one, it takes the correspond-
ing MD5 hash and computes the image fingerprint from the
stored sample. Then, the top matches for that query are
found and the database is updated with their MD5 hashes.
A Ruby on Rails script then checks the database and dis-
plays the top matches for that sample. The average time
taken for all the above steps is approximately 3 seconds.

3.1 Initial Corpus
The SARVAM database consists of approximately 4.3 mil-

lion samples, most of which are malware. We also include a
small set of benign samples from clean installations of var-
ious Windows OS. All the samples are uploaded to Virus-
total to get Antivirus (AV) labels and these are stored in
a MySQL database. Fig. 7 shows the distribution of the
AV labels for all the samples in our initial corpus. As we
can see, most samples have many AV labels associated with
them, thus indicating they are most certainly malicious in
nature. The corpus and the MySQL database are periodi-
cally updated as we get new samples. The AV labels of the
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Figure 4: Grayscale visualizations of Backdoor.Win32.Poison malware variants (first two images) and their
difference image (white color implies no difference). The last image shows the difference image divided into
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samples are also periodically checked with Virustotal and
updated if there are changes in the labels. This is because
AV vendors sometimes take a while to catch up with the
malware and hence, the AV labels may change.
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Figure 7: Distribution of the number of AV labels
in the corpus

3.2 Web Interface
SARVAM has a simple web interface built on Ruby on

Rails as shown earlier in Fig. 1. Some of the basic function-
alities are explained below.

Search by upload or MD5 Hash: SARVAM currently
supports two ways of search. In the first case, users can up-
load executables (maximum size 10 MB) and obtain the top
matches. In the second, users can search for an MD5 hash
and if the hash is found in our database, the top matches are
computed. Currently, only Win32 excutables are supported
but our method can be easily generalized to include a larger
category of data.

Sample Reports: A sample query report is shown in
Fig. 8. SARVAM supports HTML, XML and JSON versions.
While HTML reports aid in visual analysis, XML and JSON
reports can be used for script-based analysis.

Figure 8: Sample HTML report for a query

3.3 Design Experiments
For a given query input, the output is a set of matches

which are ranked according to some criterion. In our case,
the criterion is based on the distance between the query and
its top match. We set various thresholds to the distance and
give confidence levels to the matches.

3.3.1 Training Dataset
Two malware are said to be variants if they show simi-

lar behavior upon execution. Although some existing works
try to quantify such malware behavior [6, 23], it is not very
straightforward and can result in spurious matches. An al-
ternative is to check if the samples have same AV labels.
Many works including [6, 23] use AV labels to build the
ground truth. We evaluate the match returned for a query



based on the number of common AV labels. From our cor-
pus of 4.3 million samples, we select samples for which most
AV vendors have some label. In Virustotal, the AV vendor
list for a particular sample usually varies between 42 and 45
and in some unique cases goes down to 5. In order to not
skew our data, we select samples for which at least 35 (ap-
proximately 75% - 80%) AV vendors have valid labels (None
labels excluded). This resulted in a pruned dataset of 1.4
million samples.
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Figure 9: Results of Design Experiment on 5000
samples randomly chosen from the training set.
Sorted Distance and corresponding percentage of
correct match are overlaid on the same graph. A low
distance value has a high match percentage while a
high distance value has a low match percentage in
most cases.

3.3.2 Validation
From the pruned dataset of 1.4 million samples, we ran-

domly choose a reduced set Rs of length NRs = 5000 sam-
ples. The remaining samples in the pruned set are referred as
the training set Ts. The samples from Rs are queries to the
samples in Ts. First, the features for all the samples are com-
puted. For every sample of Rs, the nearest neighbor among
the samples of Ts is computed. Let qi = Rs(i), 1 ≤ i ≤ NRs

be a query, mi be its Nearest Neighbor (NN) match among
the samples in Ts, di be the NN distance and AVsh be a set of
shared AV vendor keys (such as Kaspersky, McAfee). Both
the query and the match will have corresponding AV labels
(such as Trojan.Spy, Backdoor.Agent) for every shared ven-
dor key. We are interested in finding how many matching
labels are present between a query and its match, and its
relation with the NN distance. The percentage of matching
labels pmi between a query and its match is defined as:

pmi =

∑NAVsh
j=1 I(qi[AVsh(j)] = mi[AVsh(j)])

NAVsh

, 1 ≤ i ≤ NRs

(4)

where NAVsh is the total number of shared AV vendor keys,
qi[AVsh(j)] and mi[AVsh(j)] are the AV labels of the query
and its NN match for the ith query and jth AV vendor key
and I(.) is the Indicator function. We are interested in seeing
which range of the NN distance d gives a high percentage
of best AV label match pm. In order to visualize this, the
distances are first sorted in ascending order. The sorted
distances and the corresponding percentage of correct match
are overlaid in Fig. 9. We observe that the percentage of
the correct matches are highest for very low distances and

they decrease as the distance increases. Our results were the
same even we chose various random subsets of 5000 samples.
Based on these results, we give qualitative tags and labels
for the quantitative results as shown in Tab. 1.

3.4 Qualitative vs Quantitative Tags
For every query, we have the distance from its nearest

neighbor and can compute the percentage of correct match
between their labels. In reality, only the AV labels of the
nearest neighbor are known and AV labels of the query may
not be available. Hence, based on the NN distance and the
number of AV labels that are present in a match, we give
qualitative tags.

Intuitively, we would expect that a low distance would
give the best match. A low distance means the match is
very similar to the query and we give it a tag of Very High
Confidence. As the distance increases, we give qualitative
tags: High Confidence, Low Confidence and Very Low Con-
fidence as shown in Tab. 1.

Very High Confidence Match: A Very High Confi-
dence match usually means that the query and the match
are more or less the same. They just differ in a few bytes.
The example shown in Fig. 10 will help illustrate this better.
The image in the left is the query image and the MD5 hash
of the query is 459d5f31810de899f7a4b37837e67763. We see
an inverted image of a girl’s face which is actually the icon
of the executable. The image in the middle is the top match
to the query with MD5 fa8d3ed38f5f28368db4906cb405a503.
If we take a byte by byte difference between the query and
the match, we see that most of the bytes in the difference
image is zero. Only 323 bytes out of 146304 bytes (0.22%)
are non-zero. The distance of the match from the query will
usually be lesser than 0.1.

Figure 10: Example of a very high confidence match.
The image in the left is of the query while in the
middle image is of the top match. Shown in the
right is the difference between the two. Only a few
bytes in the difference image are non-zero.

High Confidence Match: When we talk about a high
confidence match, most parts of the query and the top match
are the same but there is a small portion that is differ-
ent. In Fig. 11, we can see the image of the input query
1a24c1b2fa5d59eeef02bfc2c26f3753 in the left. The image
of the top match 24faae39c38cfd823d56ba547fb368f7 in the
middle appears visually similar to the query. But the differ-
ence image shows that 11,108 out of 80,128 non-zero values
(13.86%). Most variants in this category are usually packed
variants which have different decryption keys. The distance
between the query and the top match will usually be be-
tween 0.1 and 0.25.

Low Confidence Match: For low confidence matches,
a major portion of the query and the top match are differ-
ent. We may not see any visual difference between the in-
put query 271ae0323b9f4dd96ef7c2ed98b5d43e and the top
match e0a51ad3e1b2f736dd936860b27df518 but the differ-
ence image clearly shows the huge difference in bytes (Fig. 12).



Table 1: Confidence of a Match
Distance d Confidence Level Percentage of pm Median of pm Mean of pm Std. Deviation of pm

< 0.1 Very High 38.6 0.8462 0.7901 0.1782
(0.1,0.25] High 15.24 0.7895 0.7492 0.2095
(0.25 ,0.4] Low 44.46 0.1333 0.3454 0.3488

> 0.4 Very Low 1.7 0.0625 0.1184 0.1862

Figure 11: Example of a high confidence match. The
image in the left is of the query while in the middle
image is of the top match. Shown in the right is the
difference between the two. A small portion in the
difference image are non-zero.

These would usually be packed variants (UPX in this case).
In the difference image, 75,353 out of 98304 non zero (76.6%).
The distance is usually greater than 0.25 and less than 0.4.
Low Confidence matches also end up in False Positives (mean-
ing the top match may not be a variant of the query) and
hence they are tagged as Low Confidence. In these cases, it
is better to visually analyze the query and the top match
before arriving at a conclusion.

Figure 12: Example of a low confidence match. The
image in the left is of the query while in the middle
image is of the top match. Shown in the right is the
difference between the two. A significant portion in
the difference image are non-zero.

Table 2: Nature of a Match
No. of AV Labels Qualitative Label

0 Benign
[1,10] Possibly Benign
[11,25] Possibly Malicious
[26,45] Malicious

No data Unknown

Very Low Confidence Match: For matches with Very
Low confidence, in most of the cases the results don’t re-
ally match the query. These are cases where the distance is
greater than 0.4.

Apart from the confidence level, we also give qualitative
tags to every sample in our database based on how many
Antivirus (AV) labels it has. For this, we obtain the AV
labels from Virustotal periodically. We use the count of the
number of labels to give a qualitative tag for a sample as
shown in Tab. 2.

4. RESULTS ON UPLOADED SAMPLES
SARVAM has been operational since May 2012. In this

section, we detail the statistics of the samples that have been
uploaded to our server, the results on the top matches and
also the percentage of hits (with respect to AV labels) that
our matches provide.

4.1 Statistics of Uploads
Distribution based on Month: From May 2012 on-

wards till Oct 2013, we received approximately 212,000 sam-
ples. In Fig. 13, we can see the distribution of the uploaded
samples based on the uploaded month. We observe that
most of the samples were submitted in Sep. 2012 and Oct.
2012 while the activity was very low in the months of Nov.
2012, Feb. 2013, Mar. 2013 and May 2013.
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Figure 13: Month of Upload
Year of First Seen: In Fig. 14, we see the distribution

of the year in which the samples were first seen in the wild
by Virustotal. Most samples that we received are from 2011,
while a few are from 2012 and 2013.
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Figure 14: Year of First Seen for the Submitted
Samples

File Size: The distribution of the file sizes of various
samples are shown in Fig. 15. We see that most of the files
have sizes less than 500 kB.

Confidence of Top Match: Of the 212,000 uploaded
samples we received, not all the samples have a good match
with our corpus database. In Fig. 16, we see the distribu-
tion of the confidence levels of the top match. Close to 37%
fall under Very High Confidence, 8% under High Confidence,
49.5% under Low confidence and 5.5% under Very Low Con-
fidence. This means that nearly 45% of the uploaded sam-
ples (close to 95,400) are possible variants of samples already
existing in our database.

AV Label Match vs Confidence Level: Here, we
further validate our system by comparing the output of
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Figure 16: Confidence of the Top Match

our algorithm with the AV labels. For this, we obtained
the AV labels for all the uploaded samples and their top
match. However, Virustotal has a bandwidth limitation on
the total number of samples that can be uploaded. Due
to this, we were only able to obtain valid AV labels for a
subset of the uploaded samples. We also exclude the up-
loaded samples that were already present in our database.
The labels are then compared as per the methodology in
Sec. 3.3.2 and the percentage of correct match is computed.
Fig. 17 shows the sorted histogram of the distance between
the uploaded samples and their top match. Similar to the
results obtained in our earlier design experiment (Fig. 9),
we see that the percentage of correct match is high for a
low distance. In Fig. 18, we plot this distance versus the
percentage of correct match and see that the trend is sim-
ilar. However, there are a few cases which have a low per-
centage of correct match for a low distance. This is be-
cause we do a one-one comparison of AV labels and mal-
ware variants may sometime have different AV labels. For
example, the variants 459d5f31810de899f7a4b37837e67763
and fa8d3ed38f5f28368db4906cb405a503, we saw earlier in
Fig. 10, have AV labels Trojan.Win32.Refroso.depy and Tro-
jan.Win32.Refroso.deqg as labeled by Kaspersky AV vendor.
Although, these labels differ only in a character, we do not
consider this in our current analysis and these could result
in a low percentage of correct match despite having a low
distance.

Confidence vs Year of First Seen: For all the up-
loaded samples, we obtain the year that it was first seen in
the wild from Virustotal and compare it with the Nearest
Neighbor (NN) distance d. In Fig. 19, we plot the year of
first seen and the NN distance. We observe that most sam-
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Percentage of Correct Match
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Figure 17: For every uploaded sample, the distances
of the top match are sorted (marked in blue) and the
corresponding percentage of correct match (marked
in red) is overlaid.
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Figure 18: Distance vs Percentage of Correct Match

ples were first seen in the wild between the years 2010 and
2013. Many samples from 2012 and 2013 have a low NN dis-
tance and this shows that our system has good matches even
with most recent malware. If we consider only the very high
confidence and high confidence matches and analyze their
year of first seen (Fig. 20), we observe that a large number
of samples are from 2011 and a reasonable amount are from
2012 and 2013.
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Figure 19: Year of First Seen vs Distance

Packed Samples: We also analyze the performance of
SARVAM on packed malware samples. One problem that
arises here is that identifying whether an executable is packed
or not is not easy. In this analysis, we use the packer iden-
tifiers f-prot and peid that are available from the Virustotal
reports. Only 39,260 samples had valid f-prot packer sig-
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Figure 20: Year of First Seen for Very High Confi-
dence and High Confidence Matches

natures and 49,333 samples had valid peid signatures. The
actual number of packed samples is usually more but we
consider only these samples in our analysis. Of these, 16,055
samples were common between the two and there were 970
unique f-prot signatures and 275 unique peid signatures in
the two sets. This shows the variation in the signatures
of these two packer identifiers. For both cases, the most
common signature was UPX. Others included Aspack, Ar-
madillo, Bobsoft Mini Delphi and PECompact. The signa-
ture BobSoft Mini Delphi need not always correspond to a
packed sample and it could just mean that the sample was
compiled using Delphi compiler. For both sets of samples,
we obtain their NN distance and plot the sorted distance in
Fig. 21. We observe that nearly half the samples in both
sets fall in the Very High Confidence and High Confidence
range.
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Figure 21: Sorted NN Distance of Packed Samples

Next, we consider only packed samples that fall in the
Very high Confidence and High Confidence range (NN dis-
tance d <= 0.25). This reduced the samples identified by
f-prot to 14,936 and peid to 24,098. Tab. 3 shows the top 5
packer signatures of f-prot, with the total number of unique
signatures being 364. UPX was the most common signature
while others included Allaple, PECompact and Aspack. In
the case of peid, the number of unique signatures was 186.
The top 5 are shown in Tab. 4. Again, UPX was the most
common followed by Armadillo, Bobsoft Mini Delphi and
PECompact. This analysis further shows that our approach
works on different types of packed samples as well.

5. LIMITATIONS AND FUTURE WORK
One limitation of our approach is that the image finger-

print is computed on the entire executable. Because of this,
an attacker can insert invalid codes between sections or in-
terchange the order of the sections which may result in a
completely different fingerprint. This could be potentially
addressed by analyzing sections of the code rather than
the entire code, and computing localized fingerprints. This
needs to be further explored. Another limitation is that our
system, at present, has not been parallelized and we will
look into parallelization techniques in future. Although our
query time is less than 3 seconds due to fast nearest neigh-
bor methods such as Balltree, there are faster methods like
MinHash, Locality Sensitive Hashing which can reduce the
query times much further. Soon, we will be increasing our
database to 10 million samples (including mobile malware)
and we will consider the above issues while building the next
stages of our system. Finally, our approach can only identify
malware variants that are similar in structure and cannot
identify functionally similar variants that perform the same
function but have different structures.

Table 3: Top Packer Signatures of f-prot
Packer No. of samples
UPX 7401

Allaple 920
PecBundle, PECompact 916

Aspack 896
UPX LZMA 724

Table 4: Top Packer Signatures of peid
Packer No. of samples

UPX 2.90 [LZMA] 9285
Armadillo v.1.71 4855

BobSoft Mini Delphi 1537
Armadillo v1.xx - v2.xx 1456

PECompact 2.xx 1402

6. RELATED WORK
Our system is one of the few existing public systems where

users can upload malware samples and obtain reports. Other
similar systems that let users upload malware include Virus-
total [4], Anubis [1] and Malwr [2]. However, while the above
systems do static and/or dynamic analysis on a malware
sample, ours is the only existing system, to the best of our
knowledge, that finds similar malware for an uploaded sam-
ple. Other related systems from the context of malware
similarity and information retrieval include VILO [15] and
NEO [25].

If we consider the literature in malware similarity, most
of the works are based on static analysis and a few on dy-
namic analysis. The static analysis methods can further be
classified into techniques based on N-grams [5, 9, 10, 13, 21],
N-perms [11, 15], image similarity [12, 17, 18], PE file struc-
ture [22,26,27,29] and graph-based methods such as function
call graphs or control flow graphs [8, 10,14].

7. CONCLUSION
In this paper, we presented SARVAM, a system for content-

based Search And RetrieVAl of Malware that finds similar
malware based on image similarity. SARVAM has been op-
erational since May 2012. During this period, we received
close to 212,000 samples of which nearly 45% were possi-
ble variants of already existing malware from our database.
SARVAM lets users to upload malware samples and obtain
the possible variants. Our system has been built on a sin-
gle desktop computer and the average query time is less



than 3 seconds. We are currently working on expanding
the database of malware significantly, and including mobile
malware.
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