
Eyes of a Human, Eyes of a Program:
Leveraging Different Views of the Web for

Analysis and Detection

Jacopo Corbetta, Luca Invernizzi, Christopher Kruegel, and Giovanni Vigna

University of California, Santa Barbara
{jacopo,invernizzi,chris,vigna}@cs.ucsb.edu

Abstract. With JavaScript and images at their disposal, web authors
can create content that is immediately understandable to a person, but
is beyond the direct analysis capability of computer programs, including
security tools. Conversely, information can be deceiving for humans even
if unable to fool a program.
In this paper, we explore the discrepancies between user perception and
program perception, using content obfuscation and counterfeit “seal”
images as two simple but representative case studies. In a dataset of
149,700 pages we found that benign pages rarely engage in these practices,
while uncovering hundreds of malicious pages that would be missed by
traditional malware detectors.
We envision that this type of heuristics could be a valuable addition to
existing detection systems. To show this, we have implemented a proof-
of-concept detector that, based solely on a similarity score computed on
our metrics, can already achieve a high precision (95%) and a good recall
(73%).

Keywords: website analysis · content obfuscation · fraud detection

1 Introduction

Web pages available on the Internet are visited by two very different kinds of
consumers: humans, surfing through their web browsers, and computer programs,
such as search engines.

These consumers have dissimilar goals and constraints, which lead to signifi-
cant differences in how they interpret and interact with web pages. For example,
a large-scale web crawler, optimized for speed, may not run JavaScript, and thus
will not capture dynamically-rendered content: To overcome this issue, search
engines have established practices [13, 14, 28, 47] that web authors should follow
to make content accessible to their non-JavaScript-aware crawlers. In short, (at
least) two different views exist for each page, and search engines rely on web
authors to “bridge” the two worlds and make sure a human and a crawler “see”
an equivalent message.

Search engines, however, have a privileged role online: Successful web sites
need their pages to be indexed, so that people can find them easily; therefore, web



2 Jacopo Corbetta et al.

authors are highly encouraged to tailor content so that it is easily consumable
by these programs. On the contrary, tools that look for cybercrime activity do
not benefit from their role, as they have to face web authors that are always
looking for new ways to evade detection. However, even benign web authors
can present visual information to humans that is, intentionally or not, hard to
digest for crawling tools, for instance by showing text through a combination of
images and JavaScript code, a Turing-complete language. In the strictest sense,
therefore, only programs with human-like comprehension abilities would be able
to correctly “understand” even benign web pages. Whether or not this happens
in practice, however, is a different question.

In this paper, we focus on how cybercriminals exploit the differences between
humans and detection tools in executing, parsing, and interpreting a web page. We
use two signals in our investigation. The first technique we detect is textual content
obfuscation, with which web authors prevent non-JavaScript-aware analyzers from
retrieving portions of the textual content of the page, and present a different
message to humans. The second technique we detect is the presence of fake
security seal images: cybercriminals place these seals on their websites in an
attempt to deceive humans (i.e., by purporting their online rouge pharmacy is
“certified” by a reputable authority), even if a program would never be fooled by
this practice.

We study how these techniques are used in a dataset of 149,700 web pages,
containing both benign and malicious pages. Interestingly, we found that benign
pages also make use of content obfuscation for specific purposes, such as making
the harvesting of e-mail addresses more difficult. However, with a few heuristics
(and a clustering step to eliminate outliers) we can find malicious pages with
94% precision and 95% recall among the samples that triggered this signal. The
fake seal heuristic, having almost no false positives, found 400 rogue pharmacy
websites.

As a proof-of-concept of how these anti-deception heuristics could be a valuable
addition to many security products, we built a “maliciousness detector” leveraging
signatures extracted exclusively from pages detected by our two heuristics, using
the hidden text as an additional hint. While obviously not a complete anti-fraud or
anti-malware solution, our tool automatically pinpointed several scam campaigns
that deceive humans without exploiting any technical vulnerability, and would
therefore be out of the reach of many traditional malware detectors, unless they
had specific signatures for them.

Given the importance of scam campaigns and how large exploitation cam-
paigns were found to use content obfuscation, we estimate that our heuristics
could be a valuable addition to many security products, as our proof-of-concept
tool has a high precision (95%) and a good recall (around 73%) when used to
find any malicious page in our dataset.

To summarize, our main contributions are:

– We introduce a novel approach to detect content obfuscation, and we study
its legitimate and malicious uses in a large dataset.



Eyes of a Human, Eyes of a Program 3

– We introduce a novel approach in detecting counterfeited, or just plainly fake
(with no certification authority issuing them), certification seals.

– We show that this type of heuristics can be helpful to general security tools,
by introducing a similarity measure and a matching system that expand their
reach.

2 Related Work

To be effective, fraud pages need to deceive twice: like any malicious site, they
need to convince automated analyzers that they are legitimate sites; moreover,
they need to convince humans into falling for the “phish,” a trait that is unique to
this cybercrime branch. To identify these sites, researchers have devised detection
systems that go after both of these deceptions.

Honeyclient Evasion. Researchers have identified malware/phishing sites
that perform server-side cloaking to prevent honeyclients from reaching the
phishing content: only real users get to the phish, whereas honeyclients get
delivered legitimate content. The cloaking may happen on the redirection chain
leading to them [21], or the server hosting them [42]. Other researchers have
pinpointed suspicious URLs by detecting attempts to evade honeyclients analysis,
typically through fingerprinting and obfuscation [18].

Blacklist Evasion. Cybercriminals have also mitigated the efficacy of suc-
cessful detections by churning through a large set of domains and URLs, with
domain flux and URL fluxing [11, 26, 38, 25]. Researchers, in turn, noting that this
behavior is generally associated with malicious sites, have used it as a detection
feature [20, 31]. These fluxing infrastructures are also being detected mining their
topology [17], the redirection chains leading to them [24, 40, 21], and the traffic
distributors’ system feeding them a stream of users to exploit [22].

Studies on Human Scamming. Another direction of research concentrates
on why humans get scammed. Sheng et al. have proposed a game [37] that teaches
people about how not to get scammed. Later, demographic studies have shown
that education is effective in reducing the efficacy of scams [36], but it does not
solve the problem alone. Wu et al. show that security toolbars do not help the
users in their assessments [45]. In 2014, Neupane et al. [29] have taken these
studies a step further, using fMRIs to analyze how the brain responds to phishing
sites and browser countermeasures.

Browser Phishing Warnings. Traditional browser solutions to help users
be aware of the phish, such as domain highlighting and phishing warnings, have
shown to be not very effective [23, 29]. To better inform users, researchers have
proposed in-browser protection systems. Spoofguard [5] verifies that user sensitive
data is not passed to sites with similar sounding domain names and that contain
similar images. AntiPhish [19] tracks sensitive information and informs the user
whenever those are given to any untrusted website. DOMAntiPhish [33] alerts the
user whenever she visits a phishing site with a layout similar to a trusted website.
All these solutions help in preventing that the user is deceived in trusting a site
similar to a known site she used in the past, but they do not prevent against



4 Jacopo Corbetta et al.

other categories of scams, such as fake pharmacies and rogue antiviruses [7, 39].
In contrast, our system is able to track advanced, previously unseen phishing
attacks.

Content Analysis. The idea of extracting text from images through OCR
has been investigated in the context of e-mail spam [10]. These scams use “salting”
tricks to confuse analyzers while still getting the right message to humans [4]. To
counter this, researchers have proposed ways to track concept drift [8], which
spammers use to thwart frequency-based content analysis. Comprehensive studies
on content analysis have been proposed both for spam [30] and phishing sites [46,
50]. Google is also performing phishing detection through content analysis [44],
and researchers have used the search engine’s index to identify scams campaigns
with similar content [16]. In contrast, our system aims to identify the advanced
phishing attacks that evade these content-based solutions, obfuscating their
content to be resilient to static analyzers.

Visual Analysis. Phishing pages have been identified through image shin-
gling [1], which involves fragmenting screenshots of the phishing sites into small
images, and clustering the sites according to the fraction of identical images.
This solution is attractive because it is resilient to small changes in the phishing
site, as long as the overall template is not altered. Previous solutions involve
clustering according to colors, fonts, and layout [27] to identify phishing sites
visually similar to trusted sites. Hara et al. [15] show that, given a large enough
dataset of phishing sites, it is possible to automatically infer the site they are
mimicking. These solutions are effective as long as the phishing attack is trying
to mimic the aspect of a trusted website, but they do not cover other scam cate-
gories, such as fake pharmacies, dubious online retailers, or rogue antiviruses. In
contrast, our approach uses visual analysis to identify a dead giveaway of a scam:
a fake security seal. Scammers use these seals to claim to be a legitimate business,
even though the company generating these security seals has not assessed the
scammers’ business (and often does not even exist). Focusing on these seals, we
can identify scamming sites that do not try to mimic a legitimate site, but are
still effective in deceiving the user.

3 Dataset

Throughout the paper, we will refer to a dataset comprising the home pages of
the 81,000 most popular websites according to the Alexa popularity ranking, as
a baseline of benign pages. We obtained the remaining 68,000 pages from the
Wepawet online analyzer [43, 6].

Wepawet receives submissions from a variety of sources, including a large
volume of URLs from automated feeds, both benign and malicious. As such, it
represents a reasonable sample of pages that a security tool would be called to
examine in practice. Notice that we used Wepawet merely as a feed of active
URLs, without considering the results of its analysis.

In particular, we obtained two feeds: The first was an archive of 18,700 pages
pre-filtered (via a simple keyword search in the URL) to contain a large number



Eyes of a Human, Eyes of a Program 5

of fake antivirus (fake AV, [39, 32]) pages, so that we could test our heuristics
against this type of scam, regardless of Wepawet’s ability to detect it. The
second feed consisted of 50,000 submitted URLs, received in real-time so we could
immediately perform our analysis on them.

Table 1. Reference truth data for the 50,000 received submissions

Page type Samples Percent

Pharmacy scam campaigns 2431 ± 215 4.87 ± 0.43%
“Blackhole” exploit kit 140 ± 52 0.28 ± 0.10%
Updated version of the “Blackhole” exploit kit 47 ± 29 0.09 ± 0.06%
Fake video codec scam campaign 327 ± 80 0.65 ± 0.16%
Other pages with questionable content 196 ± 62 0.39 ± 0.12%

Total number of malicious or questionable samples 3075 ± 239 6.16 ± 0.48%
Total number of benign samples 46834 ± 241 93.79 ± 0.48%

This last subset will be the basis of our final evaluation, and, as expected for
a random selection, it contains a number of common scams, exploit kits, and
a majority (around 94%) of benign samples. We obtained truth data for this
feed through a manual review: Table 1 details our findings. For obvious time
reasons, we could not examine all 50,000 pages: we opted instead for a random
sample of 3,000 from which we extrapolate the totals on the entire set within a
reasonable margin (Wilson confidence intervals, 85% confidence). Whenever we
present these numbers, we will express them as x ±m, indicating the interval
(x−m,x + m).

We encountered several samples with suspicious characteristics, but for which
a clear benign-malicious verdict would have required a full investigation of the
service provided (i.e., a “proxy service,” found at several URLs under different
names, and without any stated policy or identification). We marked these samples
as “questionable” and have excluded them from benign and malicious sample
counts.

4 Content Obfuscation

As mentioned in the introduction, many automated systems parse web pages:
Examples include organizations performing large-scale crawling of the Internet
or online analyzers that must evaluate the benign or malicious nature of a page
within a certain time limit. These systems should view and “interpret” pages
exactly like a human would, but in practice they may have to compromise accuracy
in order to save bandwidth (e.g., by not downloading images) or processing time
(e.g., by ignoring JavaScript, not building the actual layout of the page, not
applying style sheets, etc.).



6 Jacopo Corbetta et al.

In general, content can be considered obfuscated if it would be easily seen
and interpreted by the average computer user, but would be hard to interpret
without simulating a full browser and the interaction of a human with it.

To refine this definition, we need to consider how automated crawlers parse
pages. Details can vary a lot, but we can pick a meaningful upper bound on
automated extraction capabilities and use it to differentiate the two views of a
page. In particular, we conjecture that JavaScript will be a problematic feature
for programs to consider, and one that many will sacrifice.

Our intuition is motivated by the consideration that analyzing a static page
can be assumed to take a time that is roughly a function of its size, while executing
arbitrary code introduces an unpredictable delay in the analysis. Moreover, since
JavaScript code can interact with other elements on the page, the entire content
must be kept in memory during the analysis (as opposed to discarding content
that has already been consumed).

It is impossible to directly gauge how many web analyzers and crawlers avoid
JavaScript, although, as mentioned, many search engines do provide guidelines
for webmasters that are consistent with the necessity to expose content to spiders
that ignore JavaScript [14, 28, 47] and images [12, 28, 48], and many published
detection systems use static signature matching (e.g., [30, 35, 42]). The choice of
this boundary between the “human-browser” world and the “automated-parser”
world has also been indirectly confirmed by our findings presented in Section 4.3:
Many pages (both benign and malicious) use JavaScript code to hide information
they do not want exposed to automated parsers.

4.1 Heuristic

Several encapsulation and encoding schemes are used to transfer text on the
web. A banking web site might, for example, provide content encoded in UTF-8,
compressed by the server with gzip and transferred over a TLS connection. From
the point of view of the client, however, these schemes are completely transparent:
once the encoding layers are removed, a well-defined payload is reached for every
data transfer.

A key observation is that text will almost always appear as-is in the payload.

In the simplest case an HTML page will be retrieved from the network, its
content will be parsed in a tree, a layout will be constructed, and the resulting
page will be presented to the user. The browser will simply copy the content of
text nodes from the original payload, HTML entities being the only exception to
this rule.

Web pages can also use scripts to dynamically add content to the page
tree. This content may have already been present in the original payload (as a
JavaScript string literal, for example), or it may come from additional network
requests. This text does not have to be sent as-is: the script that loads the text
is free to mangle and re-code it as it sees fit. There is, however, little reason to
do so, and it seems safe to assume that legitimate websites will never engage in
such practices: In fact, by comparing the dynamically constructed page with the



Eyes of a Human, Eyes of a Program 7

observed payloads, we have been able to confirm that textual data is transferred
as-is in the vast majority of cases.

There are a few fundamental reasons for this. For purely textual content (at
the sizes typically seen in web payloads), the built-in gzip compression is better,
needs no extra code transfers, and is far easier to use than custom code; in fact,
none of the JavaScript code compression tools in popular use significantly alter
string literals. Popular data transfer formats such as JSON and XML are also
text-based. There is also a historical preference for human-readable data on the
web (the HTTP protocol itself is an example), both to help debugging and to
ease interoperability.

While we have observed some overly-cautious escaping of content, most cases
where text was not transferred as-is were due to deliberate obfuscation attempts.

One can certainly devise obfuscation systems that necessarily require human
interaction and would hide text from this and any other automated detection
attempt: For example, the sensitive content can be encrypted and the password
presented in an image that cannot be easily parsed automatically (using, for
example, the same obfuscation techniques used for CAPTCHA test images).
However, this involves asking victims to perform a task that is difficult to
automate. Therefore, these techniques necessarily create significant inconvenience
for the intended targets, who may not have a particularly strong motivation to
interact with an almost-empty page (content shown before the verification is also
available to automated analyzers) if it requires effort on their part. These kinds
of expedients would also strongly differentiate the page from regular benign sites,
even in the eye of an untrained user, so they are unlikely to be used in fraudulent
pages and were not observed in our dataset.

4.2 Implementation

Based on the discussion above, we detect content obfuscation by first building
an extractor that page authors expect to face (e.g., a static text parser) and a
more powerful one (e.g., a full browser), and then observing the differences in
the extracted contents.

Our detector is based on the popular Firefox web browser, modified in order
to observe and record all network requests and the context in which they were
made. We also store the DOM tree of the page (including frames) and take
a screenshot of the website as it would be seen by a human user. Finally, the
browser has been modified to automatically confirm all file save request and
dismiss all JavaScript popups. While using a real web browser may be slower
and less safe than using an ad-hoc solution, it also makes the simulation much
more realistic and helps us avoid being fingerprinted by an attacker. The browser
visits the page in a temporary VM, and is fully automated.

The system uses two viewpoints to check for text on the web page. First, the
text present in the DOM tree is normalized by replacing HTML entities and
URL-encoded characters, removing non-alphabetic characters, and transforming
all text to lowercase. Then, the text that is present in network payloads is



8 Jacopo Corbetta et al.

parsed and decoded using information recorded from the browser (for example,
unzipped), and then normalized in the same way.

For every word in the body of the page (text of the DOM tree), an origin is
sought in the network payloads. In particular, the presence of a word is considered
“justified” if it satisfies one of the following conditions:

1. It appears as-is in the body of one of the responses from the server, including
AJAX requests, requests made from iframes, etc. This rule matches most
regular text.

2. It appears in one of the URLs (e.g., as part of the domain name, in the query
string, etc). This rule takes care of pages that display information that is
passed to them via the URL and access it via the location object.

3. It appears in one of the HTTP headers, which are readable by JavaScript for
AJAX requests.

4. It can be obtained from the previously-mentioned sources:

(a) as the concatenation of two words,
(b) as the truncation of another word.

5. It is found in a whitelist of words that can be obtained directly from the
JavaScript language interpreter, including type names like none or HTML-
ParagraphElement, date components (e.g., month names), strings from the
navigator object, etc.

These rules attempt to construct a set of benign clear-text sources that would
be easily exposed to a static signature matcher, anticipate most real-world string
operations (that any signature matching algorithm can and probably should
take into account), and consider all page components that would possibly be
exposed. Words for which an origin could not be pinpointed are considered
obfuscated. For simplicity, our heuristic operates on single words only, and leaves
the extension to sequences to the signature generator (Section 6.1). Purely image-
based obfuscation approaches would also escape our textual detector and would
require image-processing techniques for detection: similarly, we left this extension
to our proof-of-concept signature matcher (Section 6.2).

The previously-described extraction rules are also applied to the domain
names of URLs present in HTML attributes. This allows us to catch cases of
pages that try to hide from programs the URL to which they will redirect a
human viewer. Notice that text from a DOM tree is analyzed considering only
network payloads that have been seen before it was retrieved, so the presence of
links in a page cannot be justified with future HTTP headers.

In principle, our algorithm would also work for scripts and style sheets, but
such analysis is out of scope for this paper: ordinary human users do not “parse”
them, nor are they aware of their existence.1

1 Of course, a possible extension of our work would be to consider the two “views” of
a malware analyst and of a web browser. As an example, in this model JavaScript
obfuscation would be a case of content easily interpreted by a browser but cumbersome
for a human to understand.



Eyes of a Human, Eyes of a Program 9

4.3 Evaluation of the Detection of Obfuscated Content

Table 2 presents the samples for which we found obfuscated content (the benign,
malicious, or questionable nature was established by manual review).

While obviously not perfect, our heuristic presented very few false positives
in the detection of obfuscated content (that is, content incorrectly marked as
obfuscated, regardless of the benign or malicious nature of the page) in our
dataset. These were often caused by incorrect parsing of the network payload,
as in some cases it is difficult to replicate the exact parsing the browser will
perform: unclear specifications, buggy servers, and sloppy page coding practices
require browsers to rely on several heuristics, and previous research has shown
that different clients can even give different interpretations to the same data [2];
it should be noted, however, that the desire to increase the number of victims
can be a mitigation factor for this issue, especially for frauds: their authors have
an interest in having them functional on all major browsers.

Table 2. Samples found by the content obfuscation heuristic, grouped by source

Source Page type Samples In-Feed Pct. Global Pct.

Alexa ranking (81,000 samples) Benign 52 90% 0.06%
Questionable 3 5.2% 0.004%
Malicious 3 5.2% 0.004%
total 58 100% 0.07%

Fake AV feed (18,700 samples) Benign 1 0.93% 0.005%
Questionable 4 3.7% 0.02%
Malicious 102 95% 0.54%
total 107 100% 0.57%

Received submissions (50,000 samples) Benign 3 3.1% 0.006%
Questionable 0 0% 0%
Malicious 94 97% 0.19%
total 97 100% 0.2%

All feeds (149,700 samples) Benign 56 21% 0.037%
Questionable 7 2.7% 0.005%
Malicious 199 76% 0.13%
total 262 100% 0.18%

Manual review of the 3,000 randomly selected samples from the 50,000
submissions received in real-time (Section 3), utilizing the screenshots and assisted
by Optical Character Recognition software, did not uncover any false negative
(obfuscated content not marked as such).

4.4 Observed Uses of Obfuscation

Even a simple unescape is enough to hide content from a straightforward HTML
parser, and many examples in our dataset did not go much further than that.
Code from exploit kits and fake antivirus scams, on the other hand, went to great
lengths to obfuscate both the content and the generating script.

Beside fraudulent content, the following categories of text were commonly
observed in obfuscated form:



10 Jacopo Corbetta et al.

– E-mail addresses: A precaution against address-harvesting spam bots. To
avoid these false positives, our heuristic ignores all mailto: links and strings
that look like e-mail addresses.

– Domain names: A pharmacy scam campaign and several exploit kits pre-
sented landing pages with redirection code. The target URL was obfuscated,
presumably to slow down blacklist-building crawlers and human analysts.

– Links: Some benign websites obfuscated hyperlinks to other pages or websites,
including seemingly innocuous links such as those to contact information and
the terms of service. This is probably done to make sure that search engines
do not focus on pages that are perceived as not significant by the webmaster;
this particular technique may be an answer to Google’s de-emphasizing of
the nofollow attribute [9].

Our detector does not mark pages as questionably obfuscated if e-mail and
links are the sole hidden content types, as these kinds of obfuscation are also
used in benign sites.

Obfuscated target URLs, on the other hand, are definitely a strong signal of
malicious content. However, the specific URLs are highly variable, easily changed,
and not necessarily exposed to the user (who will likely only view and act on the
first URL in the redirect chain), so they have also been ignored for the purposes
of our proof-of-concept detector.

4.5 From Obfuscation Detection to Maliciousness Detection

As mentioned, our simple heuristic is, in itself, an indication that a page may
contain suspicious content, but is not entirely reliable as a maliciousness detector
in itself.

It does, however, find content that the page author wanted to hide: a good
starting point for a more punctual detection of maliciousness. In our study,
we chose to exploit the fact that cybercriminals typically run campaigns (they
typically prepare many variations that implement a certain scheme) or implement
general fraud schemes (such as fake pharmacies or fake antiviruses), whereas
benign usages are much more likely to appear as outliers.

To this end, we leveraged obfuscated words as features for each page. Several
methods exist to eliminate outliers: we opted for density-based clustering (DB-
SCAN), as it performs well and can be fully automated for this purpose as long
as known-benign obfuscated samples are available.2

2 Specifically, we rely on the presence of a few samples originated from the Alexa
set for our purposes: Intuitively we want the clustering to consider them as “noise,”
so (for the purpose of this step) we classify them as “benign” and everything else
as “malicious”. With this assignment, we have a rough estimate of how good each
possible clustering is (using, for instance, the F1 score) at discriminating between
benign and malicious samples. At this point, a simple grid search can find the values
for the two DBSCAN parameters (the point neighborhood size ε and the minimum
cluster size) that maximize this estimated score. On Table 2’s data, 0.82 and 3 were
found by the grid search; the corresponding clustering is shown in Table 3.



Eyes of a Human, Eyes of a Program 11

Table 3. Samples found by the content obfuscation heuristic, automatically grouped
by cluster and de-noised leveraging the obfuscated words that were detected

Page type Samples

Cluster 1 “Blackhole” exploit kit 41
Cluster 2 First fake-AV campaign 23
Cluster 3 “Blackhole” exploit kit 20
Cluster 4 First fake-AV campaign (minor variation) 16
Cluster 5 Second fake-AV campaign 5
Cluster 6 Third fake-AV campaign 9
Cluster 7 Updated version of the “Blackhole” exploit kit 12
Cluster 8 False positives 4
Cluster 9 Fake flash player campaign 4
Cluster 10 “Blackhole” exploit kit 12
Cluster 11 False positives 3
Cluster 12 Third fake-AV campaign (minor variation) 15
Cluster 13 Third fake-AV campaign (minor variation) 20
Cluster 14 Third fake-AV campaign (minor variation) 4
Cluster 15 Updated version of the “Blackhole” exploit kit 8
Cluster 16 False positives 3
Cluster 17 False positives 3

Samples
discarded
as noise

7 questionable, 3 fake-AV campaigns (all minor variations of
the campaigns above), 3 pharmacy scams, 1 “Blackhole” exploit
kit (bugged sample), 3 “get rich quick” scams, and 43 benign

60

This step is not strictly necessary, as far as finding interesting and suspicious
pages: Without further refinement, the heuristic already pointed to 199 truly
malicious pages (and 56 benign ones), many of which were not originally found by
Wepawet’s analysis, especially among the scam campaigns that did not leverage
any browser vulnerability.3

However, we found this step very useful both for our manual analysis and for
a more punctual malicious content detection. Its results are presented in Table 3,
which also serves as a recap of the nature of the pages found by the heuristic
of this section. Confirming the validity of our intuition that most benign pages
would appear as outliers, this clustering step was able to achieve a precision of
93.56% and a recall 94.97% in finding malicious pages among the samples that
presented obfuscation.

The false positives are multiple benign sites that were obfuscating a few
similar words, usually for search engine optimization purposes. All fake antivirus

3 Interestingly, while reviewing the pages that were found, we even encountered several
that appeared to be generated by an exploit kit, although Wepawet had not detected
them as such. Further review revealed that these pages, generated by the “Blackhole”
exploit kit, were fingerprinting Wepawet’s JavaScript engine and disabling their
malicious payload to escape detection.



12 Jacopo Corbetta et al.

campaigns present in the dataset were identified correctly. As mentioned, pages
from two well-known exploit kits were also identified.

As expected, campaigns tend to emerge as distinct clusters. Incidentally, we
have observed a certain number of minor variations, updates, or bugs within the
same campaign or usage of exploit kits: this tends to surface as a splitting of a
campaign in a few distinct clusters.

5 Counterfeit Certification Seals

Our second heuristic explores an attempt to confuse human consumers without
attempting to deceive automated analyzers.

In particular, we observed that in many cases scammers try to make their
pages appear more legitimate by including certification seals: small images meant
to convey that the site has passed a review by a trusted third party. These seals
are also often displayed by legitimate online sellers to reassure users about the
safety of their data. Reputable companies releasing these certifications include
Symantec, GeoTrust, McAfee and other well-known certification authorities and
vendors of security software.

No standard mandates the exact meaning of the certification. Some issuers
just claim to periodically check the website for malware, others are meant to fully
verify that the site is owned by a reputable business entity. In all cases, seals
are included to make visitors more comfortable (and presumably more likely to
spend time or money on the site). As such, their counterfeiting is attractive for
fraudsters, even if no computer program would “understand” them or consider
them in any way.

5.1 Use by Fraudsters

Unfortunately, there are also no standards on how certification seals should
be included in a page and how an end user can verify their legitimacy. Unlike
HTTPS certificates, browsers cannot check them on the user’s behalf, as the seal
is usually just another image on the page.

Issuers can mandate certain technical measures in their usage policies, such
as the requirement to include a script served from an authority’s server [41].
Typically, correctly included seals should react to clicks by opening a verification
page hosted by the issuer.

Nothing, however, prevents a malicious seller from simply copying the seal
image from a legitimate site and displaying it on a fraudulent page. Should
someone click on the seal to verify it, the scammer can simply present a locally-
hosted fake certification. Unless the end user specifically checks the certification
page origin (and knows the correct domain name of the authority that issues the
seal in question), the page will look legitimate.

Given the ease of including a copied image and the low risk of detection by
untrained users, fraud perpetrators often display copious amounts of certification



Eyes of a Human, Eyes of a Program 13

Fig. 1. Examples of counterfeit certification seals found on rogue pharmacy sites.

seals on their pages, especially on online shops such as rogue pharmacies. Figure 1
shows a few examples.

Seal images can be completely made-up and refer to no established third-party,
present alterations of logos of real certification authorities [3] or, as we most
commonly observed, present copies of actual logos and faked certification pages.

5.2 Heuristic

For our study, we augmented the system described in Section 4.2 with a component
that calculates a perceptual hash [49] (for resilience against small alterations) of
all images with a size comparable to the ones typically used for certification seals,
compares them with the known ones, and checks if they are legitimate or not.

There are few legitimate seal providers: a manual review of their terms of
services and inclusion practices would allow constructing a fully reliable detector,
if desired. As expected for a deception technique exclusively directed toward
humans, we did not observe any attempt to hide its use from even a simple
analyzer. Therefore, we opted again for a fully-automated approach in our survey:
we performed optical character recognition on the 100 most common images
(as aggregated by the perceptual hashing function) and looked for keywords
expressing trust and protection such as “secured,” “approved,” “trust,” and
“license” to find seals, and check legitimacy simply by verifying if they link off-site
or not: an imperfect approach that however highlights how easy it can be for a
program to detect purely human-directed deception attempts.

While not uncovering all frauds in our dataset (not all of them use these
fake seals, nor does our heuristic cover all of these images), this simple heuristic
correctly flagged about 400 samples, with no false positives. All these samples
originated from rogue pharmacy campaigns and, as we will show in the next
section, proved to be a valuable starting point for a detector of this entire category
of scams.

6 Proof-of-concept General Detector

As we have seen, the difference between a human view and an algorithmic view
can indeed be useful in pointing out malicious pages, even with two simple



14 Jacopo Corbetta et al.

heuristics such as ours. Of particular note is its tendency to find “pure” scam
campaigns that do not involve software exploits, yet succeed due to deception.

In this section we will show if these heuristics could be useful to a complete
maliciousness detection suite, in particular by seeing if the pages they uncover
could enable finding more. To this end, we implemented a proof-of-concept
detector that uses them as its only starting point, and we will show how it can
already reach significant detection rates. It is fairly standard in its construction
(signature generation and matching), but we will also use it to exemplify a
similarity measure that gives a different “weight” to certain words (the ones
that were obfuscated, in our case) and is resilient to the inclusion of extraneous
text, as we have observed this happens with a certain frequency in scam pages
when they are part of a larger page (posts in hijacked forums are an example).
Incidentally, this approach would also defend against fraudsters including large
amounts of irrelevant text specifically to thwart automated analysis, even if it
was presented in such a way that humans would not pay attention to it (i.e., in a
semi-invisible color, at the end of a long page, out of view, . . . ).

6.1 Signature Generation

The clusters in Table 3, with the addition of the pages detected due to seal
counterfeiting, serve as the basis to generate signatures. In particular, our system
tries to identify contiguous regions of text that are “typical” of a cluster, to
maximize the impact of common textual elements (presumably core to the
nature of those pages), while de-emphasizing regions that are variable among the
different samples: A score is assigned to each word present in pages belonging
to the cluster. The score is initially the number of occurrences of the word in
the samples, doubled if the word was obfuscated; scores are then normalized to
have zero-average (to further reduce noise, we also exclude the 100 most common
English words). All the maximal-scoring contiguous regions of text are then
found (this operation has linear-time complexity [34]) and identical regions are
aggregated to form the “signature” regions for that cluster.

As an example, for the cluster of a simple fake-AV campaign that included
a few variations, the following regions were chosen: center initializing virus

protection system, initializing virus protection system, initializing treat

protection system., whereas for a pharmacy scam regions included both the
entire common content of the typical sales page, and smaller text snippets that
were present in many, but not all pages (mainly, the type of drugs sold in specific
subpages).

6.2 Signature Matching

When presented with a sample, our proof-of-concept detector will perform a
fuzzy matching with the signature regions, to find other similar but unknown
campaigns.

Simple textual similarity measures (i.e., the Jaccard coefficient) weight the
amount of common elements versus the amount of uncommon ones. As mentioned,



Eyes of a Human, Eyes of a Program 15

we will propose here a slightly different approach that is more resilient to the
inclusion of unrelated random words in the page, as we consider this a good
property when faced with content that exclusively tries to deceive humans: in
those cases, a small amount of information could very well be sufficient.

In particular, when evaluating a page:

1. A candidate match mi is found for each of the n signature regions si (longest
matching subsequence in the page text).4

2. The Jaccard distance di is computed for each (mi, si) pair.
3. The distance of the page to the clusters is computed: d = min {d1 . . . dn}.

Notice that with this method only one zone of the page influences the final
result: the one that is most similar to one of the clusters. Therefore, as opposed
to inserting disturbances anywhere, an author that wished to avoid detection
would have to modify several words right in the middle of their most relevant
content, likely changing the message perceived by a potential victim.

At this point we can mark a page as benign or malicious based, using a
threshold on d. To make sure the threshold is neither too low nor too high, we
used a separate training phase to select a good value.5

To exemplify extra robustness precautions that would be included in a com-
plete detector, we added two image-based matching systems based on a page
screenshot. One recovered text through Optical Character Recognition (which
can then be used as normal HTML text), the other directly compared the page
screenshot with those of the pages found by the two heuristics.

6.3 Evaluation

We evaluate the overall performance of our proof-of-concept system on the
(otherwise unlabeled) 50,000 samples obtained from real-time submissions. As
mentioned in Section3, this set includes a variety of scam sites, traditional drive-by
download exploit pages, and benign pages.

Table 4 provides a numerical overview of its performance. Overall, the system
flagged 1,833 pages as malicious. Based on manual analysis of these instances, we
confirmed 1,746 cases as true positives (first line): a significant increase from the

4 If desired, each match mi could also be enlarged by a percentage to achieve extra
resiliency against the insertion of random “stopping” words in the middle of an
otherwise matching page section.

5 We used a procedure similar, in its principle, to the one employed in Section 4.5:
Pages from the Alexa feed were all marked as benign, then a well-scoring threshold
value was computed for each cluster. Again, those known-benign pages are used to
get a rough estimate of the amount of false positives that each given value would
cause. A linear search is then used, starting from a low threshold value and increasing
it until the false positive rate surpasses a certain percentage: 2%, in our case. We
protect from possible outliers in the Alexa feed by requiring the presence of at least
three of its samples before the search is terminated. While this procedure requires a
sizable number of benign samples, it is applicable in many cases: such samples are
easily gathered from widely-available rankings or website directories.



16 Jacopo Corbetta et al.

95 detected by the content obfuscation heuristic (Table 2) and the 400 detected
by the seal-counterfeiting one; the remaining 87 flagged pages were incorrect
detections of benign pages (second line). As anticipated in Section 3, negatives
are expressed as confidence intervals (lines three and four, and dependent scoring
values in the remaining lines).

Table 4. Performance of the proof-of-concept detector

True positives (flagged, malicious) 1, 746
False positives (flagged, benign) 87
True negatives (not flagged, benign) 47, 524 ± 192
False negatives (not flagged, malicious) 643 ± 192

Precision 95.25%
Recall 73.08 ± 5.86%
F1 score 82.69 ± 3.75%
True positive rate 73.08 ± 5.86%
False positives rate 0.18 ± 0.00%

True positives included pharmacy scams from several different campaigns
or sellers and many fake-AV variants, underlining how the findings from these
heuristics generalize well and improve detection (most scam campaigns, for
instance, were not originally marked as suspicious or malicious by Wepawet).
Examples of false negatives are posts on hijacked forums that contained relatively
little malicious content, or scams that significantly differed from the samples found
by our two simple heuristics. For cases where the samples were related (although
quite different and possibly originating from different criminal operations), our
system showed excellent detection.

While not enough to create a complete security system, these results confirm
our intuition that detection of this “view difference” (even in the two simple
heuristic forms we presented) can be a useful addition to many analyzers. As an
example, referring to Table 1, a honeyclient or exploit-based detector is unlikely
to catch the (otherwise very common) scam campaigns without a method such
as ours.

Finally, we note that even just removing content obfuscation and counterfeit
certifications from the fraudsters’ tool arsenal could be a desirable result in itself.
In fact, a general property of heuristic like ours is that they present attackers
with a problematic choice: from their point of view, if they choose to exploit the
difference between the two “worlds” of programs and humans they risk giving
away the nature of their operation (and possibly uncover other similar scams).
Presenting the same information to humans and programs, on the other hand,
will make it easy for security researchers to construct reliable signatures for the
malicious campaign and quickly reduce its impact.



Eyes of a Human, Eyes of a Program 17

7 Conclusions

In this paper we pointed out how the discrepancy between the understanding of
a human and a program can present both a danger (as a way for cybercriminals
to escape analysis) and a maliciousness-detection opportunity at the same time.
We presented two heuristics that detect cases that exemplify this situation: one
directed toward textual content and one involving images, respectively countering
the deception of static analyzers and of human beings.

Envisioning that these detection methods can complement existing detection
tools, we have implemented a proof-of-concept detector based exclusively on
these methods to discover online malicious pages. This tool alone was able to
achieve a 95% precision and a 73% recall in our dataset, and was able to discover
a high number of human-directed fraud pages that would otherwise be outside
the detection capabilities of most traditional malware analyzers.

Acknowledgments. We would like to thank Davide Paltrinieri for his help and
ABBYY for providing the OCR software.

This work was supported by the Office of Naval Research (ONR) under Grant
N000140911042, the Army Research Office (ARO) under grant W911NF0910553,
and Secure Business Austria. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the Office of Naval Research, the Army Research
Office, or Secure Business Austria.

References

1. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Characterizing
Internet Scam Hosting Infrastructure. In: Proceedings of the USENIX Security
Symposium (2007)

2. Barth, A., Caballero, J., Song, D.: Secure Content Sniffing for Web Browsers, or
How to Stop Papers from Reviewing Themselves. In: Proceedings of the 30th IEEE
Symposium on Security and Privacy. IEEE (2009)

3. Bate, R., Jin, G., Mathur, A.: In Whom We Trust: The Role of Certification
Agencies in Online Drug Markets. NBER working paper 17955 (2012)

4. Bergholz, A., Paass, G., Reichartz, F., Strobel, S., Moens, M.F., Witten, B.:
Detecting Known and New Salting Tricks in Unwanted Emails. In: Proceedings of
the Conference on Email and Anti-Spam (CEAS) (2008)

5. Chou, N., Ledesma, R., Teraguchi, Y., Mitchell, J.C.: Client-side Defense Against
Web-Based Identity Theft. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS) (2004)

6. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-download
Attacks and Malicious JavaScript code. In: Proceedings of the World Wide Web
Conference (WWW) (2010)

7. Cova, M., Leita, C., Thonnard, O., Keromytis, A.D., Dacier, M.: An Analysis of
Rogue AV Campaigns. In: Proceedings of the International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). pp. 442–463 (2010)



18 Jacopo Corbetta et al.

8. Cunningham, P., Nowlan, N., Delany, S.J., Haahr, M.: A Case-Based Approach to
Spam Filtering that Can Track Concept Drift. Knowledge-Based Systems (2005)

9. Cutts, M.: Pagerank sculpting. http://www.mattcutts.com/blog/pagerank-scu
lpting/ (2009)

10. Fumera, G., Pillai, I., Roli, F.: Spam Filtering Based on the Analysis of Text
Information Embedded into Images. The Journal of Machine Learning Research 7,
2699–2720 (2006)

11. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A Framework for Detection and
Measurement of Phishing Attacks. In: Proceedings of the ACM Workshop on
Recurring Malcode (WORM) (2007)

12. Google Inc.: Image publishing guidelines. http://support.google.com/webmaster
s/bin/answer.py?hl=en&answer=114016 (2012)

13. Google Inc.: Making AJAX Applications Crawable. https://developers.google.
com/webmasters/ajax-crawling/ (2014)

14. Google Inc.: Webmaster Guidelines. http://support.google.com/webmasters/bi
n/answer.py?hl=en&answer=35769#2 (2014)

15. Hara, M., Yamada, A., Miyake, Y.: Visual Similarity-Based Phishing Detection
without Victim Site Information. In: Proceedings of the IEEE Symposium on
Computational Intelligence in Cyber Security (CICS). pp. 30–36. IEEE (Mar 2009)

16. Invernizzi, L., Benvenuti, S., Comparetti, P.M., Cova, M., Kruegel, C., Vigna, G.:
EVILSEED: A Guided Approach to Finding Malicious Web Pages. In: Proceedings
of the IEEE Symposium on Security and Privacy (S&P) (2012)

17. Invernizzi, L., Miskovic, S., Torres, R., Saha, S., Lee, S.J., Mellia, M., Kruegel, C.,
Vigna, G.: Nazca: Detecting Malware Distribution in Large-Scale Networks. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS)
(2014)

18. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver:
An Automated Approach to the Detection of Evasive Web-based Malware. In:
Proceedings of the USENIX Security Symposium (2013)

19. Kirda, E., Kruegel, C.: Protecting Users Against Phishing Attacks with AntiPhish.
In: Proceedings of the International Conference on Computer Software and Appli-
cations (COMPSAC). vol. 1, pp. 517–524. IEEE (2005)

20. Konte, M., Feamster, N., Jung, J.: Fast Flux Service Networks: Dynamics and
Roles in Hosting Online Scams. Tech. rep., Georgia Institute of Technology and
Intel Research (2008)

21. Lee, S., Kim, J.: WarningBird: Detecting Suspicious URLs in Twitter Stream. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS)
(2010)

22. Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the Linchpins of the Dark
Web: a Study on Topologically Dedicated Hosts on Malicious Web Infrastructures.
Proceedings of the IEEE Symposium on Security and Privacy (S&P) pp. 112–126
(May 2013)

23. Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does Domain Highlighting
Help People Identify Phishing Sites? In: Proceedings of the Conference on Human
Factors in Computing Systems (CHI). p. 2075. ACM Press, New York, New York,
USA (2011)

24. Lu, L., Perdisci, R., Lee, W.: SURF: Detecting and Measuring Search Poisoning Cat-
egories. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2011)



Eyes of a Human, Eyes of a Program 19

25. Ludl, C., Mcallister, S., Kirda, E., Kruegel, C.: On the Effectiveness of Techniques to
Detect Phishing Sites. In: Proceedings of the SIG SIDAR Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA). pp. 20–39 (2007)

26. Mcgrath, D.K., Gupta, M.: Behind Phishing : An Examination of Phisher Modi
Operandi. In: Proceedings of the USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET) (2008)

27. Medvet, E., Kirda, E., Kruegel, C.: Visual-Similarity-Based Phishing Detection. In:
Proceedings of the International Conference on Security and Privacy in Commu-
nication Networks (SecureComm). p. 1. ACM Press, New York, New York, USA
(2008)

28. Microsoft Corp.: Bing Webmaster Guidelines. http://www.bing.com/webmaster/h
elp/webmaster-guidelines-30fba23a (2014)

29. Neupane, A., Saxena, N., Kuruvilla, K., Georgescu, M., Kana, R.: Neural Signatures
of User-Centered Security: An fMRI Study of Phishing, and Malware Warnings. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS).
pp. 1–16 (2014)

30. Ntoulas, A., Hall, B., Najork, M., Manasse, M., Fetterly, D.: Detecting Spam Web
Pages through Content Analysis. In: Proceedings of the International World Wide
Web Conference (WWW). pp. 83–92 (2006)

31. Prakash, P., Kumar, M., Kompella, R.R., Gupta, M.: PhishNet: Predictive Black-
listing to Detect Phishing Attacks. In: Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM). pp. 1–5. IEEE (Mar 2010)

32. Rajab, M.A., Ballard, L., Marvrommatis, P., Provos, N., Zhao, X.: The Nocebo
Effect on the Web: An Analysis of Fake Anti-Virus Distribution. In: Large-Scale
Exploits and Emergent Threats (LEET) (2010)

33. Rosiello, A.P.E., Kirda, E., Kruegel, C., Ferrandi, F.: A Layout-Similarity-Based
Approach for Detecting Phishing Pages. In: Proceedings of the International Con-
ference on Security and Privacy in Communication Networks (SecureComm) (2007)

34. Ruzzo, W., Tompa, M.: A Linear Time Algorithm for Finding All Maximal Scoring
Subsequences. In: Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology. AAAI (1999)

35. Seifert, C., Welch, I., Komisarczuk, P.: Identification of Malicious Web Pages with
Static Heuristics. In: Proceedings of the Australasian Telecommunication Networks
and Applications Conference. IEEE (2008)

36. Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L., Downs, J.: Who Falls for
Phish? A Demographic Analysis of Phishing Susceptibility and Effectiveness of
Interventions. In: Proceedings of the Conference on Human Factors in Computing
Systems (CHI). pp. 373–382 (2010)

37. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E.: Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches
People Not to Fall for Phish. In: Proceedings of the Symposium on Usable privacy
and security (SOUPS). pp. 88–99 (2007)

38. Sheng, S., Wardman, B., Warner, G., Cranor, L.F., Hong, J.: An Empirical Analysis
of Phishing Blacklists. In: Proceedings of the Conference on Email and Anti-Spam
(CEAS) (2009)

39. Stone-Gross, B., Abman, R., Kemmerer, R., Kruegel, C., Steigerwald, D., Vigna,
G.: The Underground Economy of Fake Antivirus Software. In: Proceedings of the
Workshop on Economics of Information Security (WEIS) (2011)

40. Stringhini, G., Kruegel, C., Vigna, G.: Shady Paths: Leveraging Surfing Crowds to
Detect Malicious Web Pages. In: Proceedings of the ACM Conference on Computer
and Communications Security (CCS) (2013)



20 Jacopo Corbetta et al.

41. Symantec: Seal License Agreement. https://www.symantec.com/content/en/us/a
bout/media/repository/norton-secured-seal-license-agreement.pdf (2014)

42. Wang, D.Y., Savage, S., Voelker, G.M.: Cloak and Dagger: Dynamics of Web Search
Cloaking. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS). pp. 477–489 (2011)

43. Wepawet. http://wepawet.cs.ucsb.edu
44. Whittaker, C., Ryner, B., Nazif, M.: Large-Scale Automatic Classification of Phish-

ing Pages. In: Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS) (2010)

45. Wu, M., Miller, R.C., Garfinkel, S.L.: Do Security Toolbars Actually Prevent Phish-
ing Attacks? In: Proceedings of the Conference on Human Factors in Computing
Systems (CHI). pp. 601–610 (2006)

46. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: A Feature-Rich Machine
Learning Framework for Detecting Phishing Web Sites. In: ACM Transactions on
Information and System Security. pp. 1–28 (2011)

47. Yandex N.V.: Recommendations for webmasters - Common errors. http://help.y
andex.com/webmaster/recommendations/frequent-mistakes.xml (2014)

48. Yandex N.V.: Recommendations for webmasters - Using graphic elements. http:
//help.yandex.com/webmaster/recommendations/using-graphics.xml (2014)

49. Zauner, C.: Implementation and Benchmarking of Perceptual Image Hash Functions.
Master’s thesis, Upper Austria University of Applied Sciences, Hagenberg Campus
(2010)

50. Zhang, Y., Hong, J., Cranor, L.: CANTINA: a Content-Based Approach to Detecting
Phishing Web Sites. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2007)


