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ABSTRACT
Administrators need effective tools to quickly and automat-
ically obtain a succinct, yet informative, overview of the
status of their networks to make critical administrative de-
cisions in a timely and effective manner. While the existing
tools might help in pointing out machines that are heavily
used or services that are failing, more subtle relationships,
such as indirect dependencies between services, are notmade
apparent. In this paper, we propose novel techniques to
automatically provide insights into the state of a network
and the importance of the network components. We devel-
oped a tool, called Paris, which receives traffic information
from various off-the-shelf networkmonitoring devices. Paris
computes an importance metric for the network’s compo-
nents based on which the administrators can prioritize their
defensive and prohibitive actions. We evaluated Paris by
running it on a mid-size, real-world network. The results
show that Paris is able to automatically provide situation
awareness in a timely, effective manner.

1. INTRODUCTION
Today’s computer networks have turned into complex in-

frastructures providing complex inter-dependent services,
which are often transparent or hidden. This complexity is
expected to further increase as engineers tend to build larger
and more complex services by combining the smaller, sim-
pler ones. Even a typical end-user service may be com-
posed of multiple underlying services with complex depen-
dencies. Computer networks are also under ever-increasing
attacks [39]. The ever-increasing complexity of distributed
systems, combined with the constant increase in the vol-
ume and sophistication of attacks to computer networks,
create serious challenges for network administrators in tak-
ing timely, appropriate actions.

For example, a webmail service usually consists of a web
server (to provide the web-based front-end), an email server
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(to send and receive emails), a file server (to store the emails),
a Kerberos server (to authenticate users), and a DNS server
(to resolve host addresses). Failure of each component of a
complex composite service (a service built up from simpler
services) can cause a failure in the composite service itself.

Therefore, network administrators need tools to monitor
the state of their assets to detect the occurrence of malicious
activities and to foresee the required corrective actions. Tra-
ditional network monitoring tools provide an overwhelming
amount of fine-grained details about the occurrences of ma-
licious events and activities [41]. However, they do not pro-
vide a succinct, high-level understanding of the current and
future states of the network.

In this paper, we study the design of tools that provide
situation awareness for network administrators. In the con-
text of computer networks, situation awareness aims to pro-
vide a decision maker (e.g., a network administrator) with a
high-level overview and understanding of her computer net-
work. More precisely, situation awareness can be defined as
the perception of the network elements, the understanding
of their meaning and importance, and the projection of their
status into the near future [13].

Network situation awareness aims to help a network ad-
ministrator identify important network assets, analyze their
dependencies, and understand the importance of different
assets in carrying out the underlying organization’s mis-
sions. A “network asset” broadly describes both the hard-
ware elements (e.g., servers and routers) and the software
elements (e.g., applications and services) that constitute a
computer network. In the context of this work we only con-
sider network services as assets, since the other types of as-
sets are not affected by our analysis. A network mission is a
collection of tasks (services) that are carried out by different
network components of an organization to achieve a specific
goal.

The term “mission” reveals the military roots of the idea
of situation awareness. However, the concept of a mission
is general and equally applies to civilian networks. For ex-
ample, providing web mail services to students can be one
of the missions of a university network. In this case, one of
the tasks might be to send/receive emails, while a second
task is to provide a web interface to users to access their
email accounts. From working with administrators of orga-
nizational networks, we realize that identifying network mis-
sions and ensuring their continuous operation is significantly
important. However, doing such through manual investiga-
tion by human administrators is in many ways impractical
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and inefficient due to the large size of today’s networks, the
error-proneness of human operators, and the lack of docu-
mentation for various network components.

In this paper, we devise novel techniques and tools for au-
tomated situation awareness. Our tool uses data collected
from various network devices to 1) identify networkmissions,
and, 2) continuously monitor their correct operation; to the
best of our knowledge, we are the first to design tools for
automated detection and monitoring of network missions.
Unlike previous work [22, 18] that require higher level in-
formation such as expert knowledge, up-to-date documen-
tation, and human operator interaction to operate, our ap-
proach only uses the reports made by network monitoring
devices. Also, our approach does not require any access to
the network hosts and does not generate extra traffic. Our
tool, called Paris, provides three main capabilities by us-
ing a variety of techniques including statistical analysis and
clustering tools. First, Paris processes low-level network
traffic data, i.e., NetFlow records, in order to identify and
characterize network services.

Second, Paris determines relationships between the iden-
tified services. In particular, it finds service dependencies
and service redundancies (i.e., services implementing the
same functionality). The knowledge about these relation-
ships is crucial to properly determine the importance of
different services. Consider, for example, a service that is
directly responsible for the success of a particular mission.
Quite likely, the system administrators know that this ser-
vice is important. However, this service might also depend
on two other services. These services are not directly in-
volved in the mission, but they are equally important for its
success. It is important to accurately identify these relation-
ships, which often are not obvious.

The third capability of Paris is to rank the discovered
network services. This ranking is based on the importance
of the services towards achieving the organization’smissions.
Paris automatically infers importance scores for services
based on their activity as well as their relations with each
other.

We implemented Paris and evaluated its performance on
the network of a large organization,1 which contained Net-
Flow records for 1.6 billion network connections produced by
more than 593 hosts (distinct IP addresses). Our tool iden-
tified a variety of interesting services and missions, as well
as their relationships, whose correctness and comprehensive-
ness were validated by the organization’s network adminis-
trators.

The rest of this paper is organized as follows. In Sections 2
to 4, we describe how Paris extracts network services, infers
their relationships, and ranks them based on their impor-
tance, respectively. We present the implementation results
of Paris in Section 5 and discuss different issues in Section 6.
The related work is discussed in Section 7, and we conclude
the paper in Section 8.

2. EXTRACTING NETWORK SERVICES
In the first step, Paris extracts a list of network ser-

vices by analyzing NetFlow [1] records. These NetFlow
records are collected from various network monitoring de-
vices, such as routers and switches. Each NetFlow record

1The name of the organization is anonymized for peer-review
purposes.

contains high-level information about an observed network
connection, including the connection start time, end time,
source/destination IP addresses and port numbers, and the
number of exchanged packets and bytes.
Paris considers a distinct triple (PROTO, IP, PORT) as a

network service if it is frequently seen in the dataset. Our
service extraction is similar to Orion [10].

Service profiles: Paris generates a service profile for each
of the extracted network services, capturing its observed
traffic activity during the analysis period TE . The purpose
of service profiles is twofold: First, Paris uses service profiles
as a basis to determine correlated activities between differ-
ent services. This is needed to determine interesting rela-
tionships between services and to detect missions. Second,
service profiles are used to recognize similar services, i.e.,
services that likely implement the same application. This
is important for the identification of backup services and
meta-missions.

In particular, the service profile includes the number of
bytes sent/received by the service, the number of packets
sent/received by the service, number of clients, and the num-
ber of requests handled by the service. This information is
provided as a time series by dividing the time dimension into
non-overlapping evaluation slots of length Δ and evaluating
these features for each of the slots.

3. INFERRING RELATIONSHIPS
The next task of the analysis is to find relationships among

the detected services. In particular, we are interested in ser-
vices that operate together to implement higher-level func-
tionality, as well as in redundant services.

3.1 Detecting Correlated Services
Correlated services are services that exhibit synchronized

activity patterns, being active or inactive at roughly the
same times. When we consistently observe correlated traffic
patterns in the data, we assume that the corresponding ser-
vices operate together. Typically, this is because both (or
multiple) services are needed in order to achieve a specific
goal. In our web mail example, whenever there is a spike in
the number of clients that send email, we see corresponding
increases in the activity of the web server, the mail server,
and the authorization service. Of course, this does not mean
that the mail server or the web server will be idle when no
web mail is sent. However, overall, we expect noticeable in-
creases in web mail activity to result in an increase of web
and mail service activity.

Correlation graphs. To detect correlated activity between
services, we use time series analysis. We first divide the con-
nections associated with each service into short, Δ-length
time slots. Δ should be small enough so that bursts in ac-
tivity stand out and are not “smoothed out” over too long of
a period. On the other hand, Δ should be long enough to al-
low for sufficient tasks (or individual activities) to complete.
Otherwise, it is not possible to observe and distinguish in-
creased activity. In our implementation of Paris, we use a
Δ value of five minutes.

For each time slot, we compute three discrete time se-
ries: RSi , PSi , and BSi , which correspond to the number
of requests for a service Si, the number of packets sent by
Si, and the number of bytes sent by Si, respectively. To
capture service activity, we focus on what the service sends
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back to the client. We ignore the bytes and packets that the
service receives, since this does not show the activity of the
service itself (e.g., there may be no response to the received
packets/bytes).

The time series for each service, over the entire analysis
period TE , could be directly used to compute the correla-
tion between services. However, this would only identify ser-
vices that always operate together. It would miss services
that operate together periodically, e.g., for one task per day
(or week). It would also miss relationships where service
A and service B operated together during some part of the
evaluation interval before B was switched with service C.
Therefore, examining the time series over the entire period
might not be desirable. Instead, we divide the analysis pe-
riod TE into smaller intervals TI . We use an interval length
of one hour for TI . This time is short enough so that short-
term, correlated activities are properly captured. Moreover,
it is long enough so that the time series contain sufficient
data points (TI

Δ
= 12) to obtain correlation coefficients with

enough confidence. Another desirable property of TI is that
it is suitable to detect periodic services, because periodic
services are usually set to run on intervals that divide or are
dividable by an hour, which makes it more manageable for
the administrators.

To select the appropriate value for Δ, we experimented
with values of 1, 5, and 10 minutes. We then looked at the
average and standard deviation values of the correlations.
The changes in these values were negligible (the difference
of averages was 0.0119, and the difference of standard devi-
ations was 0.027). The resulting correlation matrix was ro-
bust and not sensitive to the changes in Δ. We chose 5 min-
utes for Δ because we experimentally determined that the
sensor device timers can be skewed by at most one minute.
We define the correlation of two network services Si and

Sj , using their corresponding time series, as:

C(Si, Sj) = max{CP (RSi , RSj ), C
P (PSi , PSj )

, C
P (BSi , BSj )} (1)

where CP (·, ·) is the Pearson product-moment correlation
given by:

C
P
(A,B) =

∑n
i=1(Ai − E(A))(Bi − E(B))√∑

n
i=1(Ai − E(A))2

√∑
n
i=1(Bi − E(B))2

(2)

In Equation 2, E(·) evaluates the mean value of the ex-
pression, and n is the common length of the sequences A

and B, which is equal to TI

Δ
in our case. Paris considers two

services Si and Sj to be correlated if C(Si, Sj) ≥ ηC , where
ηC is the correlation threshold. The choice of ηC trades off
true-correlation and false-correlation of the services; after
deriving ηC value corresponding to significance of 0.05 and
manually investigating the defined service correlation metric
on a large number of correlated and non-correlated pairs of
network services, we set ηC to 0.49726. Moreover, we found
a bimodal distribution, where correlated services had high
values of C(·), while the opposite was true for independent
services. In Section 3.3, we derive ηC , based on the signifi-
cance of correlation coefficients.
Using the computed correlation values, we build the cor-

relation graph, which is a non-directed graph whose vertices
are the extracted network services. Two vertices represent-
ing the services Si and Sj are connected with an edge only
if they are correlated, i.e., if C(Si, Sj) ≥ ηC .

(a) time-series analysis (b) sample extracted mis-
sion

Figure 1: A sample extracted mission.

3.2 Missions
Paris finds the maximal cliques2 in the correlation graph

and considers them as candidate network missions. Figure 1
shows the process of candidate mission extraction and an
example of an extracted mission that represents a part of a
web mail mission.

Frequent and infrequent missions. Our system gener-
ates one correlation graph and a set of candidate missions
for each one-hour period TI . The candidate missions might
suffer from two problems. The first problem is that some
candidate missions can be infrequent missions, or they can
be the result of coincidental synchronous activity of several
services. An infrequent mission can show up as a result of
a temporary service that is set up by an administrator and
then removed. The second problem is that when a mission
(clique of services) occurs in one analysis period it is possible
that one of its subsets occurs in some other analysis periods
(we often observed this in our experiments). Such a subset
mission is redundant, and we want it removed because the
superset mission contains all relevant information.

To solve the aforementioned problems, we apply two fil-
tering steps to the candidate missions. First, we discard all
infrequent missions appearing less than a threshold (ηM ).
The rationale behind this is that infrequent missions are
coincidentally-correlated activities or temporary missions.
We call the parameter ηM the mission threshold. The re-
maining missions are called frequent missions.

To address the second problemmentioned above, we check
each frequent mission to see whether it is part (a subset)
of a larger mission. If this is the case, we compute how
many unique appearances each mission has. The number
of unique appearances for a mission is the number of TI

periods in which it appears and no other supersets of this
mission appear. We then discard all missions with unique
appearances less than ηM . The reason for this is that some
remaining candidate missions may be parts/subsets of other
candidate missions, and, therefore, they do not provide any
additional information.

3.3 Statistical Analysis for Service Dependency
Detection

Given two activity distributions with zero real correla-
tion, D1 = N(μ1, σ1) and D2 = N(μ2, σ2), and two samples
of size n, S1 = {s11, s

1
2, . . . , s

1
n} and S1 = {s21, s

2
2, . . . , s

2
n}, the

following distribution (t) follows approximately t-distribution

2A maximal clique is a clique on the graph that cannot be
extended by including one more adjacent vertex.
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with n − 2 degrees of freedom: t = r√
1−r2

n−2

, where r is the

Pearson correlation of two samples [11]. We use this prop-
erty to compute a significance value for a correlation coef-
ficient threshold. The null hypothesis (H0) is that the two
distributions have real correlation of less than or equal to
zero. The alternative (H1) is that the two distributions have
positive correlation. Using this formula, it is easily shown
that correlation threshold ηC = 0.49726 when the number of
sample points is n = TI

Δ
= 12 corresponds to the correlation

coefficient with significance value of p− value = 0.05.
Moreover, we use mission threshold ηM to select depen-

dencies that occur at least ηM times. Here we calculate
the probability that a random set of three services will have
Pearson correlation value higher than or equal ηC for ηM
times or more. We define p as the probability of false detec-
tion of correlation between three services in a single period:
p = (p − value)3. N = TE

TI
is the number of time-series in-

tervals in the analysis period.
F (ηM ;N, p) =

∑N

i=ηM

(
N

i

)
× pi × (1− p)N−i is the proba-

bility that a random set of three non-correlated services ap-
pears as correlated in ηM or more time-series intervals. This
probability for our thresholds, ηM = 24, N = 24 × 30, and
p = 0.000125, is F = 8.02641× 10−50.

3.4 Clustering Network Services
To detect services of the same type, Paris performs an

analysis of the network traffic (flows) for each service. The
basic intuition is that similar services will create flows with
similar characteristics. That is, services of the same type
will have almost the same number of connections of specific
types. As an example, type A services have 50% long dura-
tion flows with a high number of packets and a small number
of bytes and 25% of short lived burst flows (high number of
packets with high number of bytes), and 25% of short lived
duration flows (low number of packets and high number of
bytes). One difficulty of clustering services in this way is as-
signing the flows to these meaningful (carrying information)
classes. To solve this problem, we cluster the flows. To make
our approach less sensitive to the clustering parameters, we
use fuzzy clustering for flows. This way each flow will have
a membership value in each flow class.

Paris implements a three-step process. First, the sys-
tem generates models for the traffic (flows) for each service.
Next, these models are clustered. Finally, Paris assigns a
type to each service, based on the cluster(s) that its flows
belong to. This three-step process is described below.

Modeling network flows. For each network connection,
the system extracts the following five features:

• F1: the number of packets sent by the client,

• F2: the number of packets sent by the server,

• F3: the number of bytes sent by the client,

• F4: the number of bytes sent by the server, and

• F5: the time duration of the flow.

The five features are represented as a feature vector x ∈
R5, such that x = (a1, ..., a5) and ai ∈ R is the value of
feature Fi for that flow. This results in N feature vectors,
where N is the number of flows during the analysis period
TE .

Clustering network flows. Paris classifies network flows
based on their feature vectors, by using a fuzzy c-means
(FCM) algorithm [6]. Fuzzy clustering provides weighted
membership for each network connection; i.e., each connec-
tion can be a member of multiple clusters with different
weights. This makes the clustering less sensitive to the
choice of clustering parameters, as compared to the stan-
dard k-means clustering algorithm [25]. As an example, two
flows that belong to the same k-mean cluster might move to
different clusters by a slight change in the parameters of the
k-means algorithm. For fuzzy clustering, however, slightly
changing the algorithm parametersmodifies themembership
weights only slightly, keeping the similarity of the flows. K-
means clustering, on the other hand, provides single mem-
bership for each clustered flow, which is not required here
since the clustered flows information is not used directly (it
is used for clustering the services). Given that N is the to-
tal number of flows, FCM runs an optimization algorithm to
cluster the N feature vectors into C clusters such that the
following fuzzy c-means cost function is minimized:

J(U, V ) =
C∑

j=1

N∑

i=1

(μi,j)
m‖xi − vj‖

2 (3)

In Equation 3, V = {vi|i = 1, . . . , C} is the set of cluster
centers, and U = {μi,j |i = 1, . . . , N, j = 1, . . . , C} is the
fuzzy partition matrix. In other words, μi,j represents the
degree of membership between the feature set xi and the
jth cluster, subject to the constraints that μi,j ∈ [0, 1], and∑C

j=1 μi,j = 1 (∀j ∈ {1, . . . , N}). Our choice of the pa-
rameter C does not significantly change our final results for
service clustering (we chose C = 100). We particularly want
C to be as small as possible because C is the number of di-
mensions of our next step in the clustering process. We also
want it to be large enough to convey enough information
about different connections. We have 5 features for each
connection, and if each of these features could get 3 values
(small, average, and big) we would have 35 = 243 different
types of connections. Similarly if each feature could get two
values, we can have 25 = 32 connection types. We selected
100 as a value that represents a compromise between these
two numbers.

The parameter m ∈ [0,∞] is the weighting exponent, spec-
ifying the fuzziness of the clusters, and di,j = ‖xi − vj‖ is
the Euclidean distance between the feature set xi and the
cluster center vi.

Finding network services of the same type. Finally,
Paris identifies the same type network services using a sec-
ond clustering algorithm. This is done by grouping network
services based on the similarity of their network flows. To
this end, for each service Si, the system analyzes the XSi ,
which is the set of all feature vectors xSi related to that
service. More precisely, Paris examines all flows related to
a service to compute an average fuzzy membership (AFM)
vector μSi for Si. Intuitively, the AFM vector captures how
the flows associated with a single service are distributed over
the different types of network traffic (clusters) computed in
the previous step.

More formally, to derive μSi , which is a length-C vector,
we compute the average of the rows of U that correspond to
the members of XSi :
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μ
S
i =

jn|xjn∈X
Si∑

μjn

Ni

(4)

where Ni is the size of XSi , and μi is the ith row of the
fuzzy partition matrix U .
Once the system has computed one AFM vector per ser-

vice, we use a k-means clustering algorithm [25], with k =
20, to classify them. We selected k as the expected num-
ber of different services we would expect to see in the target
network.

3.5 Meta-Missions
A meta-mission is an abstraction of the network mission.

For instance, a web mail service composed of an IMAP ser-
vice, an SMTP service, an LDAP service, and an HTTP ser-
vice would be considered a meta-mission. This meta-mission
can be instantiated as a (concrete) mission by specifying the
actual (concrete) network services involved. In other words,
a meta-mission represents a mission type. It is often useful
to know how many different types of missions are run in a
network.

To extract meta-missions from previously-identified con-
crete missions, Paris identifies all sets of missions that are
composed of the same number of services with the same
types. Paris identifies the service type by clustering the
services, as described above.

Finding meta-missions. Using the information about
types of services, Paris can determine meta-missions. More
precisely, Paris considers two equal-sized missions M1 and
M2 to be instances of the same meta-mission M if, for any
service S1

i ∈ M1, there is a service S2
j ∈ M2 such that S1

i

and S2
j are of the same type. Two services S1 and S2 are

considered of the same type, if either they are in the same
service cluster, or they use the same port number.

3.6 Detecting Backups
Backup services are frequently deployed to ensure the avail-

ability of critical network services. Given that there might
be more than a single administrator responsible for a large
network, and people might move on after having deployed
backup services, it would be beneficial for a situation aware-
ness system to automatically identify backups. Also, by au-
tomatically finding backup services, one can relieve admin-
istrators from having to specify their presence manually.
Knowledge about backup services is important, because

these services might not produce a lot of traffic (since they
are inactive for most of the time). Therefore, they might be
discarded by tools that focus solely on traffic and activity
volume. However, they are often critical components for
network missions and should receive attention similar to the
primary (currently active) services.

We distinguish two kinds of backup services: active/passive
(A/P) backups and active/active (A/A) backups. In the
case of A/P backups, one server acts as the main server,
while the other(s), i.e., the backup(s), only becomes active
when the main server experiences difficulties. In the case
of an A/A backup scenario, two (or more) servers provide
the service simultaneously, sharing the service load. Failing
one of the A/A servers shifts the service load to the other
backup(s).

3.6.1 Detection of A/P Backups
Paris uses a combination of two approaches, negative cor-

relation and failure correlation, to detect A/P backup ser-
vices.

Negative activity correlation. Negative correlation in-
dicates the degree to which two services activities are in-
versely related. This captures the activity behavior of the
A/P backup services, because a backup service becomes ac-
tive only when themain service is not functioning. We define
the negative correlation of two services Si and Sj as:

NC(Si, Sj) = max{CP (RSi , RSj ), C
P (PSi , PSj ),

C
P (BSi , BSj )} (5)

where CP (·, ·) is the Pearson product-moment correlation,
defined previously in Equation (2). As before, for a service
S, the time sequences R(S), P (S) and B(S) are the number
of requests, the number of packets, and the number of bytes
processed by S, respectively, evaluated for non-overlapping
evaluation slots (Δ). Paris declares two services to be A/P
backups if their negative correlation is less than a threshold
ηNC (we set ηNC to -0.49726. We looked into the correlation
matrix from different time periods of normal network oper-
ation and verified that even though the correlation becomes
negative in some cases, it does not exceed -0.49726).

3.6.2 Detection of A/A Backups
If two (concrete) missions are instances of the same meta-

mission, and they share a large fraction of common services,
the uncommon services are likely to be active/active backup
services. Consider the case where Paris detects two con-
crete instances of a meta-mission where most services are
the same, and, in addition, the services that are different
are of the same type. The fact that the additional services
are of the same type and always appear together with the
remaining services indicates that these services are an inte-
gral part of the mission. Yet, the multiple services do not
appear to work together. Hence, we assume that they are
replacements for each other; which is exactly the case with
A/A backups.

Paris examines every pair of missions M1 and M2. When
these missions belong to the same meta-mission and they
share at least 60% of the same services, the remaining ser-
vices are checked for the presence of A/A backups. More
formally, we define SMi−Mj as the set of services that be-
long to the mission Mi but not to the mission Mj . Paris

declares two services S1 ∈ SM1−M2 and S2 ∈ SM2−M1 to
be A/A backups if either they have the same type (they be-
long to the same service cluster) or they use the same port
number.

4. RANKING NETWORK SERVICES
In this section, we discuss how our system ranks network

services based on their importance. The ranking process
operates in two steps. First, we compute initial importance
scores for each service. These initial scores are then updated
based on dependencies between services.

4.1 Initial Importance Scores
In the first phase, we compute an initial importance score

for each network service. To this end, we use the following
service features:
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• F1–F4: the number of bytes and packets sent and re-
ceived by the service,

• F5: the number of requests handled by the service,

• F6: the number of network missions the service has
been involved in,

• F7: the number of failures of the service (if available).

• F8: the number of clients of the service (if available).

The features F1–F5 are directly taken from the corre-
sponding service profiles. A service is considered more im-
portant when it is involved in more activity. Here, the ac-
tivity is based on simple, network-level statistics. The sixth
feature F6 leverages information about relationships with
other services. In particular, when a service is involved in
more missions, we expect its importance score to increase.
The last feature F7 captures the number of failures that a
certain service has experienced during the analysis period.
To count the number of failures, we leverage the informa-
tion from network health monitoring devices. If this data
is not available, the value for this feature is zero for all ser-
vices. We consider services that fail more often to be more
“important.” 3

We normalize each feature value Fi into the range of [0, 1].
We then use a simple, weighted sum over all feature values
for a service S to determine this service’s initial importance
score Îs:

Îs(S) =
8∑

m=1

αiF
N
i (S) (6)

αi is the weight for the ith feature and FN
i (S) is the nor-

malized value of Fi for the service S (we currently set all
weights to 1, leaving the identification of possibly better
weights to future work).

4.2 Final Importance Scores
In this step, we compute the final importance scores for

network services. To this end, we use the detected service
dependencies and backup relations to build a service rela-
tionship graph and we use it to update the initial impor-
tance scores. The nodes of the relationship graph are ser-
vices. There is an edge from S1 to S2 in the relationship
graph if there is a relationship between S1 and S2. In the
following, we discuss how service dependencies and backups
lead to edges in this graph.

Service dependency relationships. A service S1 depends
on another service S2 if a failure in service S2 disrupts the
activity of S1. We use two different ways to determine ser-
vice dependency relationships.

When two services are part of the same mission, we intro-
duce a corresponding edge into the relationship graph.

As a second mechanism, we use the simultaneous failure
of two services as another indication of their dependency. In
our current implementation, Paris uses failure reports sent
by a network monitoring device (Nagios) to detect service
failures. More precisely, Paris analyzes the failure logs col-
lected during the analysis period TE . We consider a service

3In this case, a higher importance implies that the services
is more fragile, and hence, requires more attention from a
system administrator.

Table 1: The parameters of Paris

Symbol Description Value
TE Analysis period 1 month
TI Length of a time series interval 1 hour
Δ Length of time slot for time series 5 min
ηS Service extraction threshold 30
ηC Service correlation threshold 0.49726
ηM Mission threshold 24
K Number of service clusters 20
ηNC Negative correlation threshold -0.49726
γ Weight factor of link analysis 5

S1 to depend on another service S2 if at least f = 50% of
S2’s failures co-occur with a failure of S1. We consider two
failure messages to co-occur if they are reported within a
time window smaller that Tf (we set Tf = 1min, consider-
ing the time accuracy of the Nagios reports). If two services
are found that have such a significant correlation of their
failure reports, we introduce a corresponding edge into the
relationship graph.

Backup relationships. If service S1 is a passive backup
of service S2, we add an edge from S2 to S1. The intuition
behind this step is that if service S2 has a backup, it loses
some of its importance while the backup gains some of this
importance.

Propagating scores. Once the network relationship graph
is generated, Paris uses Google’s PageRank link analysis
algorithm [33] to propagate initial importance scores. The
intuition behind propagating importance scores in the rela-
tionship graphs is simple; a service that important services
depend on is also important.

Once Paris has performed the adjustments for service de-
pendencies and backups, we use the final values of the nodes
in the relationship graph as the final importance scores for
the network services.

5. IMPLEMENTATIONANDEVALUATION
We implemented Paris as a system in Python and eval-

uated its performance by running it on the network mon-
itoring data collected from a large university department
network. Our dataset contains 38.5 GB of NetFlow records,
gathered over a period of five months. Overall, the dataset
captures more than 1.6 billion connections and 593 unique
internal IP addresses. Out of the 1.6 billion connections,
1.25 billion connections were between an internal and an ex-
ternal host, while 350 million connections were between two
internal hosts. We also had access to the firewall configura-
tion files of the department, which contain 1,141 ACL rules.
Moreover, we had access to approximately 120 thousand Na-
gios alerts that were gathered during the same one-month
period.

5.1 Experimental Results
Paris took about five hours to analyze one-month of net-

work data; this could be further improved by utilizing amore
powerful machine and optimizing the code. Table 1 summa-
rizes the parameters used for our experiments, as discussed
throughout the paper.

In the first step, Paris extracted 156 network services.
In the next step, Paris checked for relationships between
services. In our dataset, we found 4,049 candidate missions
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Figure 2: Mission frequency distribution.

(sets of correlated services). Figure 2 shows the distribution
of the frequency of these candidate missions. The horizontal
axis shows the number of occurrences x for missions, and the
vertical axis shows the number of missions y that occur at
least x times.

Looking at Figure 2, we see that the threshold ηM = 24,
which is the cut-off between infrequent and frequent mis-
sions, is close to the inflection point of the graph. Using this
threshold for the first filtering step, we remove 3,338 infre-
quent candidate missions. A large fraction of these 3,338
missions (2,609, or 78.2%) are supersets of more frequent
missions (those on the right of the cut-off point). A mission
X is a superset of another mission Y when X contains all
services of Y and at least one additional service. Typically,
such infrequent supersets are detected when an unrelated
service S happens to be active at the same time that a“true”
mission is operating. In this case, Paris will correlate and
incorrectly connect these services together. The first filter-
ing step removes (most of) these spurious relationships.

Only 729 of the removed candidate missions in the first fil-
tering step were not supersets of frequent candidates. In 531
of these 729 cases, the missions involved port 22 (ssh) and
port 111 (portmapper). The infrequent ssh missions typi-
cally capture cases in which someone logged into a remote
machine and initiated some actions or tunneled some traffic.
The portmapper missions are introduced because portmap-
per is very frequently used, and hence, gets correlated with
other, independent services that happen to be active at the
same times. We only found two interesting cases that Paris
arguably missed. In one case, a set of machines was using a
P2P protocol to exchange data for two hours. In the second
case, a set of Hadoop machines were working together over a
period of six hours. Notice that we found Hadoop machines
also involved in more frequent activities, but these missions
included additional (non-Hadoop) machines as well.
In the second filtering step, Paris examines the remaining

711 missions and removes an additional 594 missions that
are subsets of other frequent candidate missions. A mission
X is a subset of Y if it contains a subset of Y ’s services.
The second filtering step is useful to remove instances in
which Paris has detected most of the services that make up
a mission, but, because of noise in the data, missed one that
should have been included as well. We manually inspected
the 594missions. As expected, the removedmissions were all
parts ofmore completemissions that Paris retained. Hence,

no valuable information was lost. Finally, as its output, the
mission extraction process produced 117 network missions.

Table 2 lists all the identified network operations, together
with their corresponding numbers of constituent missions.
This process was done manually, based on the knowledge
about the domain and the application protocol semantics
of different services. We performed this analysis to be able
to present our results in a more succinct fashion. However,
information about the missions themselves would already
provide significant insights into the major tasks of the net-
work.

Looking at Table 2, it can be seen that some missions
map directly onto an operation. In other, more complex
operations, we have identified multiple missions that are all
related to a single operation. In the case of the “web op-
eration”, we found 63 individual missions. The individual
missions were related to communication between the web
server and storage servers (such as the NFS file services and
Hadoop), authentication tasks (including LDAP), and DNS.
Given that there were multiple services involved for each ser-
vice type, we observed multiple combinations among indi-
vidual groups of services. Most operations make immediate
sense for a university network when looking at the services
that are involved (web, mail, configurations with cfengine,
...). We discussed the extracted operations with the admin-
istrator of the network, and he verified the correctness of all
but two extracted operations. These two operations, which
the administrator was not aware of, were the malware anal-
ysis operation and the cloud operation.

We looked at the involved IP addresses and further tracked
down these operations. We found that the malware analy-
sis operation involved three machines, the actual analysis
machine that was running malware samples, the MySQL
server to store results, and a web server through which
samples were submitted by external sources. The oper-
ation is important for the research group who runs this
analysis infrastructure, and it was running for most of the
month. The second mission involved four machines that
were likely running cloud computing services (the machines
were named eucalyptus-*, based on the popular, open-
source cloud computing package). These machines worked
together intensely for a total of 27 hours during the analysis
period.

Our analysis confirmed that we found the key operations
that the university runs. In addition, we found two inter-
esting (and, for the involved parties, important) operations
that the system administrators were unaware of.

Backup services. We also checked for backup services.
Our system was able to identify four backup services in the
organization. In particular, Paris identified an NFS backup,
an LDAP backup, a zookeeper server backup, and a main
web server backup. The network administrator again veri-
fied that Paris had detected all of the organization’s backup
servers and that no false positive backup was detected.

Ranking services and hosts. Using the information about
the network services and their relationships, we computed
the importance scores for each service and host.

In Table 3, we show the Top-10 services, given their final
importance ranking. Along with their final rankings, the ta-
ble also shows the initial rankings of these services (Column
3), the services that were in that location before comput-
ing final scores (Column 5), and the new ranking of those
services based on the final scores (Column 6). For example,
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Table 3: The importance ranking of the Top-10 ser-
vices.

Final top 10 Initial top 10
Final Name Init Init Name Final
1 DNS 3 1 NFS1 2
2 NFS1 1 2 main web 4
3 cfengine 12 3 DNS 1
4 main web 2 4 Hadoop 9
5 LDAP30 9 5 LDAP36 6
6 LDAP36 5 6 LDAP12 15
7 fileserver1 15 7 web37 12
8 fileserver2 10 8 DHCP 58
9 Hadoop 4 9 LDAP30 5
10 NFS2 11 10 fileserver2 8

the first row means that the DNS server’s final ranking is 1,
while it was at location 3 before the final score adjustments.
Also it shows that before the final adjustment, server NFS1
was at rank 1 and after score readjustment has moved to
rank 2. This is to demonstrate the difference between initial
and final rankings. In general, we observe that the impor-
tance scores of those services that depend on many other
(important) services increase. For instance, the table shows
the effect on the ranking of the cfengine service. It rises
in importance because it was part of multiple missions and
forms the foundation for the correct functioning of many
servers. As another example, we can see that the DHCP
service has dropped significantly in the ranking table, since
not many other services depended on it. This is because the
department’s policy is to assign static IP addresses to all
important network services.

We also attempted to validate the correctness of the ser-
vice ranking with the network administrator of the organi-
zation. In particular, we asked the administrator’s opinion
about the Top-10 important services; all of the mentioned
services appear in the Top-20 important services ranked by
our system. Next, we presented our list of Top-10 services
to the administrator and he verified that all of the extracted
services and hosts are among the top important services of
the organization.

Paris can also compute importance scores for individual
hosts. This score is based on the importance of the net-
work services {S1, ..., Si} that a host H provides, and it is
computed as:

I
h(H) =

i∑

j=1

I
s(Sj) (7)

Table 4 shows the importance rankings of the hosts. The
results were verified with the network administrators as well.

6. DISCUSSION
In this section, we address possible complexity and gener-

ality issues of Paris.

6.1 Complexity
Although computing the activity correlation for every pair

of services has a quadratic complexity in terms of the num-
ber of services, this kind of analysis is necessary only when
any possible pairing of services can be a valid one. Fortu-
nately, in reality, the computer networks are structured hier-
archically and mission implementation often times remains
local in these clusters. Therefore, these clusters of services

Table 4: The importance scores of the hosts.
The host IPs are replaced with their services to
anonymize the data.

Host’s services Final score Rank
NFS, NetBIOS, SMTP, IMAP 3.760 1
NFS1 3.250 2
main web 1.741 3
DNS, DHCP 1.431 4
NFS2 1.386 5
NetBIOS 1.328 6
Hadoop 1.326 7
cfengine 0.971 8
LDAP1 0.930 9
print server 0.913 10

can be analyzed separately and independently, which makes
our analysis linear in terms of the number of clusters, while
quadratic to the number of services inside each cluster.

Another potential issue is that maximal clique listing for a
dense graph can take exponential time in terms of the num-
ber of nodes of the graph. To reduce the complexity of the
clique detection, we first delete all the non-frequent edges
from all activity correlation graphs. An edge that is not fre-
quent itself cannot be part of any frequent clique. Listing all
maximal cliques of a sparse graph (i.e. with low degeneracy)
is linear in number of its nodes [14]. In Section 3.3, we also
showed that the probability of a random pair of services be-
ing recognized as a correlated pair (i.e. an edge in the graph)
can be reduced to an arbitrarily small value by increasing
the data points or by increasing the correlation threshold to
the corresponding value. Therefore, maximal-clique listing
complexity is not an intrinsic problem with our solution and
can be avoided by parameter tuning.

6.2 Generality
We can divide our work into three layers of abstraction:

1- The underlying hypothesis: A mission is built of several
services working together to achieve the same goal. This
property leads to synchronized activity among services in
the same mission. Missions can be detected by any statis-
tical tool that detects synchronized activities, and they are
recognizable as cliques in the synchronized-activity relation
graph.
2- Synchronized-activity detection: Using the number of
connections/packets/bytes as activity indicator and using
Pearson correlation as synchronized-activity measure.
3- The thresholds and constants chosen to maximize the sys-
tem accuracy: service-extraction threshold, mission thresh-
old, etc.

The more abstract the design is the more general it be-
comes. We expect the underlying hypothesis to be true for
new datasets from other networks, because it is an intrinsic
property of the missions, which does not depend on the size
of the network, types of services, and data gathering devices.
In contrast, the thresholds and constants of the system have
been selected to improve the accuracy of Paris using a spe-
cific dataset, and can be tuned for other datasets to achieve
better results.

7. RELATEDWORK
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Table 2: Network operations, together with the number of involved missions.
Operation name Components Number of Missions
email operation Web, SMTP, DNS, and IMAP server 3
web operation Web, DNS, LDAP, and Hadoop server 63
data center configuration operation cfengine, LDAP server, and file server 14
roaming profile operation NFS, LDAP, and DNS server 32
malware analysis operation Analysis, Web and MySQL server 2
print operation SNMP and print server 1
web backup operation Web and LDAP server 1
cloud operation cloud services 1

Situation awareness has been well studied in different re-
search areas [12, 13, 27, 35, 4, 16, 32, 40, 23, 37, 17]. In
particular, Salerno et al. discuss a situation awareness model
for military applications and demonstrate its applicability to
globalmonitoring and cyber awareness scenarios [23]. Tadda
et al. refined the proposed models to apply them to cyber
situation awareness [16]. In [37], Salerno reviews a number
of metrics being used in information fusion frameworks and
evaluates their applicability to the assessment of situations.

Holsopple et al. propose TANDI [21], a threat assessment
mechanism for network data and information . Based on
TANDI, Holsopple et al. also propose a situation and im-
pact awareness system, FuSIA, which aims to enhance net-
work situation awareness by providing plausible estimates
of the future actions of the ongoing attacks [22]. FuSIA
uses threat projection algorithms to derive plausibility scores,
which analyze the capability and opportunity of ongoing at-
tacks. Then, FuSIA combines the plausibility scores in or-
der to provide a final fused estimate of the future situation.
FuSIA is not fully automated, as it is not able to detect mis-
sions. In fact, a security analyst needs to manually provide
FuSIA with mission information; this is in contrast to the
automatic identification of mission information by Paris.
Goodall et al. introduced Camus [18], which automatically
maps cyber assets to missions and users by combining differ-
ent data mining, inference, and fusion approaches. Camus,
however, is based on the strong assumption that the asset
and mission information is available in different formats and
in different locations of the network. This requires frequent
involvement of the network administrator, in order to ensure
the availability and freshness of the data. Gomez et al. take
a similar approach by automating the assignment of intel-
ligence, surveillance, and reconnaissance assets to specific
military applications [17]. Lewis et al. propose an alterna-
tivemission referencemodel in order tomap the cyber assets
to the missions using a mathematical constraint satisfaction
approach [29].
Grimaila et al. study situation awareness by focusing on

the information assets, instead of the cyber assets, and pro-
pose a cyber-damage assessment framework [19]. This, how-
ever, requires manual definition and prioritization of the op-
erational processes and the information assets. Holsopple
et al. survey the past efforts in situation assessment ranging
from visualization to algorithmic threat projection, and they
describe the need to associate situation assessment processes
and models with some requirements needed to enhance the
situation awareness [20]. The paper argues the need for ef-
fective automated processes that estimate and project the
situation, taking into account the domain-specific concerns
from the analysis. The paper also suggests the use of inter-

active visualization of the situation, threat, and impact for
different application models.

Other research has targeted the classification of network
applications based on NetFlow information [36, 28, 38, 8].
In particular, in order to classify and profile network appli-
cations, Lampinen et al. [28] propose a network application
clustering algorithm that uses NetFlow information from the
monitoring devices.

It should be mentioned that there is a relevant body of
research trying to classify network applications based on
header and payload full information of individual packets [26,
5]. Paris, however, only needs lower-level NetFlow data to
perform its analysis, requiring much lower resources for its
operation, e.g., lower CPU, storage, and bandwidth.

Some previous work [31, 24, 10, 3, 9, 34, 2, 15, 7, 30,
42] tried to address the problem of situation awareness by
detecting hidden dependencies among network services.

8. CONCLUSIONS
In this paper, we developed a new method for providing

automatic situation awareness for computer networks. We
designed Paris which automatically identifies network ser-
vices, finds their dependencies, and ranks them based on
their importance towards network missions. This enables
network administrators to make speculations about the fu-
ture status of the network and to prioritize defensive and
corrective actions. We implemented Paris and validated its
performance by deploying it on a large real-world network.
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