
NJAS: Sandboxing Unmodified Applications
in non-rooted Devices Running stock Android

Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{antoniob,yanick,chris,vigna}@cs.ucsb.edu

ABSTRACT
Malware poses a serious threat to the Android ecosystem.
Moreover, even benign applications can sometimes consti-
tute security and privacy risks to their users, as they might
contain vulnerabilities, or they might perform unwanted ac-
tions. Previous research has shown that the current An-
droid security model is not sufficient to protect against these
threats, and several solutions have been proposed to enable
the specification and enforcing of finer-grained security poli-
cies. Unfortunately, many existing solutions suffer from sev-
eral limitations: they require modifications to the Android
framework, root access to the device, to create a modified
version of an existing app that cannot be installed without
enabling unsafe options, or they cannot completely sandbox
native code components.

In this work, we propose a novel approach that aims
to sandbox arbitrary Android applications. Our solution,
called Njas, works by executing an Android application
within the context of another one, and it achieves sand-
boxing by means of system call interposition. In this paper,
we show that our solution overcomes major limitations that
affect existing solutions. In fact, it does not require any
modification to the framework, does not require root access
to the device, and does not require the user to enable unsafe
options. Moreover, the core sandboxing mechanism cannot
be evaded by using native code components.

Keywords
Mobile Security; Android; Code Sandboxing; System Call
Interposition

1. INTRODUCTION
Smartphones have thoroughly established themselves as

the dominant computing platform for many users, with 1.5
million devices activated daily, and over a billion active de-
vices in use, according to a recent Google report [1]. Smart-
phones are used in an ever-growing variety of use-cases in-
cluding highly-sensitive tasks, from accessing private infor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SPSM’15, October 12 2015, Denver, CO, USA
c© 2015 ACM. ISBN 978-1-4503-3819-6/15/10 $15.00

DOI: http://dx.doi.org/10.1145/2808117.2808122

mation to on-line banking. In fact, it is not a coincidence
that the Google Play market currently offers more than 1
million applications [3] (“apps,” from now on). Unfortu-
nately, the huge popularity of this platform makes it more
attractive for malware writers. Moreover, even benign apps
can sometimes pose a threat to the user. In fact, previous
research has shown that even reputable apps sometimes vio-
late the users’ privacy, for example by accessing and leaking
the user’s address book, even when not strictly required [12].
Research has also shown that benign apps often contain vul-
nerable components that expose the users to a variety of
threats: common examples are component hijacking vul-
nerabilities [20], permission leaking [17], and remote code
execution vulnerabilities [21].

To minimize the impact of these threats, Android features
a complex permission system that can selectively limit the
capabilities of Android apps. One of the main problems is
that it follows an “all-or-nothing” paradigm: a user can ei-
ther grant to an app all the permissions it asks for, or abort
its installation. In other words, the user cannot selectively
enable or disable specific permissions. That said, Google has
experimented with adding this feature to Android. A hid-
den, developmental feature called “AppOps”, included with
Android 4.3 and 4.4, allowed this to be done on a limited
basis. However, this feature was removed in subsequent An-
droid versions. As the EFF pointed out [11], the absence of
this feature constitutes a problem for the privacy of Android
users. Another limitation of the current permission system
is that it is too coarse-grained. For example, if an app has
the INTERNET permission, it will have access to the entire
web: some apps may require such broad capabilities (e.g., a
web browser), but it is likely that the vast majority of them
would need to contact only a small set of domain names, as
studied in [14].

As a reaction to the aforementioned problems, the secu-
rity community started to propose different approaches to
provide a fine-grained permission system that is also more
configurable and flexible than the current one. Unfortu-
nately, many of the proposed approaches are either affected
by several important limitations that impact their usability
and large-scale adoption, or they cannot completely sandbox
app’s components written in native code.

An important thrust of research proposes to modify
the Android framework itself. For example, MOSES [23]
and AirBag [29] implement a virtualization-based approach,
while MockDroid [7] develops a set of patches to the Android
framework. FireDroid [24] implements an approach based
on system call (“syscall,” in short) interposition, showing

27



how this technique can be effective in sandboxing arbitrary
Android applications. Unfortunately, all these approaches
suffer from several limitations: they either require intrusive
modifications to the Android framework, or administrative
(“root”) privileges. While the first limitation makes the wide
adoption of such systems difficult, the requirement of hav-
ing root access is not always reasonable. In fact, not all the
users are capable of (or willing to) “root” their device, as the
process of “rooting” the device may void its warranty, and it
affects its overall security.

Other works propose to instrument and sandbox the ex-
ecution of a given Android app by statically rewriting its
bytecode [6, 9, 10, 30]. While these works have the advan-
tage of providing as output a self-contained Android app,
they have several limitations. First, such approaches cur-
rently do not offer complete protection against native code,
thus offering to the adversary a simple way to evade them.
In fact, even those approaches that can sandbox native code
components (e.g., [30]) rely on library function call interpo-
sition and hence can be evaded, for example, by invoking
syscalls through inline assembly code. Second, if the modi-
fied Android app is not published on the official Google Play
market, the user would need to enable the “allow apps from
unknown sources” option to install and execute it. This op-
tion is not present in all devices, and enabling it decreases
the security of the entire system, as it allows the installa-
tion and execution of untrusted apps. As an alternative,
one could modify a given app and upload it to the Google
Play market: while this is technically possible, this would
introduce legal issues, as the rewritten app would contain
the original app’s content (in a slightly modified form).

Independently to our work, a recent paper [5] proposes
a sandboxing mechanism that does not require modifica-
tions of the Android system. However, this system requires
the usage of an app granting all the possible Android per-
missions and the reimplementation of many of the security
checks usually implemented by the Android operating sys-
tem. While this approach is practical and, in principle,
secure, it introduces a single point of failure (i.e., the ap-
plication with all the permissions), it increases the attack
surface, and it requires the porting of the security checks
for each new Android version, thus opening another venue
for the introduction of security vulnerabilities. For this rea-
son, we believe that this approach may potentially weaken
the Android security properties, as we will better explain in
Section 7.

In this paper, we introduce Njas (Not Just Another Sand-
box), an approach that aims to sandbox arbitrary Android
apps. At its core, Njas sandboxes a given application by
means of syscall interposition (using the ptrace mecha-
nism), and it works by loading and executing the code of
the original application within the context of another, mon-
itoring, application. As we discuss throughout the paper,
this proved to be technically challenging, because Android
applications are written with the assumption that the code
is executed in a very specific execution context.

Njas comes with important advantages that overcome
several limitations of many existing systems. In fact, our
approach does not require any system modification, it trans-
parently works across different Android versions, it does not
require root access on the device, and it does not force the
user to enable the “allow apps from unknown sources” op-
tion. Moreover, as our system performs sandboxing by using

a kernel-based feature (i.e., ptrace), it offers complete pro-
tection even when native code is used. Finally, the usage of
Njas does not require any technical knowledge, and, for this
reason, we believe it could benefit a wide range of users.

Our approach is flexible enough to enforce a variety of
fine-grained security policies. In particular, our current pro-
totype supports the enforcing of policies that monitor an
application’s network access, file system access, SMS-related
capabilities, and access to user’s private information, such
as the contact list. To test the applicability of our approach,
we used Njas to enforce different security policies to several
real-world applications downloaded from the Google Play
market, with an acceptable performance overhead.

In summary, this paper makes the following contributions:

• We propose an approach to sandbox generic Android
applications that does not suffer from usability limita-
tions that affect many existing solutions, while, at the
same time, it can completely sandbox an application
even when native code components are used.

• We address the general problem of executing an appli-
cation within the context of another, non-privileged,
application, on the Android platform. We describe
the many technical challenges that needed to be ad-
dressed, and we systematically explore the advantages
and limitations of the proposed solution.

• We implement this approach in a prototype tool called
Njas. As we show in the evaluation section, Njas
can effectively enforce configurable security policies re-
lated to different categories of sensitive operations. We
tested our system by instrumenting several real-world
applications downloaded from the Google Play market,
and we show that the performance overhead is aligned
to the one of similar approaches.

2. THE ANDROID ECOSYSTEM
In this section, we provide an overview of the Android

ecosystem and an in-depth description of the components
on top of which our approach is based.

2.1 Android Application
An Android app is shipped in a single file, called an An-

droid application package (APK, in short). An APK is a zip
archive that includes the apps’s codebase (stored in a file
called classes.dex) and app’s configuration files (usually
called Resources), which store configuration data like string
values, icons, and images. Moreover, each APK needs to in-
clude the Android manifest configuration file, which contains
critical information, such as the list of app’s components and
the required permissions. Optionally, an APK can contain
shared object modules (*.so files) that include native code
components, which can be directly executed by the device’s
processor.

The main components of an app are usually written
in Java. The Java source code is then compiled to
Dalvik bytecode and assembled in the previously-mentioned
classes.dex file. This bytecode is executed by the Dalvik
virtual machine. Additionally, developers can choose to im-
plement the more CPU-intensive parts of the application in
native libraries, written in a low-level language, such as C
or C++.

28



Every app is uniquely identified by its package name
(specified in the manifest file) and signed with a private key
from its developers. In Android, an app is composed of dif-
ferent components. Four different types of components exist:
Activity, Service, Broadcast Receiver, and Content Provider.
An Activity defines a graphical user interface and how the
user can interact with it. Differently, a Service is a compo-
nent that runs in background to perform long-running op-
erations. Finally, a Broadcast Receiver is a component that
responds to specific system-wide messages, while a Content
Provider manages app data shared with other components
(within the same app or in external ones).

2.2 Security Model
Android is an operating system based on Linux. Differ-

ently from standard Linux distributions, in Android each
application runs as a different Linux user: a unique user id
(UID) is created and assigned to each app at installation
time. This ensures that interactions among different apps
can only happen through well-defined IPC mechanisms.

Moreover, the Android framework is characterized by a
complex permission system that monitors the execution of
every security-sensitive functionality. Each app needs to de-
clare the set of required permissions in its manifest file. The
user will then need to review and accept these permissions
at installation time.

Permissions are enforced by means of two different mech-
anisms. The first one relies on the Linux group abstraction:
for example, if the INTERNET permission is required by a
given app, the Linux user associated with such app will be
added to the aid inet group. Only applications run by users
in this group can connect to the network.

The second mechanism relies on run-time security checks.
These checks are not implemented in a centralized location,
but they are spread among several different components,
depending on the particular permission. As an explanatory
example, let us consider an app that attempts to send a
text message. When the app invokes the sendTextMessage

Android API to send a text message, a request is sent to
the SmsManager service, the Android built-in system service
that is responsible for actually sending text messages. At
this point, SmsManager will perform a query to the Android’s
PackageManager service to check whether the app that initi-
ated the request has the associated permission. These kinds
of checks are performed at run-time every time an app re-
quests to perform a sensitive operation. It is worth noting
that the SmsManager service, as well as every other system
service, runs as a separate process, owned by the privileged
system user. The communication between processes is per-
formed through one of the well-defined IPC mechanisms,
the most common being the Binder kernel module (we will
provide a detailed description of this IPC mechanism in Sec-
tion 4.3.1).

2.3 Life Cycle of an Android Application
In this section we provide an overview of the different

phases of an Android application’s life cycle.

2.3.1 Installation
When the user requires the installation of an app, its APK

is downloaded to the device, and the list of required permis-
sions is extracted. Such list is then displayed to the user,
who has now two options: she can either accept all the per-

Linux Kernel

System
Services

App code (Java)
Dalvik Virtual Machine

App code 
(native)

Framework Library

open read ioctl

Binder transaction

App process

Figure 1: Interaction among an app, the Linux ker-
nel, and remote system services. The arrows exem-
plify syscalls called by the app’s process.

missions or abort the installation of the app. Such “all-
or-nothing” policy constitutes one of the main limitations
of the current Android’s permission system, and it is one of
the main motivations behind the development of approaches
that give the user the possibility to use more flexible security
policies.

If the user accepts, the app is installed and a new Linux
user is created and associated to it. From now on, the An-
droid framework becomes aware of the new app: in fact, the
many Android system components, as well as other apps,
will now be able to access all the information about the
newly installed app by querying the PackageManager ser-
vice.

2.3.2 Launching
The most common way for a user to start a specific An-

droid application is to click on its associated icon. At this
point, the application that is responsible to handle events
related to the menu, the Launcher app, asks the system
to show the app’s main activity. If this app is not already
running, the zygote process starts to execute a series of op-
erations that will eventually lead to the app’s execution.

The zygote process is a privileged process that is the
analogous for Android of the Linux’s init process: all An-
droid applications’ processes are generated starting from a
fork operation by zygote. After the fork operation, the
newly generated process first retrieves the UID associated
to the target application, and it then drops its privileges ac-
cordingly. At this point, this process will receive (from the
ActivityManager service) the information related to which
app needs to be executed.

After retrieving the needed information, the newly gen-
erated process loads the code of the target application (by
using a ClassLoader object1), and it then creates a Con-

text object which contains information about the context
the application should be executed in.

2.3.3 Run-time
At run-time, an Android app is constituted by the code

written by its developers (stored in its APK file) and the
Android framework libraries, which expose a variety of use-
ful APIs (Figure 1). Independently of where the code is
implemented, it runs within the scope of the same pro-
cess. The code of each application can be correctly run
only within a very specific execution context. In fact, such
code is designed to heavily interact with the surrounding
Android framework, mainly through the Binder IPC mech-
anism. Moreover, an application interacts with the sur-
rounding framework even when it needs to perform intra-

1A ClassLoader is a special object that allows loading ad-
ditional code from external resources.

29



application operations. For example, an app can switch from
an activity to another, by invoking the startActivity API,
which, in turn, will communicate with the ActivityManager

service through the Binder IPC mechanism.

3. NJAS – OVERVIEW
In this section, we first discuss a high-level overview of our

approach, and how it provides a usable and flexible solution
for sandboxing Android applications. Then, we describe our
design goals and the several technical challenges we needed
to address. We postpone the description of the low-level
technical details to Section 4.

3.1 Approach
From a high-level point of view, our approach aims to

sandbox a generic Android application by running it in an
instrumented environment that monitors its execution by
means of syscall interposition. At its core, our system re-
lies on the ability to load an application within the context
of another one, i.e., our sandbox. The main technical chal-
lenge is related to the creation of a compatible execution
environment. In fact, if not properly handled, the code of
the sandboxed application cannot work correctly, as it was
designed to run in a different context.

Starting from the app we want to sandbox (which we will
refer to as orig), the first step is the generation of a com-
patible stub application. The stub app is generated in a
completely automated fashion and its only role is to act as a
“container” application. Such application only contains few
pieces of information taken from the manifest of the original
app (such as the list of permissions, the activity names, and
similar others), and it does not contain any code or resources
from the original app. In our current implementation, the
size of a stub is about 315 KB, sensibly lower than the size of
normal Android applications (for instance, the current size
of the Gmail application is about 6 MB)

When opened, stub loads orig’s code, monitoring its ex-
ecution through syscall interposition. Our system requires
the installation of a single compatible stub for each orig ap-
plication. Therefore, the same stub application can be used
to enforce several different user-defined security policies.

It is worth noting that the process of generating an ap-
plication starting from another one has few things in com-
mon with the process of repackaging. However, these two
approaches are profoundly different. In fact, while our solu-
tion only aims to generate a compatible stub, the approaches
based on repackaging techniques generate a slightly modified
version of the original app, sharing the same codebase and
resource files. For this reason, it is not possible to publish
such app on the official Google Play market, as this pro-
cess would lead to legal issues. Alternatively, a user of such
systems would need to retrieve and install the repackaged
app from a third-party source: this forces the user to enable
the “allow apps from unknown sources” option that, in turn,
lessens the security of the entire device.

On the contrary, publishing stub applications on the mar-
ket does not pose any problem. In fact, these applications do
not contain code or resources taken from the original ones.
To verify this possibility, we submitted to the Google Play
market the stub apps associated to several real-world popu-
lar applications (the same apps we used for our evaluation,
described in Section 5). As expected, all these apps were
promptly approved on the official market.

3.2 Usability Discussion
As one of our main goals is to develop a system that is

intuitive and easy to use, we envision the usage of an applica-
tion, which we will refer to as manager, that guides the user
through the necessary steps to use our system. Specifically,
manager takes care of downloading, installing, configuring,
and opening the stub associated to a given orig. We now
describe all the different steps.

First, manager will ask the user to install orig on the
device (if not already installed). This can be easily done
by using the default market application of the device (typi-
cally, the Google Play market), or any additional third-party
market app. After orig has been successfully installed, man-
ager will prompt the user to download and install from the
market the stub associated to orig (if not already present
on the device). Note that manager cannot transparently in-
stall these apps because Android requires an explicit consent
from the user before every app’s installation. The manager

app can identify the stub associated to orig in a number
of ways. As an example, manager could identify the correct
stub by applying simple conventions based on the package
name. Upon stub’s installation, manager will give the user
the possibility to specify a fine-grained security policy that
will be enforced (refer to Section 4.4 for more details). As a
final step, the user can then execute the sandboxed version
of orig by clicking on its associated entry.

If stub is not already present on the market, manager

would contact a dedicated server that will take care of auto-
matically generating a compatible stub for the selected app
and publishing it on the market. Note that these steps are
executed in an on-demand fashion, only for apps users want
to use with our system. To ease its usability, manager can
optionally appear as a complete replacement of the standard
Android “home” screen (as many apps that are currently
present on the Google Play market do). This application
would show to the user a list of all the installed apps (as
a traditional “home” app would do), and the icon of each
application for which a stub is available would appear with
a lock symbol superimposed to it.

Finally, it is worth mentioning that our system addresses
one of the usability limitations of existing approaches based
on bytecode rewriting techniques. In particular, it is known
that these techniques break the application’s signature, and
this, in turn, causes problems to the automatic update mech-
anism available on the Android platform. In fact, when a
new version of a given app is available on the market, the
app is automatically updated only if the signature used to
sign the new version matches the signature of the locally
installed version. For this reason, the users of such systems
need to manually regenerate and reinstall newer versions of
the repackaged apps.

On the contrary, Njas does not break such automatic up-
date mechanism. In fact, as an unmodified version of orig is
installed on the device, the system will be able to automat-
ically update it when a newer version is published on the
market. In addition, a corresponding new compatible ver-
sion of stub can be published as well (if required), and the
system will be able to update it to the current version, once
again automatically. Specifically, when signing stub apps,
we maintain a one-to-one mapping between the signatures
used to sign original applications and their corresponding
stub apps. In other words, stub applications associated to
two versions of orig signed with the same key, would be

30



signed with the same corresponding key. (Of course, such
key will be different from the one used to sign orig, but this
does not constitute any usability problems.)

3.3 Challenges and Design Choices
In the remainder of this section, we will discuss the main

challenges we needed to address and our design choices.

How to sandbox an app. As we already mentioned,
our approach is based on executing a given app within the
context of another one. The first operation that stub per-
forms is to fork itself, and to create a child process, which we
call monitor. Using the ptrace mechanism, monitor is able
to sandbox the execution of the original application (which
runs within the context of stub) by means of syscall interpo-
sition. Note that this gives us control at the lowest-possible
level and, since ptrace is a kernel-level feature, it is able to
properly sandbox both the Java and the native components
of an application.

Note that this is technically possible, even if monitor is
an unprivileged process. In fact, since stub and monitor are
in a parent-child relation, they share the same UID, and the
ptrace interface can be therefore used. It is worth noting
that while in Android this is possible, some specific Linux
distributions (e.g., Ubuntu) disallow this possibility.

How to load code from the original app. As we
previously explained in Section 3.1, the stub app contains
only little high-level information about the orig app: that
is, it does not contain orig’s codebase nor its resources.
The stub app is able to load and execute orig’s codebase
by directly reading orig’s APK file: this is possible as the
APK files of apps are world-readable by default. However,
note that this is possible only for free apps, as the APK
files of paid apps are stored in a non-readable location. In
Section 6 we will discuss this limitation, which Njas shares
with all systems based on bytecode rewriting.

The reader might be surprised that an app can actually
load and execute code of another app, as it could seem that
this technique could be used to bypass the Android security
mechanism. However, this is not possible. In fact, the code
loaded from orig will be executed within the context of
stub, therefore, it will have the same privileges that stub

has. For instance, let us assume that orig has the Internet
permission: clearly, if stub itself does not have the same
permission, it will not be able to connect to the network just
by executing orig’s code. Interestingly, the possibility of
loading code from external applications is a well-documented
functionality provided by the Android framework and it is
used by popular apps [21].

How to guarantee the enforcement of a permis-
sion set that is stricter than the original one. We
chose to create the stub app in a way that it requires the
same permission set of orig. In this way, it is guaranteed
that the sandboxed code is subject to at least the same per-
missions than it would have been subject to when run by the
orig app. This acts as a starting point that our sandbox
mechanism uses to enforce fine-grained user-defined policies
(discussed in more detail in Section 4.4).

This approach has the disadvantage of requiring the gen-
eration of a different, compatible stub for each orig appli-
cation. However, it is difficult to implement a safe sandbox-
ing mechanism without requiring such a step. Specifically,
one alternative to our approach would be to first create a

generic sandbox application that enjoys all the permissions,
and then enforce a subset of them by means of syscall in-
terposition. While this approach would be feasible from a
theoretical point of view, it is a task that would require a
significant engineering effort, and it would inevitably make
the attack surface bigger. In fact, it would require the reim-
plementation of all the security checks performed by the
Android framework, which, as we mentioned earlier, are not
implemented in a centralized location. Alternatively, this
generic sandbox could drop its Android permissions before
executing the code of the app to be sandboxed. However,
this is technically impossible because Android does not pro-
vide any mechanism to change an app’s permission set at
run-time.

How to properly run the original app within the
context of another one. Running an Android app within
the context of another one proved to be the main challenge
we needed to address. In fact, the codebase of each applica-
tion assumes to be executed within a very specific context
that varies among different apps. Thus, failing to provide
such context will inevitably lead the app to crash or behave
incorrectly. We will now provide a high-level description
about which part of the context our system patches. In
particular, we discuss two representative examples.

First of all, the parameters of some syscalls need to be
patched. For example, consider the case where orig’s code
tries to access one of orig’s private directories: such code
is executed by the stub app and, since orig and stub are
actually different applications (whose processes are run by
different users), the process would crash with a “permis-
sion denied” exception, if the syscall arguments would not
be properly patched. The technical details on how this is
implemented are provided in Section 4.2. Similarly, Njas
needs to patch the content of several Binder transactions, as
we will detail in Section 4.3.

4. IMPLEMENTATION
In this section we document the underlying technical de-

tails of Njas. We first give an overview of the setup phase,
then we provide details related to how we reconstruct an ex-
ecution context so that it is possible to properly execute the
code loaded from orig. In particular, we discuss how it is
needed to patch syscalls and Binder transactions. Next, we
explain how we implemented the enforcing of user-defined
security policies. Finally, we discuss the security properties
of our system.

4.1 Setup
The first operation performed by stub consists in invoking

the prctl syscall by passing the SET_DUMPABLE flag as argu-
ment. This guarantees that stub’s threads will be debug-
gable using the ptrace mechanism. Then, stub forks itself
and creates a new process, which we call monitor. This pro-
cess is responsible for monitoring the operations performed
by stub. More precisely, monitor uses ptrace to attach to
all stub’s threads and monitor them.

After the monitor process is created, stub loads orig’s
code and starts its execution. To do so, stub creates a
proper ClassLoader object. In Java, a ClassLoader is a
special object used to load other classes. When it is cre-
ated, a list of file paths is specified, which indicates where
the classes’ implementation should be searched. In our case,
we obtain a reference to a ClassLoader object that loads

31



classes from orig’s APK file by using the createPackage-

Context API (specifying the CONTEXT_INCLUDE_CODE and
CONTEXT_IGNORE_SECURITY flags).

By using such object, stub can successfully load the main
activity of orig and then spawn it by invoking the star-

tActivity API. Note that, in general, when a class C needs
to load another class D, the virtual machine will attempt to
load D by using the same ClassLoader object used to load
C. For this reason, all classes loaded by orig’s main activity
will be automatically loaded using the correct ClassLoader.
In other words, orig’s main activity will transparently load
all the other classes implemented within orig’s APK file.

4.2 File-related Syscall Patching
The Android OS assigns to each installed app a private

folder, which is used, for example, to store the user’s pref-
erences or temporary files. The key problem lies in the
fact that the code loaded from the orig app will try to
access its own private folder (i.e., <orig_dir>). How-
ever, such folder is not accessible by the stub process, as
its associated Linux user does not have permission to ac-
cess orig’s private folder. For this reason, the monitor

process modifies the arguments of every file-related syscall,
so that the file path is changed from <orig_dir> to a
(private) directory that the stub app is able to access,
<stub_dir>. For example, when the app tries to write
to the <orig_dir>/database.db file, Njas transparently
changes the file path to <stub_dir>/database.db.

4.3 Patching Binder Communications
Android apps are designed to continuously communicate

with the surrounding environment. Most of these communi-
cations are implemented by means of remote procedure call
(RPC) invocations through the Binder IPC mechanism. As
we mentioned in Section 3.3, some of these communications
and interactions need to be properly patched, for two rea-
sons: to guarantee that the orig app code behaves correctly,
and to actually implement the sandbox mechanism.

To this aim, the monitor process modifies the content of
Binder transactions by means of syscall interposition. The
technical details of this process are discussed in the remain-
ing of this section: we will first describe several low-level
details on how the Binder mechanism works, and then will
discuss which operations are performed by monitor.

4.3.1 Binder Internals
From a technical point of view, all Binder communications

are implemented by means of the ioctl syscall. More specif-
ically, each Binder invocation is implemented by calling the
ioctl syscall on the /dev/binder device. Different “com-
mands” on the Binder are encoded by specifying different
arguments to the underlying ioctl system call. Even if sev-
eral Binder commands can be specified, within the context of
this paper we are only interested in the BINDER_WRITE_READ

Binder command, as this is the main mechanism through
which all RPC invocations are performed. Such mechanism
is used in two scenarios: when an app invokes a remote
function implemented in a system service (e.g., to send a
text message) and when a system service invokes a function
defined in the app (e.g., to communicate user input).

The BINDER_WRITE_READ command can, in turn, encode
different types of operations. As a concrete example, con-
sider the drawing in Figure 2, which shows the low-level

details of a Binder transaction that encodes an RPC in-
vocation of the sendText remote function exported by the
SmsManager service. This request is automatically gener-
ated when the SmsManager.sendTextMessage API, which
an app can invoke to send a text message, is called.
The write_buffer argument points to a buffer that en-
codes all the information related to the requested op-
erations. In particular, the Request type field encodes
the type of the request (BC_TRANSACTION, in this exam-
ple), the InterfaceToken field specifies the remote service
(com.android.internal.telephony.ISms), and the code
field specifies which of its exported functions must be in-
voked (sendText). Moreover, a number of additional func-
tion arguments can be specified (such as, in this example, the
destination number). All function arguments (which could
be both Java primitive types and generic Java objects) are
serialized and deserialized before being written to and read
from a Binder transaction.

As we mentioned, the Binder mechanism is also used as
a way for the system to invoke a function implemented in
application space. In this case, an application’s thread in-
vokes the ioctl syscall, and the execution is temporarily
blocked waiting for data, which specifies the local function
to be invoked and its arguments. When such data becomes
available, the syscall will unblock its execution, and the ap-
plication will be able to read from a given buffer the data
sent from a different process.

4.3.2 Handling Component-Component Interactions
An operation that is performed by even the simplest An-

droid app is to start an activity. From a Java-level point
of view, this can be achieved by invoking the startActiv-

ity API which takes as argument the details of the activ-
ity that needs to be started. From a syscall-level point of
view, the execution of such API will generate two Binder
transactions. First, the startActivity API will generate
a call to the startActivity remote function exported by
the ActivityManager service. Then, this service will call
the scheduleLaunchActivity local (i.e., method executed
by the application process) function that specifies how the
new activity should be created (by defining, for example,
its appearance). To correctly execute orig within the con-
text of stub, monitor needs to patch the arguments of both
Binder transactions, as described next.

The startActivity API takes as argument the activity to
be opened, in the form of <package_name, activity_name>,
where package_name is the package name identifying an in-
stalled app and activity_name is the name of a specific
activity. The problem lies in the fact that when orig’s code
invokes the startActivity API (that is executed within the
context of stub), it specifies orig’s package name as the
target package_name. As this code is executed by the stub

process, a SecurityException would be thrown by the Ac-

tivityManager service: in fact, stub is not allowed to open
an activity of orig, since it is defined in a different app. To
avoid this, monitor patches the arguments of such API by
changing the specified package name from orig’s to stub’s.
Note that the system would generate an exception if a com-
patible activity is not found in stub. For this reason, we
build the stub app in a way that it defines (in its manifest
file) a dummy activity for each activity defined in orig.

The arguments of the scheduleLaunchActivity function
(invoked by the ActivityManager service) need to be mod-

32



system call: ioctl(“/dev/binder” file descriptor, command: BINDER_WRITE_READ,  &binder_write_read) 

called remote function: com.android.internal.telephony.ISms.sendText(destinationNumber, . . .)

write_size

write_consumed

write_buffer

read_size

read_consumed

read_buffer

list of requests

Request type . . . . . .Request type:
BC_TRANSACTION

target code:
4

. . . buffer offsets

request buffer

InterfaceToken: 
com.android.internal.telephony.ISms

parameter1:
destinationNumber

. . .

Figure 2: Example of a Binder transaction used to send a text message. Concrete values are written in italic.
Arrows starting with a dot represent memory pointers. Note how the same ioctl syscall can specify more
than one request.

ified as well. In fact, since the monitor process patched the
first Binder transaction (as described in the previous para-
graph), the framework will now try to spawn the dummy
activity defined in the stub. This, in turn, would lead to
a fatal exception, as stub does not contain any code asso-
ciated to such activity. For this reason, monitor needs to
patch the second Binder transaction as well. In particular,
monitor patches the info argument, an instance of the Ac-

tivityInfo class, which contains all the information on how
an activity should be created. This argument is modified at
run-time with an ActivityInfo object compatible with the
original target orig’s activity. To obtain an appropriate Ac-

tivityInfo object, monitor uses the getPackageInfo API.
In this way, orig’s code is able to transparently start its
activities, even when run within the execution context of
another application, stub.

Similarly, Njas patches the interactions with the services
defined within an application. In particular, monitor needs
to patch the Binder transactions related to the startSer-

vice and the scheduleCreateService methods that are the
analogous for services of the startActivity and schedule-

LaunchActivity methods. As the low-level mechanism is
equivalent to the one discussed for handling activities, we
omit the technical discussion.

4.3.3 Handling Introspective Calls
Android apps often invoke a number of APIs to obtain

information about themselves. These API calls are almost
never performed by the app’s codebase, but they are used
by the underlying Android framework APIs. An example of
such APIs is the getActivityInfo API. This API returns
an ActivityInfo object, which contains a number of impor-
tant information. As this API is invoked within the context
of stub, its returned value needs to be properly patched,
so that the execution of orig’s code can continue without
crashing. The monitor process performs this patching pro-
cedure at run-time.

4.3.4 Additional Challenges
In the previous sections we have described how Njas mod-

ifies the arguments of several Binder transactions. However,

during our discussion we omitted some important low-level
challenges that we needed to address, which we now discuss.

The first challenge arises when patching the content
of the request buffer used by Binder transactions of
BR_TRANSACTION type. Specifically, for some requests, the
offsets field points to a data structure which contains a
list of absolute pointers to the buffer itself. The problem
is that when the buffer is patched by the monitor process,
these absolute offsets need to be properly updated, so that
they keep pointing to the right location. As a solution, we
automatically update these offsets when necessary.

The second challenge is related to patching the request
buffer used by Binder transactions of BR_REPLY type. The
peculiarity of this buffer is that it is placed by the Binder
kernel module in a memory region that is mapped (through
the mmap syscall) to the /dev/binder device file. In this
case, the problem is that this file is mapped as read-only,
and the monitor process is not allowed to modify it. Note
how ptrace can usually modify non-writable memory pages,
but not when they are mmap-ed in this way. To address this
issue, we copy the content of the buffer in a writable memory
region, and we then modify the buffer field, so that it points
to the beginning of such a copy.

4.4 Security Policies
Our approach can be used to enforce a variety of differ-

ent security policies that restrict different capabilities and
permissions of an Android device. Our current prototype
can effectively enforce security policies related to four dif-
ferent categories of sensitive operations. In particular, Njas
can enforce fine-grained security policies related to connect-
ing to the network, accessing the file system, sending text
messages, and accessing the user’s contact list. Our proto-
type can be easily extended to support additional categories
of permissions, the only challenge being the required engi-
neering effort. In fact, note that the currently supported
permissions already cover technically-different categories of
operations. In the remainder of this section, we describe the
details on how Njas handles the different cases.

To block unwanted Internet connections, Njas intercepts
the connect and sendto syscalls and parses the addr ar-

33



gument, which specifies the target IP address. By using
this information, the enforcing mechanism decides whether
to block a connection attempt, by, for instance, consulting
a user-defined white-list of allowed IP addresses. Similarly,
Njas can restrict file system access. This functionality could
be useful as many apps store potentially-sensitive files (e.g.,
user’s photos) in publicly accessible locations on the device’s
file system, such as the SD card. For this reason, we give
the user the possibility to limit the capabilities of untrusted
applications to a specified set of file paths.

Another area where Njas can enforce a fine-grained user-
defined policy is related to the capability of sending text
messages. In particular, the user might want to block
sending text messages to a specific set of phone numbers.
Njas can enforce such finer-grained policy by intercepting
all Binder requests that are used to invoke one of the follow-
ing remote functions exported by the SmsManager service:
sendText, sendData, and sendMultipartText.

Finally, Njas can block an application from accessing the
user’s contact list by preventing its access to the Contact-

Manager content provider. To this aim, Njas blocks all the
invocations to the getContentProvider remote API (ex-
ported by the ActivityManager service), when it is used
to get a reference to the ContactManager content provider.

Note that our enforcing mechanism is implemented in a
way that the execution of the app will continue its execution,
even if it attempts to perform an operation that violates a
security policy. This is achieved by hot-patching the argu-
ment values of each syscall with non-valid ones, instead of
abruptly aborting the syscall invocation.

4.5 Security Discussion
In this section we discuss how a malicious application

could evade our analysis system, and the countermeasures
we implemented.

First, note that, by using syscall interposition, Njas is
able to fully control the behavior of an app. In fact, the
usage of the ptrace mechanism guarantees that the moni-

tor process will be able to intercept every syscall invoked
by orig, independently from how they are invoked. In par-
ticular, an application can (directly or indirectly) invoke a
syscall in three different ways: by invoking a Java-level API,
by calling a function implemented in a native library (e.g.,
libc), or by directly invoking a syscall through inline as-
sembly code (e.g., by executing the svc ARM assembly in-
struction). In all these three cases, the monitor process will
be notified of the generated syscall, and it will have a chance
to block it and/or modify its arguments. Note that, in con-
trast to Njas, all the existing approaches based on bytecode
rewriting techniques cannot properly sandbox an applica-
tion in all these cases (especially when dealing with the last
scenario).

A malicious app could try to actively evade our sandbox.
However, since ptrace is a kernel-level functionality, there
are only very few ways to interfere with this mechanism. In
particular, an app could invoke the ptrace and kill syscalls
to interfere with the monitor process. To prevent this, mon-
itor forbids the execution of these two syscalls by the mon-
itored code. This approach does not interfere with the exe-
cution of benign apps. In fact, the Dalvik VM does not use
these syscalls, and apps that include a native code compo-
nent are supposed to use it only to execute CPU-intensive
tasks.

As a last consideration, Njas can neither prevent the user
to manually open orig nor it can prevent orig from starting
at boot. This could be problematic as the monitor process
would not have a chance to monitor the application, as it
would be executed outside the context of stub. However, in
practice, this does not constitute a problem: First, a user
can simply use the manager app to load orig in the sand-
boxed environment; Second, an app that is installed but
never opened will not start at boot automatically; Third, a
user can easily prevent an app from starting at boot by clos-
ing it using the “Force stop” Android option. In fact, after
an app has been closed in this way, it will not automatically
start at boot, unless it is manually opened again.

5. EVALUATION
In this section, we describe how we evaluated Njas. First,

we discuss how our system is able to correctly sandbox an
application we wrote in order to stress-test our system, as
well as several real-world apps. Second, we measure the per-
formance overhead introduced by our system, and we com-
pare our results against FireDroid [24], the current state-of-
the-art sandboxing technique based on syscall interposition.
For our tests, we used a Samsung Galaxy Tab 10.1 (1 GHz
dual-core Nvidia Tegra 2 with ARM Cortex-A9 CPU, 1 GB
RAM), running Android 4.2.2.

5.1 Effectiveness
To test the effectiveness of Njas, we first developed a

simple application performing the sensitive operations that
our current prototype is able to monitor and, if necessary,
block. In particular, this application attempts to perform
the following operations: initiate several network connec-
tions, access sensitive files on the SD card (such as the user’s
photos), send text messages to premium numbers, and ac-
cess the user’s contact list. The application also declares in
its manifest all the permissions that are needed to perform
these operations.

We then defined a set of security policies that would exer-
cise the different components of our sandbox. For example,
we created a series of security policies to enforce the fol-
lowing behaviors: block connections to network endpoints
other than Google, block accesses to the photos folder on
the SD card, block text messages directed to premium num-
bers, and block access to the user’s contact list. We then
used Njas to enforce such security policies, and we verified
that the application was not able to carry out any unwanted
behavior.

As a second part of our evaluation, we used our prototype
to sandbox the execution of 20 real-world applications. In
particular, we selected 7 real-world popular apps from the
top-free lists of 7 different app categories on the Google Play
market. Table 1 shows the list of applications we selected
for each category. We selected these apps as they are popu-
lar representatives of different typologies of applications (the
Google Play market does not provide precise statistics, but
each of these apps has currently more than 10 million instal-
lations). In addition, we selected other 13 apps from a set
of application randomly downloaded from the Google Play
market.

To test our system, we executed each one of the selected
20 apps for about two minutes, and we manually stimulated
their functionality. For each of these apps, we did not no-
tice any difference between running them with or without

34



Application Name Version Category

Angry Birds 3.0.0 Game

Instagram 5.0.5 Social

Bank of America 4.3.255 Finance

Super-Bright
LED Flashlight

1.0.3 Tools

Q Droid 5.4.3 Productivity

Dictionary -
Merriam-Webster

2.1 Books & Reference

Barcode Scanner 4.5.1 Shopping

Table 1: Details of popular applications we used to
test the applicability of Njas in a real-world sce-
nario.

our sandbox. In other words, the application did not crash
and its behavior appeared to be the same. Our tests also
showed that the sandboxing mechanism is effective. For ex-
ample, when executing the Angry Birds app by enforcing a
policy that blocks all network connections, we were able to
normally play the game (since this app’s gameplay does not
need any Internet connectivity), the only difference being the
missing presence of the advertisements: this is expected, as
the used advertisement framework relies on network connec-
tivity.

5.2 Performance
We now discuss the performance overhead caused by in-

strumenting Android apps with our system. We tested the
performance impact of Njas by using a popular Android
benchmark app, called Quadrant (version 1.11). We specifi-
cally chose this application for three reasons. First, using an
app specifically designed to benchmark an Android device
(as opposed to general-purpose applications) allows us to get
an objective and deterministic evaluation of the overhead
introduced by Njas. Second, this benchmark app tests the
performance of a device under many different aspects (e.g.,
CPU time, memory speed, I/O operations speed, graphic
rendering time). Finally, this application is used as part of
the evaluation of FireDroid. This simplifies a direct compar-
ison with the state-of-the-art research work that is the most
similar to ours (in terms of sandboxing technique). In fact,
FireDroid achieves sandboxing through ptrace-based syscall
interposition, with the main difference that it requires root
access to the device.

Table 2 shows the overhead of our approach with respect
to the baseline and FireDroid. The table reports the num-
bers that the Quadrant benchmark application produced
when executed. On the one hand, Njas has a very small
overhead for CPU, memory, and GPU operations. On the
other hand, it has a high performance impact on I/O op-
erations. This is an expected result since the I/O perfor-
mance overhead is related to the rate at which an app gen-
erates syscalls, which is, in turn, directly linked to number of
context switches added by the ptrace-based syscall filtering
which Njas uses.

Results show that the performance overhead introduced
by Njas, while not being ideal, is acceptable. First, Table 2
shows that our results are in line with those of FireDroid.

Moreover, we note that the one of the goals of our work
is not to develop a more efficient implementation of the
syscall interposition mechanism, but to show how a com-
plete sandboxing mechanism can be implemented without
requiring root access to the device. Second, as we men-
tioned in the previous section, we did not notice any per-
formance hit when we executed the real-world applications,
even when testing heavily interactive games, such as Angry
Birds. Nonetheless, we acknowledge there is space for im-
provement in this direction, which we discuss in the next
section.

6. LIMITATIONS
In this section, we discuss the limitations of our approach

and of our current prototype. We also suggest future work
that can address these limitations.

The first limitation is related to the Intent mechanism.
From a practical point of view, an Intent is a Java object
that encodes the willingness to perform an action. There
are two types of Intents, explicit and implicit. An Intent is
explicit when the target component is explicitly indicated in
the Intent object itself. Njas cannot intercept these mes-
sages, but this does not constitute a big problem: in fact, the
usage of explicit Intents is normally restricted to intra-app
communication (as specified in the official Android docu-
mentation2). Differently, an Intent is implicit when it only
specifies the type of action that needs to be performed, with-
out explicitly specifying the target. Moreover, apps can reg-
ister themselves as available to perform such actions. The
current implementation of Njas does not support the usage
of implicit intents. However, a possible extension could be
to create stub in a way that it would systematically receive
all the implicit intents that the original app could possibly
handle.

Another limitation is related to the fact that Njas re-
quires read access to the APK file of the app to sandbox.
For this reason, our system cannot currently sandbox paid
applications, since they are stored in a location that cannot
be normally read by unprivileged applications. Note that
all the approaches that rely on application-rewriting tech-
niques have the same requirement, as they need access to
the original application’s codebase. For this reason, all such
techniques cannot currently handle paid applications as well.

As a future work, the possibility of performing “time of
check to time of use” (TOCTOU) attacks against our cur-
rent ptrace-based implementation should be studied and
mitigated as explained in [16]. In fact, it may be possible
for an app to bypass some of the checks we implemented, by
using a malicious thread that exploits the time gap between
the moment in which our monitoring process checks the pa-
rameters of a syscall and the moment in which these values
are actually read by the kernel.

In addition, an attacker could specifically detect the fact
than an app is run by Njas and consequently modify or
halt its execution by, for instance, detecting that the app’s
threads are monitored using the ptrace interface. How to
avoid detection may be studied in future work, however, it
is known that avoiding detection of monitoring systems is
typically an arms race.

2http://developer.android.com/guide/components/int
ents-filters.html#Types

35



Test Baseline NJAS NJAS overhead FireDroid overhead

CPU 4333 4055 6.87% 5.2%
Memory 2210 2200 0.47% 3.9%
I/O 3892 1833 112.32% 97.5%
2D 96 96 0.00% 0.2%
3D 1960 1783 9.90% 3.3%

Table 2: Overhead introduced by Njas, compared against FireDroid. The numbers are obtained by using the
Quadrant benchmark app (version 1.11). Note that the Baseline represents the performance of the system
without any instrumentation, and that higher numbers correspond to better performances. The results have
been averaged on 5 runs of each test.

As we discussed in Section 5, Njas suffers from some per-
formance overhead. While this is in line with state-of-the-art
approaches that are based on syscall interposition, we be-
lieve that there is space for improvements. For example, in
the near future it might be possible to use the seccomp/BPF

functionality (officially introduced in Linux kernel 3.5) to
perform syscall interposition on non-rooted, stock Android
devices. Such functionality is not available yet (in fact, the
latest version of Android runs Linux 3.4.0), but, once it be-
comes available, it could be used to develop a system with
better performance. For example, it would be possible to in-
tegrate the techniques implemented in MBOX [19] to sand-
box Linux processes more efficiently.

The implementation of our prototype does not currently
support the enforcing of fine-grained policies for all the cat-
egories of sensitive operations that an app can perform. We
note that it would be conceptually simple to extend our pro-
totype to support additional permissions, the only challenge
being the required engineering effort. We also note that
the main goal of our work is to show how an approach like
ours can be used to enforce fine-grained user-defined secu-
rity policies on devices running non-rooted stock Android,
and not to provide a full implementation that covers all the
possibilities. Moreover, previous research [16, 24] has shown
that supporting more permissions is indeed technically pos-
sible. An interesting direction for future work would be to
integrate these works with our system.

Finally, while the tests performed in Section 5.1 clearly
show that it is possible to use Njas to instrument the ex-
ecution of complex real-world applications, we acknowledge
that the current prototype implementation of our system is
not compatible with all the apps. This is due to the limita-
tions already discussed in this section and the missing han-
dling of specific syscalls or Binder transactions. However,
our prototype clearly shows that extending our support to
a wider range of syscalls and Binder transactions is a viable
option, although it would require some engineering effort.

7. RELATED WORK
Several papers analyze the current Android permission

system [13, 27, 4]. In particular, these works highlight the
main problems that affect the current permission system
(e.g., being too coarse-grained or not customizable by the
user). These studies motivate the necessity of better sand-
boxing mechanisms, such as the one we propose.

Other works focus on analyzing Android applications to
discovery confused deputy vulnerabilities, through which a
trustworthy app could be lured into misusing its permis-
sions [17], leaking private information [20, 31], or executing

code on behalf of a malicious application [21]. These works
show how confused deputy vulnerabilities constitute a real-
world threat and motivate even more our work. In fact,
the ability to sandbox an Android application could be used
to reduce its permissions to adhere to the principle of least
privilege: this sensibly mitigates the impact of a malicious
app exploiting a confused deputy vulnerability.

Furthermore, several other works propose modifications
to the Android framework to better sandbox Android apps.
In particular, Cells [2], MOSES [23], and AirBag [29] im-
plement a virtualization-based system, while others propose
lighter modifications specifically designed to prevent the
leakage of user information [32, 7]. Additionally, already-
existing mandatory access control mechanisms, such as TO-
MOYO Linux [8] and SE Linux [25], have been ported to
Android. However, the adoption of these systems on a large
scale is complex, since they require the installation of custom
Android versions on a device, or their integration within the
official Android distribution. FireDroid [24] implemented a
sandboxing mechanism based on syscall interposition using
ptrace that requires minimal system modifications. This
work shows that syscall interposition can be effective in en-
forcing user-defined policies in Android. However, FireDroid
still requires having root access on the device on which it is
used, an option that is not available in stock Android.

Concurrently and independently to our work, Boxify [5]
proposes a sandbox mechanism for Android apps sharing the
same goal of Njas: providing sandboxed execution of An-
droid apps in an unmodified system. Even though Boxify
and Njas achieve the same goal, they have significantly dif-
ferent design choices that result in different security prop-
erties. Specifically, Boxify relies on executing apps in an
“isolated process” (a special type of process in Android, run-
ning with no permissions) and monitoring it by using a Bro-
ker process holding the union set of all permissions required
by all the apps possibly hosted by Boxify (all the Android
permissions, in a typical usage scenario). This makes the
Boxify process a potential target for an attacker that could
try to escape the Boxify sandbox to gain the wide range
of privileges the Boxify process holds. Moreover, the im-
plementation of Boxify needs to reimplement parts of the
system services (e.g., the PackageManager service) and thus
replicate the numerous security checks normally performed
by these system services. For this reason, the task of securely
implementing and updating (when newer Android versions
are released) the Boxify codebase can be difficult. Finally,
Boxify relies on GOT patching (instead of ptrace) to inter-
cept the execution of the sandboxed app. This technique is
easily escapable by a sandboxed process (which can perform
syscalls without using any library). To mitigate this threat,

36



Boxify relies on the compartmentalization imposed by the
Android operating on “isolated process” (e.g, isolated pro-
cesses cannot perform any operation requiring an Android
permission). However, this still exposes the entire kernel
layer to a malicious sandboxed app, without giving any pos-
sibility to the Boxify monitoring process to intercept the po-
tentially malicious syscalls executed by it. Nevertheless, we
envision that Njas can be used in conjunction with Boxify
to provide an additional layer of security.

Many different works propose to automatically repackage
Android apps using bytecode rewriting techniques, instead
of modifying the Android OS. Specifically, AppGuard [6],
I-ARM-Droid [10], RetroSkeleton[9], and Dr. Android [18]
monitor potentially dangerous Java method invocations.
Differently, Aurasium [30] works at the native code level
by patching the GOT of native libraries. Differently from
Njas, none of these systems is able to completely moni-
tor the behavior of an app. For instance, a malicious app
could evade all of them by using native code that directly
executes syscalls through inline assembly code. On the con-
trary, Njas is able to monitor an app in its entirety, inde-
pendently from how it operates. Additionally, approaches
relying on app repackaging techniques have important us-
ability problems, as we have already discussed.

Finally, the general problem of sandboxing a process by
performing syscall interposition has been extensively stud-
ied by several previous works. In particular, Garfinkel et
al. [15, 16] discuss several common challenges that affect ap-
proaches based on syscall interposition, and provide a series
of recommendations on how to address them. We took these
recommendations into account while designing and imple-
menting Njas. Different implementations of syscall-based
sandboxing have been proposed in the literature, such as
[28, 22, 26]. All these solutions require, however, modifica-
tions to the operating system on which they are used. More
recently, MBOX [19] has shown how syscall interposition
can be used to effectively sandbox a Linux process, without
having root privileges. As previously discussed, MBOX per-
forms syscall interposition by using the seccomp/BPF mech-
anism. We could not use this mechanism in Njas, as it
is not available yet on the Android platform. However, the
possibility of integrating such mechanism with our approach
represents one of the most promising and interesting future
work direction.

8. CONCLUSIONS
In this paper, we proposed a novel approach for sand-

boxing Android applications. Our system comes with sev-
eral usability and security advantages over previous work.
Specifically, it does not require modifications to the An-
droid framework, root access to the device, or to create a
modified version of an existing app, which could not be in-
stalled without enabling unsafe options. At the same time,
our approach is able to completely sandbox an application,
even when it contains native code components. We imple-
mented this approach in a tool, called Njas, and we showed
how it can be used to effectively sandbox different popu-
lar real-world applications, with an acceptable performance
overhead. Finally, we discussed the limitations of the cur-
rent implementation and we propose several directions for
future work.

Acknowledgments
This material is based upon work supported by DHS un-
der Award No. 2009-ST-061-CI0001, by NSF under Award
No. CNS-1408632, and by Secure Business Austria. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of DHS, NSF, or Secure
Business Austria. This material is also based on research
sponsored by DARPA under agreement number FA8750-12-
2-0101. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government

9. REFERENCES
[1] AndroidCentral. Larry Page: 1.5 million Android

devices activated every day.
http://www.androidcentral.com/larry-page-15-m

illion-android-devices-activated-every-day.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and
J. Nieh. Cells: a Virtual Mobile Smartphone
Architecture. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2011.

[3] AppBrain. Number of available Android applications.
http://www.appbrain.com/stats/number-of-andro

id-apps.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
Pscout: Analyzing the Android Permission
Specification. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS),
2012.

[5] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and
P. von Styp-Rekowsky. Boxify: Full-Fledged App
Sandboxing for Stock Android. In Proceedings of the
USENIX Security Symposium (USENIX Security),
2015.

[6] M. Backes, S. Gerling, C. Hammer, M. Maffei, and
P. Styp-Rekowsky. Appguard - Real-Time Policy
Enforcement for Third-Party Applications. 2012.

[7] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application
Functionality on Smartphones. In Proceedings of the
ACM Workshop on Mobile Computing Systems and
Applications (HotMobile), 2011.

[8] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R.
Sadeghi, and B. Shastry. Practical and Lightweight
Domain Isolation on Android. In Proceedings of the
ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2011.

[9] B. Davis and H. Chen. RetroSkeleton: Retrofitting
Android Apps. In Proceedings of the International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2013.

[10] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-ARM-Droid: A Rewriting Framework for In-App
Reference Monitors for Android Applications. Mobile
Security Technologies, 2012.

[11] EFF. Google Removes Vital Privacy Feature From
Android, Claiming Its Release Was Accidental.

37



https://www.eff.org/deeplinks/2013/12/google-r

emoves-vital-privacy-features-android-shortly

-after-adding-them.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2010.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android Permissions Demystified. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2011.

[14] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele,
C. Kruegel, E. Kirda, and G. Vigna. On the Security
and Engineering Implications of Finer-Grained Access
Controls for Android Developers and Users. In
Proceedings of the Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2015.

[15] T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In
Proceedings of the Network & Distributed System
Security Symposium (NDSS), 2003.

[16] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
Delegating Architecture for Secure System Call
Interposition. In Proceedings of the Network &
Distributed System Security Symposium (NDSS), 2004.

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the Network &
Distributed System Security Symposium (NDSS), 2012.

[18] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein. Dr. Android
and Mr. Hide: Fine-grained Permissions in Android
Applications. In Proceedings of the ACM Workshop on
Security and Privacy in Smartphones and Mobile
Devices (SPSM), 2012.

[19] T. Kim and N. Zeldovich. Practical and Effective
Sandboxing for Non-Root Users. In Proceedings of the
USENIX Annual Technical Conference (USENIX
ATC), 2013.

[20] L. Lu, Z. Li, Z. Wu, W. Lee, and J. Guofei. CHEX:
Statically Vetting Android Apps for Component
Hijacking Vulnerabilities. In Proceedings of the ACM
Conference on Computer and Communications
Security (CCS), 2012.

[21] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute This! Analyzing Unsafe and

Malicious Dynamic Code Loading in Android
Applications. In Proceedings of the Network &
Distributed System Security Symposium (NDSS), 2014.

[22] N. Provos. Improving Host Security with System Call
Policies. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2003.

[23] G. Russello, M. Conti, B. Crispo, and E. Fernandes.
MOSES: supporting operation modes on smartphones.
In Proceedings of the Symposium on Access Control
Models and Technologies (SACMAT), 2012.

[24] G. Russello, A. B. Jimenez, H. Naderi, and W. van der
Mark. FireDroid: Hardening Security in Almost-Stock
Android. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2013.

[25] S. Smalley and R. Craig. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In
Proceedings of the Network & Distributed System
Security Symposium (NDSS), 2013.

[26] W. Sun, Z. Liang, V. Venkatakrishnan, and R. Sekar.
One-way isolation: An effective approach for realizing
safe execution environments. In Proceedings of the
Network & Distributed System Security Symposium
(NDSS), 2005.

[27] T. Vidas, N. Christin, and L. F. Cranor. Curbing
Android Permission Creep. In IEEE Web 2.0 Security
and Privacy Workshop (W2SP), 2011.

[28] D. A. Wagner. Janus: an approach for Confinement of
Untrusted Applications. PhD thesis, Department of
Electrical Engineering and Computer Sciences,
University of California at Berkeley, 1999.

[29] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang.
AirBag: Boosting Smartphone Resistance to Malware
Infection. In Proceedings of the Network & Distributed
System Security Symposium (NDSS), 2014.

[30] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
Practical Policy Enforcement for Android
Applications. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2012.

[31] Y. Zhou and X. Jiang. Detecting Passive Content
Leaks and Pollution in Android Applications. In
Proceedings of the Network & Distributed System
Security Symposium (NDSS), 2013.

[32] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh.
Taming Information-Stealing Smartphone
Applications (on Android). In Proceedings of the
International Conference on Trust and Trustworthy
Computing (TRUST), 2011.

38




