
Piston: Uncooperative Remote Runtime Patching
Christopher Salls

University of California, Santa Barbara
salls@cs.ucsb.edu

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

Nick Stephens
University of California, Santa Barbara

stephens@cs.ucsb.edu

Christopher Kruegel
University of California, Santa Barbara

chris@cs.ucsb.edu

Giovanni Vigna
University of California, Santa Barbara

vigna@cs.ucsb.edu

ABSTRACT
While software is now being developed with more sophisticated tools,
its complexity has increased considerably, and, as a consequence
new vulnerabilities are discovered every day. To address the constant
flow of vulnerabilities being identified, patches are frequently being
pushed to consumers. Patches, however, often involve having to shut-
down services in order to be applied, which can result in expensive
downtime. To solve this problem, various hot-patching systems have
been devised to patch systems without the need for restarting. These
systems often require either the cooperation of the system or the pro-
cess they are patching. This still leaves out a considerable amount of
systems, most notably embedded devices, which remain unable to be
hot-patched.

We present Piston, a generic system for the remote hot-patching
of uninterruptible software that operates without the system’s coop-
eration. Piston achieves this by using an exploit to take control of the
remote process and modify its code on-the-fly. Piston works directly
on binary code and is capable of automatically counter-acting the de-
structive effects on memory that might be the result of the exploitation.

ACM Reference format:
Christopher Salls, Yan Shoshitaishvili, Nick Stephens, Christopher Kruegel,
and Giovanni Vigna. 2017. Piston: Uncooperative Remote Runtime Patching.
In Proceedings of ACSAC 2017, Orlando, FL, USA, December 4–8, 2017,
13 pages.
https://doi.org/10.1145/3134600.3134611

1 INTRODUCTION
The modern world is run by interconnected software. Software han-
dles our communications, manages our finances, and stores our per-
sonal information. In addition, with the rise of the Internet of Things
(IoT), the number of embedded devices running complex software
has skyrocketed [49]. In fact, the number of bugs found in software
has been increasing over time [43]. Leveraging these bugs lets an
attacker perform actions ranging from the theft of money or data to,
in the case of the Internet of Things, influence the physical world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2017, December 4–8, 2017, Orlando, FL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134611

The common approach to remedying buggy software is patch-
ing. However, patches suffer from very slow adoption by users, in
part because many patches require system restarts to be applied or
to take effect [30, 32]. In the IoT world, the situation is even more
problematic, as device vendors often fail to incorporate effective and
easy-to-use means to update their products. As a result, even when
a vulnerability is found and publicly disclosed, it is difficult (or even
impossible) for users to install these patches. Finally, the IoT market
is a volatile space, with vendors entering and leaving the ecosystem.
This means that a vendor might not be around anymore while its
vulnerable devices are still connected to the network.

In the best case, when a vulnerability is discovered, the responsible
software vendor will simply develop a patch and push it to its users to
secure their devices. Unfortunately, this scenario does not always play
out. As mentioned above, a device might lack update functionality,
users might not understand how to apply patches (for example, when
firmware must be flashed), or the software vendor is no longer present.
In all these cases, we would like a mechanism that is able to “force”
a patch onto the vulnerable system and fix the vulnerability.

In this paper, we present a technique, called Piston, that leverages
the presence of bugs to automatically patch a system as the result
of exploiting these vulnerabilities. By leveraging an exploit to patch
software, Piston has the unique ability to patch applications without
direct privileged access or, in fact, without any access to the host at
all. Of course, exploiting a vulnerability in a target process and using
this access to patch the underlying vulnerability raises a number of
questions and poses significant challenges:

First, not all bugs can be used for patching – it must be possible to
take control of the victim process. “Fortunately,” a significant portion
of bugs manifest as memory corruption leading to control-flow hijack-
ing [4]. Our intuition is that, aside from taking control of a process for
nefarious purposes, a control-flow hijack can be leveraged to achieve
remote hot-patching of buggy software.

Second, leveraging an exploit to forcefully take control over a
process can have adverse effects on the execution of this process,
such as causing a crash. In some cases, this would not be a problem.
That is, Piston could take control over the process, update the vulner-
able application on the system (on persistent storage), and restart it.
Unfortunately, this approach does not always work. One problem is
that the running process might not have the privileges to write to the
permanent storage, and hence, cannot make the patch persistent. An-
other problem is that the software might control a critical process, and
interrupting its execution has unintended and unwanted consequences.
Hence, it is critical that we perform the patch in a way that allows the
process to continue its execution without interruption (longer than it
takes to patch the running code) or even a crash.

141

https://doi.org/10.1145/3134600.3134615
https://doi.org/10.1145/3134600.3134615

Previous work has introduced the idea of hot-patching; a system
able to apply patches to software while the software is running. Such
systems have been developed for vehicles [27], kernels [37], user-
space software [38], and, in general uninterruptible systems, or sys-
tems where correctness depends on their continuous execution. How-
ever, these approaches typically have two requirements: fore-planning
on the part of the author, and privileged access to the computer run-
ning the software. For example, kernel hot-patching systems, such
as KSplice [37], require a custom kernel module to be loaded, which
requires administrative privileges. Unfortunately, a large amount of
software does not meet these requirements. User-space software rarely
supports updates without a restart, and many embedded devices do
not give the user necessary permissions. To remedy such situations, a
new approach to patching is required. Specifically, Piston uses novel
applications of binary analysis to identify and automatically repair
data that is corrupted as part of the exploit. That is, our system ex-
ploits a vulnerability to take control of the running process, repairs
the damage that this exploit has caused, then patches the bug in the
code, and finally lets the (now secure) process continue to execute.

Here we will talk about four distinct applications of Piston.
Patching uncooperative systems. Certain systems, such as em-

bedded devices, require that updates be created and distributed by
the device manufacturer. This poses a problem to end users: these
patches are often only provided for a limited period of time, are pro-
duced very slowly, or are never produced at all (in fact, many smaller
embedded devices lack any sort of update mechanism). Even when
patches are distributed, it might be inconvenient to apply them. Some
devices need to be physically connected to a computer to apply the
update, and reboots are standard in almost all cases. Piston allows
these devices to be updated remotely, as long as the original firmware
has a vulnerability that can lead to code execution. The systems do
not have to be designed to be hot-patched with Piston, unlike with
prior approaches for hot-patching embedded systems.

Patching continuity-critical systems. In some applications, down-
time can be prohibitively costly, or even mean the difference between
life and death. A couple examples of these applications are critical
infrastructure components and medical devices. If a vulnerability
is discovered in such systems, it may take significant time before
an update can be applied in a safe, scheduled maintenance window.
As such, systems that have not been developed with hot-patching in
mind, may remain vulnerable to exploits for quite some time as the
maintainer prepares for the downtime to apply the patch.

Piston can instead use this vulnerability (if it leads to code exe-
cution) to provide the update while the system is running. This can
reduce the potentially dangerous delay, as well as preventing the need
to schedule emergency maintenance downtime in such cases.

Emergency patching. As more of our personal and business deal-
ing moves online, security becomes paramount. Whereas compro-
mises may have been simply embarrassing to an organization a decade
ago, today they can cause serious damage to companies. Thus, orga-
nizations must patch software flaws as soon as possible. However,
many organizations struggle to roll out security updates. If prop-
erly used, Piston could make them easier. Piston could be used as
a first-stage emergency patching system. In our example detailing
a patch of NGINX in Section 6, a company running internet-facing
NGINX services could scan their entire network and use Piston to

apply ephemeral (in-memory) emergency patches to every vulnerable
host to tide them over until a permanent patch can be deployed.

Helpful worms. Users and businesses are slow to update devices,
often leaving machines vulnerable long after patches are available. For
example, the Wannacry ransomware exploited a flaw for which a patch
was available three months earlier [22]. Previous work has explored
using “helpful” worms to apply patches on a large scale, without users
or admins needing to apply the patch [11]. One example is the Welchia
worm, known for removing the harmful Blaster worm and patching
the device. Piston could enable the creation of these helpful worms,
even when the vulnerable process does not have enough privileges to
apply the official patch, by applying the patch in-memory.

In this paper, we describe Piston’s approach and detail its im-
plementation atop an existing open-source binary analysis frame-
work [44]. We discuss situations in which Piston can operate au-
tomatically and semi-automatically, and evaluate its efficacy on a
handful of binaries from DARPA’s Cyber Grand Challenge with doc-
umented vulnerabilities. We target stack overflows in these binaries
and show Piston’s effectiveness at automatically remotely patching
through a memory corruption exploit. Additionally, we demonstrate
Piston’s applicability by remotely patching NGINX 1.4.0 against
CVE-2013-2028 [1], using that same vulnerability to achieve remote
code execution. We do this to show that Piston can be used on complex,
real-world binaries with very little analyst intervention.

In summary, this paper makes the following contributions.
Remote hot-patching. We detail our design for an automatic, re-

mote hot-patching system, called Piston, which generates patches
from compiled binaries.

Recovery from an exploit. We introduce novel techniques to auto-
matically recover a program’s state and continue execution after
an exploit.

Evaluation. We use a set of binaries from the DARPA Cyber Grand
Challenge to evaluate Piston’s effectiveness at achieving automated
remote patching through the exploitation in addition to evaluating
Piston’s application to real-world, commonly deployed software,
such as NGINX.

2 OVERVIEW
Piston is not the first approach to patching computer software at run-
time, a process known as hot-patching. In this section, we will give
a general overview of Piston, and its novelties, before moving on to
describe the individual steps in detail in the next section.

Unlike previous work, Piston is designed to patch uncooperative
systems remotely. As the systems it targets are not designed to be
patched in this way (hence uncooperative), this patching requires a
level of remote access unintended by the authors of the software being
patched. Piston achieves this access through the use of an exploit. This
adds two significant challenges to the patching process. First, unlike
existing hot-patching systems, patching must be performed during
the exploitation of the vulnerable process, rather than selecting easy
patch points. Second, the exploitation of the target process frequently
damages that process’ memory space. To allow the program to con-
tinue executing, Piston must repair the memory space of the program
after the patch is applied, all while the software is running.

Unlike some prior work, Piston functions directly on binaries, with
no access to source code. This allows Piston to work on proprietary

142

software without source code from the vendor, but also makes its work
more complicated, as a substantial amount of relevant information is
lost when a binary is compiled.

Piston is rather complex, and we introduce a number of terms
throughout this paper to simplify explanation. To aid the busy reader,
we have also compiled a glossary, containing definitions of these
terms, in Appendix A.2.

Piston has four pre-requisites for its operation:

Original binary. This is the binary program that is currently running
as the remote process or system.

Replacement binary. This is the “patched” binary. The remote pro-
cess will be functionally updated to this version of the binary after
Piston’s operation.

Exploit specification. Piston expects a description of how to trigger
a vulnerability in the remote process. This specification must be
able to achieve code execution in the remote process, which Pis-
ton will use to apply the patch. The exploit is expected to bypass
common mitigations such as ASLR and NX if they are used on the
target system.

Remote configuration. To properly model the environment of the
remote process, Piston needs to have a specification of its configu-
ration. For example, if the remote process is an nginxweb server,
its configuration file must be provided.

Given these inputs, the approach has three major steps:
1. Patch generation. Given its inputs, Piston performs in-depth

static analysis of the binary to identify the “patch” that needs to be ap-
plied in the memory of the remote process. This is done by leveraging
binary diffing techniques, which is discussed in detail, in Section 3.

2. Repair planning. Unlike traditional hot-patching systems, Pis-
ton exploits a process in order to patch it. Thus, Piston faces a unique
challenge: in the course of exploiting the remote process, the memory
state of the remote process might be damaged.

Piston has the capability to automatically generate a routine which
repairs the corrupted state of a process if it was exploited with a
stack-based buffer overflow. For cases which Piston cannot repair
automatically, including other types of exploits, Piston will require
the analyst to provide a repair routine that should repair the parts
of the process’ memory that Piston is unable to restore. Piston, can
report the parts of the state that were corrupted to the analyst to aid
in the creation of the repair routine. In our evaluation (see section 6)
we show that this repair routine can be automatically generated in the
majority of stack-based buffer overflows which we tested.

Piston may also require a rollback routine that undoes the partial
effects of functions that were interrupted by the exploit. In the case
where a patch involves making a change to a structure definition, Pis-
ton requires an analyst to supply a state transition routine. This routine
should be responsible for updating all instances of the structure in the
target’s memory to abide by the newly patched-in definition.

We talk in-depth about cases where Piston can fully automatically
repair the state and cases where analyst intervention is necessary in
Section 4.

3. Remote patching. Piston uses the exploit specification to craft
an exploit to inject the patcher core. The patcher core, running in
the remote process, retrieves the patch information, a state transition
routine, a rollback routine, and a repair routine. Piston may deem any
one of these routines to be unnecessary to the hot-patching process,

with the exception of the state transition routine where an analyst is
responsible for judging its necessity.

Piston uses the patcher core to then apply these received routines in
turn. After this is completed, the execution returns to the now-patched
remote process and Piston’s operation is complete. In-depth details of
the patching step are in Section 5. When it terminates, the remote pro-
cess will be running a codebase that is functionally equivalent to the
patched binary. A step-by-step example is provided in Appendix A.1.

3 PATCH GENERATION
Piston receives, as input, the original binary representing the target
process and the replacement binary to which the target process should
be updated. Given these binaries, it must identify specific patches that
must be applied in order to accomplish this update.

Similar to other systems, such as Ksplice, Piston applies patches
on a function level rather than replacing the entire binary in the re-
mote process. If a function is updated in the replacement binary, its
counterpart in the remote process (running the original binary) will
be replaced at runtime. If a function is found to be unique to the
replacement binary, it will be added to the remote process.

Additionally, in the updated binary, addresses of code and data will
usually change. Therefore any references to code and globals must be
updated in the replacement functions. Piston will fix the references
to point to those in the currently running process.

Piston’s preprocessing works in several stages:

(1) Piston matches updated functions between the original and replace-
ment binaries. The matches are filtered to eliminate superficial
differences.

(2) Piston chooses a location in the memory space of the remote pro-
cess, in which, to place remaining updated functions. These func-
tions are “fixed up” to allow them to function in the memory space
of the remote process and run in the context of the original binary.

The output is a patch set (represented as a diff of memory) that
Piston will apply to the remote process in the remote patching step.

3.1 Function Matching
First, Piston must identify the functions that need to be updated or
added to the remote process. This requires Piston to understand which
functions in the original binary correspond to which functions in the
replacement binary. We leverage existing binary diffing techniques
[17] for this step, allowing us to support the correlation of functions
even when there are no symbols in the binaries. These techniques work
on the control flow graph, so they are robust to small compiler artifacts.

At the end of this stage, Piston generates a set of pairs of matching
functions and a set of introduced functions. Additionally, a candi-
date set of original function to replacement pairs is constructed by
checking for differences in the content of matched functions.

Piston’s initial candidate set of updated functions contains some
false positives. This is because any change in the length of code will
cause addresses to be different in the replacement binary; in turn,
the differing addresses will show up as changes in the operand of
instructions. We consider all references to the same code or data be-
tween a pair of matched functions to be superficial. An example of
a superficial difference is shown in Figure 1.

Thus, Piston filters this set of updated functions to remove superfi-
cial changes. If an updated function contains only superficial changes,

143

push ebp
mov ebp , esp
sub esp , 0 x18
mov eax , 0x804a02c
:
0x804a02c " H e l l o %s "

push ebp
mov ebp , esp
sub esp , 0 x18
mov eax , 0x805a084

:
0x805a084 " H e l l o %s "

Figure 1: Superficial difference example

we discard it and its match from the candidate set. The remaining
members of the candidate set, along with the introduced functions,
are the ones that Piston will patch into the new binary.

3.2 Replacement Function Placement
Because Piston replaces individual functions rather than the entire
binary, it runs into the challenge of function placement. As previously
discussed, replacement functions may be larger than their original
counterparts. Because of this, Piston chooses a new address in the
executable memory space of the remote process to place replacement
functions. This requires an addition function fix-up step: any relative
references in the function will need to be updated to compensate for
the new location.

New functions or data that were not in the original binary can be
resolved by adding the code or data to the new process. Newly added
code and data might also have references to other code and data, so
it needs to be handled similarly until all references are resolved.

After determining a place for the replacement function in this new
area of memory, Piston places a trampoline (direct jump instruction)
at the beginning of the old function. Piston checks that the trampoline
will fit entirely inside of the first basic block of a function to ensure
that execution will never jump to the middle of an instruction. This
is useful for several reasons. First, it lets us replace the function while
keeping all references to it, such as function pointers and direct calls
from other places in the code. Second, if there are any return addresses
to code inside the original function on the stack, they remain valid,
although the patched code will not be executed until the function
returns. Note that this means that Piston can only patch functions that
will eventually return, and infinite looping functions, such as a main
loop, cannot be patched. This minor limitation is also common among
other hot-patching systems.

4 REPAIR PLANNING
Piston achieves the hot-patching of a remote process by leveraging
an exploit to achieve code execution in the context of the process, and
then using this capability to inject patched code before resuming pro-
cess execution. Unfortunately, exploits typically cause the corruption
of the memory space of the remote process, and resuming a process
after such corruption can be non-trivial.

For example, during the exploitation of a stack-based buffer over-
flow, process data on the stack is overwritten with either shellcode or
a ROP chain, ultimately leading to the hijacking of control flow by the
exploiter. If this memory corruption is not corrected before execution
is resumed, the process will simply crash. To remedy this, a repair
step is required before Piston can resume the patched process.

Piston can fully automatically generate a repair routine in cases of
stack-based buffer overflows. This automatic approach uses redundant
data in memory and registers to restore the state of the process. In prin-
ciple, this approach applies to any corruption, not just that on the stack.

However, empirically, we have not found an adequate level of data re-
dundancy in other classes of exploits, and therefore, require the analyst
to provide the repair routine if the exploit is not a stack-based buffer
overflow. We discuss the redundancies inherent in stack data in Sec-
tion 4.3 and the limitations in repairing other corruption in Section 7.
We focus on buffer overflows in Piston’s current implementation, as
they still represent the third most common type of vulnerability in all
software [4]. Furthermore, a recent analysis of trends in CVE’s found
that buffer overflows rank the highest for severity, and that buffer
overflows are the second most common vulnerability that applies to
binary software, behind denial of service vulnerabilities [13].

Piston carries out an offline analysis of the original binary and the
exploit specification to assess the damage that an exploit causes and
creates such a repair plan. This analysis is done off-line, before the
patching process itself, and the repair plan is applied to the remote
process after it is patched. The on-line patch application step is dis-
cussed in Section 5. Piston assumes that the exploit it will use to patch
the remote process will hijack execution either partway through a
function or at the return point of a function. We term this the hijacked
function, and reason about exploitation after-effects as they relate to
this function. We name the function that calls the hijacked function
the caller function.

Piston can restart the remote process after patching if the following
conditions are met:

(1) The hijacked function either completes successfully (i.e., the ex-
ploit does not influence its operation and simply hijacks the control
flow when it returns), or its effects (such as memory writes) can
be analyzed and undone and the function can be restarted. In the
former case, Piston can simply return to the caller function after the
remote process is patched. However, in the latter case, the effects
of the hijacked function, such as the modification of memory and
registers, must be undone. After undoing this modification, Piston
can return to the call-site of the hijacked function, and trigger its
re-execution after the patching is complete.

(2) Any state of the caller function that was corrupted (such as local
variables within in the stack frame) can either be recovered or is
not needed after the patched process resumes. If the caller function
has corrupted state that cannot be recovered, Piston can try to treat
the caller function as hijacked and, instead, undo its effects and try
to restart it. In this case, Piston’s recovery process is repeated with
the prior caller function being the new hijacked function and the
caller of the original caller function to be the new caller function.

To meet these requirements, Piston creates a repair plan that in-
cludes two routines that will be executed inside the remote process
after it is exploited. These routines are the rollback routine, which
will undo the actions of the hijacked function (if necessary), and the
repair routine, which will restore the local state of the caller function
to be non-corrupted.

Automatically generating these routines represents a significant
challenge, and there are two cases when manual analyst intervention
might be required. First, depending on the complexity of the hijacked
function, Piston might be unable to automatically undo its effects.
In this case, the analyst must manually provide the rollback routine
that will be run in the remote process before the hijacked function is
restarted.

144

Second, the exploit might cause irreparable damage to the caller
function’s state. In this case, Piston provides two options to the an-
alyst: the analyst can manually provide a repair routine, or Piston
can attempt to undo and restart the caller function as well. To do so,
it moves further up the callstack, classifying the caller function as
the new hijacked function and that function’s caller as the new caller
function and repeating its analysis.

Piston creates the repair plan in three steps:
Exploit effect reconstruction. To reason about the state of the re-

mote process after exploitation, Piston carries out the exploit against
the original binary in an instrumented environment. The trace that
is created during this step is used in further analyses.

Hijacked function analysis. Piston analyzes the exploit trace to de-
termine whether the hijacked function had successfully completed
its work. If the hijacked function was interrupted, Piston must annul
the function’s effects and restart it after the patch completes. To
understand how to properly undo the effects of the function, Pis-
ton performs an in-depth analysis of the function using symbolic
execution techniques.

Caller state recovery. Next, Piston determines the extent of state
clobbering outside of the hijacked function’s stack frame by ana-
lyzing the exploit trace. It attempts to create a state repair plan for
this damage, leveraging symbolic execution of the caller function
to identify uncorrupted parts of the state that can be used to restore
corrupted values.
Different types of exploits cause different damage to the remote

process. For example, a simple pointer overwrite might not require
much memory repairing, whereas a stack overflow can corrupt much
of the stack. In its current state, Piston can automatically create a
repair plan for memory corruption resulting from most stack-based
buffer overflows. Piston automatically detects corruption resulting
from stack-based overflows as well as heap-based overflows, but au-
tomatically supporting corruption detection for additional exploits
simply requires a routine to recognize the corruption they cause (i.e.,
expanding the processes described in Sections 4.1.1 and 4.1.2).

4.1 Exploit Effect Reconstruction
Piston generates an exploitation trace to reason about the damage that
the exploit will cause to the remote process. The exploitation trace is
created by executing the original binary (configured with the remote
configuration), using the exploit specification as input. During the
trace, control flow transitions and writes to and reads from registers
and memory are recorded for future analysis.

4.1.1 Detecting the Exploitation Point. To understand what
repairs are needed after exploitation, Piston must classify memory
writes based on whether or not they are a result of the exploit or of
the intended operation of the binary. Piston does this by identifying
the exploitation point. Intuitively, the exploitation point is a point in
the trace after which the process can no longer be considered to be
operating properly.

For stack-based buffer overflows, Piston uses a simple heuristic
to identify this point: Piston tracks all saved return addresses and
callee-saved registers throughout execution. When one of these is
overwritten, Piston assumes that it has identified the exploitation
point. The function where this exploitation point takes place, is the
hijacked function.

For heap-based overflows, Piston tracks calls to heap allocation
and deallocation functions such as malloc(), realloc() and
free(). 1 During the exploitation trace, Piston keeps a list of the
heap buffers and updates it at every call to these functions. At every
write to the heap, Piston checks whether or not the address resides in
one of these buffers. If the address does not reside in any such buffer,
it is assumed that the exploitation point has been identified.

One caveat of these heuristics is that Piston cannot identify the ex-
act exploitation point for exploits which perform the overflow entirely
within a stack frame, or within a struct on the heap. Although advanced
type analysis can automatically infer the data types and structure of ob-
jects and stack frames [26] [36], such analysis is out of the scope of this
paper. Piston can be extended with additional routines in order to sup-
port automatic detection of corruption of other exploits such as these.

4.1.2 Identifying Corruption. Once the exploitation point has
been identified, Piston can determine the parts of the program state
that were corrupted. Again, a heuristic specific to buffer overflows
is leveraged: Piston marks as “corrupted” all data that was written
to the buffer that was overflowed. This step is done retroactively by
analyzing all of the writes to memory that occurred.

Piston uses a simple heuristic to identify buffers: it assumes that
all writes that are initiated by the same instruction (not the same in-
vocation of that instruction, but all invocations) are writes to the same
buffer. This approach is inspired by the buffer detection proposed
by MovieStealer [50], which groups buffers by loops instead of in-
structions. Piston marks all writes by the same instruction during the
invocation of the hijacked function as writes to the same corrupted
buffer. We term this instruction the overflow instruction.

4.1.3 Exploitation Trace Soundness. It is possible that the
analysis results might not perfectly match the state of the remote pro-
cess during exploitation. For this reason, Piston augments the trace
with more general analyses in other steps and only assumes that two
pieces of information from the trace are accurate:

(1) The exploit will overflow the buffer by the same number of bytes in
the exploitation trace as it will when run against the remote process.

(2) The hijacked function and its caller function will be the same on
the remote process as in the exploitation trace.
We have not seen a case that violates either of these assumptions,

but it is a theoretical possibility.

4.2 Hijacked Function Analysis
Having identified the hijacked function and the range of the corrupted
data, Piston must next determine whether the hijacked function ter-
minated successfully or whether it needs to be restarted.

Conceptually, the determination of whether the hijacked function
terminated successfully is simple: Piston considers the function as
having successfully completed if it can show that no action was taken
based on corrupted data. This happens fairly frequently: modern com-
pilers tend to avoid placing local variables after buffers in memory,
since doing so would allow the local variables (instead of just the
return address) to be overwritten by a buffer overflow, potentially
allowing the attacker to influence program behavior even before the

1In statically linked binaries, such as firmware, an extra step is necessary identify these
functions as they may not contain symbols. We use test cases, comprising of input states
and expected outputs to identify these functions as described in [44].

145

function returns. However, in cases where this is not the case (either
because the compiler did not choose such a placement or because
there is more than one buffer on the stack), we consider the hijacked
function’s operation to have been interrupted, and Piston must undo
the corrupted effects and restart the function after patching.

4.2.1 Checking for Successful Completion. Functions have
memory that can be written to without influencing the operation of the
remainder of the program; we call this memory scratch space. Scratch
space is considered to be the local stack frame as well as any memory
regions which are freed before the return site of the function. Data in
these ranges will not be used outside the function in a well-formed
program. Other data, such as globals, heap data which is not freed
inside of the function, and return values may influence the remainder
of the program and are not considered scratch space.

Piston determines the successful completion of the hijacked func-
tion during the dynamic analysis of the offline exploitation trace. At
the exploitation point, the corrupted data range is marked as tainted,
and the taint is tracked through the remainder of the function. If any
branch is influenced by tainted data or if tainted data is written out-
side of the scratch space, then the function is considered to have not
completed successfully. We filter out the restoration of callee-saved
registers at the end of the function, as these are considered part of the
state of the caller and will be restored later.

4.2.2 Checking for Repeatability. When Piston is unable to
prove that the hijacked function completed successfully, it will check
if its execution can simply be repeated after the remote process is
patched. The hijacked function can be safely restarted if all of the
inputs (i.e., values the function reads from memory or registers) to
the interrupted invocation can be recovered. If these inputs can be re-
covered, the hijacked function can be re-executed in the same context
as its interrupted invocation and will carry out the same actions.

Piston groups the inputs that a function receives into three cat-
egories: local state data, which is passed to the hijacked function
on the stack or in registers, global state data, which is retrieved by
the hijacked function from the heap or global memory, and environ-
ment inputs, which are retrieved through system calls. The hijacked
function is considered repeatable if these conditions hold:

Local state data is recoverable. Arguments on the stack, which might
be clobbered during the overwrite itself or by actions taken by the
hijacked function after exploitation, must be recoverable, as must
arguments passed to the function through registers. This recovery
is explained in Section 4.3.

Global state data is recoverable. All data in registers and memory
that the hijacked function reads must be recoverable. This means
that the hijacked function cannot irrecoverably overwrite its inputs.

System calls are repeatable. The system calls invoked out by the
hijacked function must be repeatable. System calls that cannot
simply be re-executed, such as unlink (since, after the first call,
the file will no longer exist), violate this condition.

The first condition will be checked during the caller state recovery
step. To check the latter two conditions, Piston collects a list of all
memory accesses and system calls in the exploitation trace, which
can then be checked for any violations to the repeatability conditions.

To detect changes to the global state, the list is analyzed to build a
set of any potentially corrupted global state by the original run of the

hijacked function. After this, the list is analyzed again to see if any of
the corrupted global state can be used as an input to the repeated invo-
cation of the hijacked function. Conceptually, this happens when the
hijacked function reads in some global value before writing to it (for
example, incrementing a global counter). The second invocation will
use the value corrupted by the first, resulting in an inconsistency in
execution between the interrupted invocation and repeated invocation
of the hijacked function.

Piston will attempt to undo simple global changes where no deref-
erence of data takes place. We use under-constrained symbolic exe-
cution (UCSE), an extension of dynamic symbolic execution that en-
ables the analysis of functions without the requirement of context [41].
UCSE works by identifying memory dereferences of pointers that are
unknown due to missing context (for example, a pointer that would
have been passed as an argument) and performs on-demand memory
initialization to allow the analysis to continue.

Piston explores the hijacked function with UCSE, ignoring the
context from the exploitation trace to avoid under-approximating the
remote state. If UCSE can determine how a global value will change
during execution of the hijacked function, then Piston can recover
the value automatically. Note that, like other techniques based on
symbolic execution, UCSE can succumb to path explosion. When
this occurs, Piston will be unable to automatically recover changes
to global state. If any changes to global state are detected that Piston
is unable to recover, analyst will be required to provide a rollback
routine to undo the effects of the interrupted execution.

After checking for changes to the global state, Piston carries out an
analysis of system calls. Specifically, it checks for system calls that
might not be repeatable. For example, if the interrupted and repeated
invocation of the hijacked function both try to unlink the same
file, an inconsistency between their executions will arise. Because
Piston does not have a complete model of all system calls, it presents
these lists to the analyst for review. If any system calls are deemed not
repeatable, then the analyst must provide a rollback routine to undo
the effects of the system calls.

4.3 Caller State Recovery
Regardless of whether the hijacked function has successfully run or
needs to be restarted, the state of the caller function must be recovered.
Although the general problem of restoring registers and memory to
the state of the execution before the overflow is undecidable, we have
found that there is often enough data remaining to recover the orig-
inal state. Our key insight is that, due to the way programmers write
source code and compilers compile it, the stack frame and registers of
a function often contain redundant data, which can be used to restore
the corrupted data. In our case, this means that the value of a corrupted
stack variable or register can often be determined as some equation
of other stack or register values.
1 mov eax , [ebp+ var_14]
2 mov edx , [ebp+ var_8]
3 sub eax , edx
4 mov [ebp+var_3C] , eax
5 c a l l h i j a c k e d _ f u n c ()

Listing 1: An example showing where stack variables have
redundant information.

146

Before delving into Piston’s approach to state recovery, we provide
and briefly discuss an example of such redundancy in Listing 1. As-
sume the programs instruction pointer is currently at line 5. The stack
variable var_3C is redundant since it can be computed from the
other stack variables, specifically, var_3C = var_14 - var_8.
Thus, if the overflow clobbers var_3C, it can be recovered from
var_14 and var_8.

4.3.1 Data Filtering. Before recovering corrupted state, Piston
must identify what state needs to be recovered. If the hijacked func-
tion completed successfully, we must restore any stack variables or
registers that were corrupted by the exploit and will be used later in the
caller function. Additionally, if the hijacked function was interrupted,
we must also restore all of the arguments (on the stack and in registers)
that are passed to the hijacked function.

As described in Section 4.1, Piston identifies the range of registers
and stack variables that were clobbered by the exploit. In fact, not all
of these values must be recovered. For example, if a callee-saved reg-
ister is written to immediately after the hijacked function returns, its
value after exploitation, whether or not it was corrupted, is irrelevant,
and there is no need to restore it. Piston identifies these cases by com-
puting the control flow graph of the hijacked function and identifying
accesses to stack variables and registers. Then a dependency analysis
is run on the control flow graph to check if any path exists where a
corrupted register or stack variable is read before it is overwritten. If
no such path exists, Piston marks the register or stack variables as
unused and filters it from further state recovery steps.

One caveat must be mentioned for stack values. In some cases, the
caller function might pass a pointer to the stack as an argument to the
hijacked function. Normally, this happens when a buffer or structure
resides on the stack and must be used by the hijacked functions. If
the hijacked function performs complex operations on this pointer
(such as passing it into other functions or system calls), Piston’s static
analysis is unable to safely recover these effects. Piston makes the
assumption that the passed-in pointer points to the beginning of the
structure and assumes that the hijacked function may have corrupted
anything on the stack after this pointer.

At the end of this step, Piston has a recovery set of the registers
and stack values that must be recovered before the caller function can
resume execution.

4.3.2 Data Recovery. Piston recovers state data by analyzing
two locations in the caller function: the function prologue and the
hijacked function call site.

Generally, functions will initialize several registers in the prologue
and use them for the remainder of the function. This is especially true
for registers such as the base pointer (i.e., ebp on x86), which are
typically set at the beginning of a function. The values of registers that
are set in this way can often be determined by analyzing the prologue
of a function. Likewise, the caller function prepares the call-site of
the hijacked function by copying its arguments into argument stack
variables and registers. Most of the time, these arguments are passed
by value and are drawn from other parts of the state, creating data
redundancy that can be leveraged to restore their values when they
are corrupted by the exploit.

To avoid under-approximations, Piston does not reuse the exploita-
tion trace in the data recovery step. The control-flow path from the
trace may differ from the one that will be executed on the remote

server. For example, the remote server may have internal state such
as a linked list, which will result in a different control flow than the
one in the concrete trace.

To recover data, Piston will analyze two locations with symbolic
execution. The first is the start of the caller function up until the first
branch. The second location is the callsite of the hijacked function,
starting at the earliest basic block from which there is only one path
that reaches the call.

Piston analyzes these locations with under-constrained symbolic
execution and extracts the relationships between data that must be
recovered and the uncorrupted data currently existing in the state. We
represent these relationships as equations that produce the recovered
values of corrupted data when provided the values of the uncorrupted
data. These equations are then examined to verify that all values in
the recovery set can be recovered from existing data in the stack.

For example, in Listing 1, when Piston symbolically analyzes
the callsite of the hijacked function it will generate a constraint that
var_3C = var_14 - var_8. If Piston determines thatvar_3C
will be overwritten, but not var_14 or var_8 then it will determine
that var_3C is recoverable.

If all values in the recovery set can be recovered from existing data
on the stack, Piston saves this set of equations as the repair routine.
Otherwise, Piston requires the analyst to provide a partial repair rou-
tine that recovers corrupted values that are still missing. The repair
routine will be executed after the remote process is patched and before
it is restarted, as explained in Section 5.

5 REMOTE PATCHING
Until this point, Piston’s analysis has been offline: no connection to
the remote process has been made. This section describes how Piston
uses the provided exploit specification to achieve code execution in
the remote process, and applies the results of the offline analyses to
repair, patch, and resume the remote process.

The astute reader will recall that, in the previous analyses, Piston re-
covered the following information for use during the remote patching:

Patch set. In Section 3, we described how Piston identified the set
of patches to apply to the remote process to turn it into a functional
copy of the replacement binary.

Rollback routine. We introduced in Section 4.2 Piston’s strategy for
undoing the effects of the hijacked function, if it is determined to
have been interrupted by the exploit.

Repair routine. Piston’s approach to creating a routine to repair the
remote process state after exploitation is detailed in Section 4.3.

While generating this information is complex, the rest of the pro-
cess is straightforward. Piston executes the following steps, in order:

(1) First, Piston launches the exploit against the remote process. The
exploit hijacks the control flow of the remote process and loads a
first-stage payload, provided by Piston, which facilitates the execu-
tion of the rest of the repair and patching tasks. We call this payload
the patching stub.

(2) Next, Piston transfers the repair routine to the patching stub. The
patching stub executes the repair routine to repair the damage done
by the exploit to the remote process state.

(3) If, during the prior offline analysis, Piston determined that the ex-
ploit caused an interruption of the hijacked function (i.e., it did not
terminate successfully), Piston transfers the rollback routine to its

147

patching stub and executes it to undo the effects of the hijacked
function. As discussed in Section 4.2, in this case, the hijacked
function will be restarted after the patching process is complete.

(4) Piston transfers the patch set to the patching stub. The patching stub
applies this patch set to the remote process, transforming it into a
program that is functionally equivalent to the replacement binary.

(5) Finally, the patching stub returns control to the remote process.
If the hijacked function completed successfully, it simply returns
to the instruction, inside the caller function, after the call to the
hijacked function. Otherwise, control flow returns to the beginning
of the hijacked function.

After these steps are completed the remote process has been hot-
patched. The remote host is now effectively running the replacement
binary, and this has been done without restarting the entire process
or performing any permanent changes.

The rest of this section will discuss other minor points relating to
Piston’s remote patching step.

5.1 Exploit Requirements
Piston has very simple requirements for the provided exploit spec-
ification. In short, the specification must describe an exploit that
achieves code execution and loads Piston’s patching stub. As dis-
cussed throughout the paper, if this exploit uses a stack-based buffer
overflow to achieve code execution, Piston can often carry out the rest
of its work automatically. Otherwise, the user must also provide the
rollback and repair routines.

5.2 Optional Patch Testing
Piston supports an optional patch testing step between the offline anal-
yses and the actual remote patching described earlier in this section. If
the analyst provides a test case to verify that the process has been prop-
erly patched, Piston carries out a test run against a locally-executed
copy of the original binary. After patching this local process, Piston
verifies that the test case passes when run against it. While this is a very
straightforward concept, we found that it greatly eased cases when
rollback and repair functions had to be provided manually by the user.

5.3 Persistence
Piston is meant to patch the running process ephemerally (i.e., with-
out making any actual changes to the filesystem or firmware). While
Piston can, during the patching process, execute a user-provided per-
sistence routine to persist its changes (for example, by overwriting
the original binary on disk), this is not Piston’s standard use-case. In
fact, we expect that, generally, the process that Piston patches will
not have the proper access to write to its original binary on-disk. For
example, server processes on Linux almost never have write permis-
sions to their own binaries, and Piston would be running with the
same permissions as the server process while patching it.

To patch forking services, Piston would need to apply the patch to
the parent process. There are no theoretical limitations which prevent
Piston from attaching to, and patching, a parent of the exploited pro-
cess, granted that our exploited process has permissions to attach to a
parent and in addition, that the underlying operating system supports
process tracing.

Ephemeral patching itself is a very powerful technique, even with-
out the ability to commit the changes to disk. In Section 6, we show-
case how to quickly patch a security flaw in a web server to which the
analyst may not have access. That application of Piston does not need
to be persistent to be useful. Furthermore, other hot-patching systems
such as PatchDroid choose to only patch ephemerally [31].

6 EVALUATION
We evaluate Piston in two ways. First, we test its ability to recover
the program state after a stack buffer overflow on all of the applicable
binaries from the Cyber Grand Challenge Qualifying Event (CQE).
For all CQE binaries with stack buffer overflows, we test if Piston can
recover enough state in the caller function, such that the state can be
completely restored after an exploit achieves arbitrary code execution.
Then, we test Piston’s patching functionality on five of those binaries
as well as a real-world binary, NGINX 1.4.0 (which is vulnerable to
CVE-2013-2028) by creating exploits and using Piston to apply the
patch, recover state, and resume execution.

6.1 Dataset
We chose targets for Piston that would allow us evaluate Piston’s
state recovery methodology. We use binaries from the Cyber Grand
Challenge because these represent a large number of binaries con-
taining a wide variety of functionality. Additionally, CGC binaries
are guaranteed to have at least one vulnerability as well as a Proof
Of Vulnerability (POV) which causes it to crash. As such, these tar-
gets are used to test Piston’s recovery capabilities in a wide range of
binaries. We took the 126 single-binary applications from the CQE
and discarded any which did not crash with the provided POV in our
testing environment leaving us with 102 binaries. Of those 102, we
found that 24 crashed due to an inter-frame stack overflow. We use
all 24 for testing Piston’s recovery capabilities.

To test the end-to-end patching and recovery from an exploit, we
chose five binaries from the above set. For each of these binaries we
had to write an exploit which would give us arbitrary code execution.
This was required because the provided POVs only lead to crashes,
many of which do not crash with control of the instruction pointer.

Along with the CGC binaries, we chose NGINX 1.4.0, which is
vulnerable to CVE-2013-2028, to test Piston on a real-world applica-
tion. NGINX is proves to be an interesting candidate due to its unique
architecture among webservers: it initializes a fixed number of worker
processes that persist throughout the entirety of the server’s uptime.
This allows us to patch the individual workers of the NGINX server
by repeatedly connecting to the server.

6.2 Recovery Results
To test Piston’s recovery capabilities we used the 24 CQE binaries
containing an inter-frame stack overflow. We constructed two patch-
ing stubs, one that relies on the absence of NX (shellcode stub), and
one that bypasses NX using return oriented programming (ROP stub).
The shellcode stub is 23 bytes in length whereas the ROP stub is 40
bytes. We trace each of those binaries with their accompanying POVs
and use Piston’s built-in functionality to identify the exploitation
point and the hijacked function in which the overflow occurs. Then
we set the overflow amount to that which is needed for each of the
patching stubs and check if piston can recover the state.

148

Piston was able to correctly identify the corruption point in all
cases, and was thus able to identify the corrupted data. For the shell-
code stub, Piston was able to completely recover the corrupted data
for 22 out of 24 binaries. For the ROP stub, which clobbers more bytes
of the stack, Piston was able to completely recover the corrupted data
for 20 out of 24.

6.3 End-To-End Results
Piston was able to patch all five binaries from our CGC end-to-end
dataset as well as patch NGINX, with only two of these six bina-
ries requiring input from the analyst. Only one of these binaries,
CROMU_00038, required the analyst to write code. In the other one
that required input, NGINX, Piston was unable to generate a roll-
back function, but the analyst was able to quickly determine that no
rollback function was actually necessary.

In the one CGC binary that required the analyst to write code, Pis-
ton’s patch testing step reported a possible problem. Upon inspection,
we discovered that the patched binary sanitizes the input before con-
trol reaches the hijacked function, but the runtime patch was restarting
the hijacked function with the unsanitized input. By providing a repair
function that sanitized the input in memory, the patching was able to
proceed as expected.

As part of our experiments we evaluated how much stack space in
the caller function could be overwritten before Piston would need to
undo and restart the caller function as well. We iteratively increased
the amount of overflow until Piston reported that the caller function’s
frame could not be recovered. These results are shown in Table 1. We
found that there was a large variation in the number of bytes in the
caller’s frame that were recoverable; the results ranged from only four
bytes to over three hundred.

6.4 NGINX Patching
In July of 2013, both NGINX version 1.3.9 and 1.4.0 were found to
be vulnerable to a stack-based buffer overflow which results from
improper handling of HTTP chunked transfer-encoding (this vulner-
ability was given the label CVE-2013-2028). NGINX is not a simple
binary; the source code alone for this version approaches 180,000
lines of code. By successfully patching NGINX through this CVE,
we demonstrate Piston’s effectiveness and applicability.

We began our evaluation by compiling two versions of NGINX;
one version represents the original binary, and the other is the re-
placement binary. We obtained the original binary by downloading
the NGINX 1.4.0 source code and compiling it. For the replacement
binary we took the same source code and applied the CVE-2013-2028
patch file provided by nginx.com [3]. Next we developed an exploit
specification targeting the vulnerability. Our exploit specification
is simply an exploit script which gets to shellcode execution on an
NGINX worker process; many exploits for this particular CVE can
be found online [2, 29].

While Piston was analyzing the hijacked function, it determined
that the function was interrupted and would need to be repeated. Upon
determining that the hijacked function must be repeated, Piston iden-
tified small changes which would be made to the global state of the
process on a repeated call of the function. Piston was unable to gen-
erate a rollback routine for these particular changes, so deferred the
creation of a rollback routine to the analyst, highlighting the changes

made during the repeat. In a matter of seconds, we, as analysts, can
see that the effects of a repeat call are inconsequential, and inform
Piston to carry on without rollback.

Next, Piston was able to successfully determine that four bytes
of the caller’s state were destroyed, as a result Piston then generated
a repair routine which recovered these four bytes. However, for the
sake of evaluation, we show that 28 bytes of the caller’s state could
have been corrupted without hindering Piston’s ability to generate a
repair routine automatically.

After these steps, the brunt of the analysis is complete. Piston now
executes the patcher using the exploit specification provided to first
get shellcode execution. With shellcode execution Piston then reads
in and executes the repair routine generated earlier. Then, Piston’s
shellcode performs the patching process and soon reports that the
patching is complete.

We verify that the NGINX web server is still running by manually
making a request with a browser. Next, we verify that the server has
successfully been patched by attempting again to exploit the server,
but this time attempting to redirect control flow to an invalid address.
After this exploit attempt, we again make a request to the web server
with a browser and verify that NGINX has withstood crashing (we
configured NGINX to use a single worker, so a crash in a single worker
would have resulted in the entire server being inoperable).

7 LIMITATIONS
One primary limitation of Piston is that the fully automated recovery
steps only succeed on stack-based buffer overflows. For other types of
corruption, an analyst typically needs to examine the data which was
identified as corrupted, and then decide how it can be recovered. The
reason for this limitation is that although the Data Filtering and Data
Recovery in Section 4.3 can be thought of in generalized steps, they do
not produce adequate results when applied to data outside of the stack.

Data Filtering. On the stack frame, we have the advantage of detect-
ing which instructions access stack variables, whereas for data in
the heap, due to limitations in the current state of static analysis,
it is rare to know which instructions will read or write from a spe-
cific object. Some thorough type analyses [26, 36] may be able to
identify accesses to objects of the same type, but cannot identify
if those accesses are to the same object which was corrupted. Data
filtering of heap corruption might require a semantic understanding
of the program. Such understanding is outside the reach of current
techniques.

Data Recovery. Data recovery requires data redundancy. That is, we
must be able to automatically deduce the value of data from other
values in memory or registers. In the case of stack data, we showed
how other values can provide this redundancy in Section 4.3. How-
ever, if we consider corruption to heap or globals, one problem
is that the data is typically created at an earlier point in program
execution, often in a stack frame which has since been discarded.
Unless we still have the stack frame in which a heap object was ini-
tialized, we are unlikely to have data which provides the necessary
redundancy to recover the object.

However, there are cases when Piston can be applied to vulnera-
bilities other than stack overflows.

Here, we describe one such case, in which Piston was able to au-
tomatically patch a binary using a heap overflow vulnerability. The

149

Binary Name Function
Interrupted?

Fully Automated
Rollback?

Fully Automated
Repair?

Caller Stack
Bytes Recoverable

CROMU_00017 Yes Yes Yes 144
CROMU_00020 Yes Yes Yes 52
CROMU_00037 No N/A Yes 4
CROMU_00038 Yes Yes No 4
CROMU_00039 Yes Yes Yes 303
NGINX Yes No Yes 28

Table 1: Breakdown of patches from Piston

CGC binary NRFIN_00004, which was not included in our testing
dataset because it does not have a stack-based buffer overflow, con-
tains an intra-object heap overflow. The heap object contains a string
followed by several function pointers. When the string overflows, the
function pointers are overwritten, and another command handler will
call an overwritten pointer.

We began by designing a custom heuristic to Piston to detect the
corruption point. The heuristic was that for heap objects, any pointer
to a function cannot be changed to point at an address that is not the
beginning of a function. With this heuristic, Piston correctly identifies
that the two function pointers in the heap object were corrupted. From
there, Piston follows its normal mode of operation: it injects the patch-
ing stub into the binary, executes it, replaces all functions in the patch
set, then restarts the execution of the hijacked function, which previ-
ously contained the heap overflow. Piston’s underconstrained sym-
bolic execution can detect that the corrupted pointers will be overwrit-
ten by the restarted (and patched) hijacked function, so no data needs
to be recovered, avoiding the problem of the lack of data redundancy.

This is not a general application of Piston to heap overflows, so we
include it here as opposed to the core approach discussion. However,
it demonstrates that, with minor manual work, Piston can be adapted
to a wider range of vulnerabilities. In this case, it only required a
different corruption point detection heuristic.

8 RELATED WORK
Piston leverages many binary analysis techniques to analyze an ex-
ecutable, determine how to remotely apply the patch, exploit, and
repair the remote process. In this section, we will detail work that
proposed the program analysis techniques that we use in our system,
and frame Piston in relation to other hot-patching techniques.

8.1 Hot-patching
Piston’s core contribution is in extending the concept of hot patch-
ing to remote systems. This can include, like in our evaluation, re-
mote user-space processes but, additionally, could include internet-
connected embedded devices that may otherwise not have an update
functionality.

Before Piston, hot patching techniques, or dynamic software up-
dating approaches have been constrained to patching local processes,
often with explicit support from the host system. Originally designed
to patch small C programs, they have scaled up to the ability to patch
the Linux kernel [5, 34, 35, 45, 46]. However, aside from being reliant
on source code, these approaches require administrative access to the
host machine, which is often unavailable.

To reduce the difficulty of and level of access required by hot-
patching systems, techniques have been developed to include hot-
patching support in the applications themselves. These systems,
which are available for both user-space software [23, 24] and embed-
ded device firmware [21, 27, 28], ease the administrative requirement,
but still require pre-planning to include this functionality.

One hot-patching system, ClearView [38], is worth mentioning
as it works by monitoring binary code, detecting when it is being ex-
ploited, and automatically generating and applying defensive patches.
In the latter step, ClearView attempts to repair the state of the ex-
ploited process state by enforcing invariants. The concept of repairing
the process state after exploitation is similar between ClearView and
Piston. However, unlike ClearView, Piston does not require admin-
istrative access or, in fact, any presence on the device on which the
process that needs patching is running. Piston patches, repairs, and
resumes remotely, leveraging an exploit to achieve access.

Like most hot-patching systems, Piston relies on the analyst to
provide a state transition routine when a patch that it is applying
would modify data structures in the program. Recently, some work
has been done in automatically recovering such a state transition
routine [14, 20]. Though current work requires access to source code
(which Piston does not have), a future extension of these techniques
to binary code would increase the range of patches that Piston can
automatically apply.

Exploit writers targeting operating system kernels have also found
themselves repairing state of various parts of memory to allow the
kernel to continue running after their exploit payload has been run.
This is similar to the recovery and rollback routines used by Piston,
but kernel exploiters have done this in a manual, ad hoc manner [39].

8.2 Code Injection
Piston patches binaries by injecting new code into the running process.
The concept of injecting code at runtime with an exploit has been
explored before, albeit not for patching purposes.

Windows malware often achieves code injection by inserting a
DLL into the memory of the victim process [51]. This is done to
add malicious functionality to a local process. However, this is done
locally, as opposed to Piston’s remote code injection, and cannot be
done through an exploit. To our knowledge, Piston is the first approach
that can inject its code remotely, via an exploit, and repair the damage
caused by that exploit so that the application can continue.

8.3 Analysis Techniques
We utilize many existing binary analysis techniques to build Piston.
However, we claim no advancement in the base of binary analysis:

150

Piston’s contribution is in the application of binary analyses to remote
hot-patching, in composing known analysis techniques in a novel way.

First, we use binary diffing techniques to identify what needs to be
updated between the original and the replacement binary. This field
has been extensively researched, and many approaches exist for iden-
tifying differences in executables, both statically [7, 8, 17, 19] and dy-
namically [18]. While we leverage diffing to determine what patches
to apply to the remote process, diffing has also been used for every-
thing from bug searching [40] to automatic exploit generation [9].

Once it determines the patches to apply, Piston uses program analy-
sis techniques to create its repair plan. This includes a type of symbolic
execution called under-constrained symbolic execution [41], which
extends classical dynamic symbolic execution techniques [10, 12, 15]
to work on isolated functions in a program. Additionally, we use
static analysis techniques to recover the control flow graph of individ-
ual functions and to reason about data dependencies between stack
variables. We leverage an open-source binary analysis framework,
angr2 [44] for this, which, in turn, uses several static analyses to re-
cover control flow [16, 25, 42, 48, 52], identify variables [26], and
determine data dependencies [6, 33, 47].

9 CONCLUSION
In this paper, we presented Piston, the first proposed approach for
remote hot-patching of uncooperative processes. Piston patches pro-
cesses through exploitation, allowing us to patch software which
was originally considered unpatchable. Piston makes the novel con-
tribution of exploitation clean up, recovering from many of the un-
predictable state changes introduced during a memory corruption
exploit. We evaluated Piston on a large, real-world binary and a syn-
thetic dataset provided by DARPA. Piston was able to apply patches
to each binary and, in most cases, carried out the patch completely
automatically.

ACKNOWLEDGMENTS
This material is based upon work supported by ONR under Award
Numbers N00014-17-1-2897, N00014-17-1-2011, N00014-15-1-
2948. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the ONR.

REFERENCES
[1] Cve-2013-2028 advisory. https://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2013-2028.
[2] Nginx cve 2013-2028 kingcope exploit. https://www.exploit-db.com/exploits/

26737/.
[3] Nginx cve 2013-2028 patch. http://nginx.org/download/patch.2013.chunked.txt.
[4] Vulnerability distribution of CVE security vulnerabilities by type.

http://www.cvedetails.com/vulnerabilities-by-types.php.
[5] J. Arnold and M. F. Kaashoek. Ksplice: Automatic rebootless kernel updates. In

Proceedings of the 4th ACM European conference on Computer systems, pages
187–198. ACM, 2009.

[6] G. Balakrishnan and T. Reps. WYSINWYX: What you see is not what you execute.
ACM Transactions on Programming Languages and Systems (TOPLAS), 32(6):23,
2010.

[7] M. Bourquin, A. King, and E. Robbins. Accurate comparison of binary executables.
2013.

[8] M. Bourquin, A. King, and E. Robbins. Binslayer: accurate comparison of binary
executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, page 4. ACM, 2013.

2Available at https://github.com/angr/angr

[9] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-based exploit
generation is possible: Techniques and implications. In Security and Privacy, 2008.
SP 2008. IEEE Symposium on, pages 143–157. IEEE, 2008.

[10] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, volume 8, pages
209–224, 2008.

[11] F. Castaneda, E. C. Sezer, and J. Xu. Worm vs. worm: preliminary study of an
active counter-attack mechanism. In Proceedings of the 2004 ACM workshop on
Rapid malcode, pages 83–93. ACM, 2004.

[12] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary
code. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 380–394.
IEEE, 2012.

[13] Y.-Y. Chang, P. Zavarsky, R. Ruhl, and D. Lindskog. Trend analysis of the cve for
software vulnerability management. In Privacy, Security, Risk and Trust (PASSAT)
and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom),
2011 IEEE Third International Conference on, pages 1290–1293. IEEE, 2011.

[14] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew. Dynamic software updating
using a relaxed consistency model. Software Engineering, IEEE Transactions on,
37(5):679–694, 2011.

[15] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-path
analysis of software systems, volume 47. ACM, 2012.

[16] C. Cifuentes and M. Van Emmerik. Recovery of jump table case statements
from binary code. In Program Comprehension, 1999. Proceedings. Seventh
International Workshop on, pages 192–199. IEEE, 1999.

[17] T. Dullien and R. Rolles. Graph-based comparison of executable objects (english
version). SSTIC, 5:1–3, 2005.

[18] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket execution: Dynamic
similarity testing for program binaries and components. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 303–317, 2014.

[19] H. Flake. Structural comparison of executable objects. 2004.
[20] C. Giuffrida, C. Iorgulescu, A. Kuijsten, and A. S. Tanenbaum. Back to the future:

Fault-tolerant live update with time-traveling state transfer. In LISA, pages 89–104,
2013.

[21] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Safe and automatic live update
for operating systems. ACM SIGPLAN Notices, 48(4):279–292, 2013.

[22] D. Goodin. Windows 7, not xp, was the reason last weekâĂŹs wcry worm spread
so widely, 2017. https://arstechnica.com/security/2017/05/windows-7-not-xp-
was-the-reason-last-weeks-wcry-worm-spread-so-widely/.

[23] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster. Kitsune:
Efficient, general-purpose dynamic software updating for c. In ACM SIGPLAN
Notices, volume 47, pages 249–264. ACM, 2012.

[24] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster. State transfer for clear and
efficient runtime updates. In Data Engineering Workshops (ICDEW), 2011 IEEE
27th International Conference on, pages 179–184. IEEE, 2011.

[25] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated
binaries. In USENIX security Symposium, volume 13, pages 18–18, 2004.

[26] J. Lee, T. Avgerinos, and D. Brumley. TIE: principled reverse engineering of types
in binary programs. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th February
2011, 2011.

[27] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin. Towards dynamic updates
in autosar. In SAFECOMP 2013-Workshop CARS (2nd Workshop on Critical
Automotive applications: Robustness & Safety) of the 32nd International
Conference on Computer Safety, Reliability and Security, page NA, 2013.

[28] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin. Improving adaptiveness
of autosar embedded applications. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, pages 384–390. ACM, 2014.

[29] G. McManus, hal, and saelo. Nginx cve 2013-2028 metasploit exploit.
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/
linux/http/nginx_chunked_size.rb.

[30] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R. Chaffin. Empirical
estimates and observations of 0day vulnerabilities. In System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on, pages 1–12. IEEE, 2009.

[31] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda. Patchdroid: Scalable
third-party security patches for android devices. In Proceedings of the 29th Annual
Computer Security Applications Conference, pages 259–268. ACM, 2013.

[32] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. The attack of the
clones: a study of the impact of shared code on vulnerability patching. In Security
and Privacy (SP), 2015 IEEE Symposium on, pages 692–708. IEEE, 2015.

[33] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic
program analysis: Precise integer bounds for low-level code. In Programming
Languages and Systems, pages 115–130. Springer, 2012.

[34] I. Neamtiu and M. Hicks. Safe and timely updates to multi-threaded programs.
In ACM Sigplan Notices, volume 44, pages 13–24. ACM, 2009.

[35] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software
updating for C, volume 41. ACM, 2006.

151

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028
https://www.exploit-db.com/exploits/26737/
https://www.exploit-db.com/exploits/26737/
http://nginx.org/download/patch.2013.chunked.txt
http://www.cvedetails.com/vulnerabilities-by-types.php
https://arstechnica.com/security/2017/05/windows-7-not-xp-was-the-reason-last-weeks-wcry-worm-spread-so-widely/
https://arstechnica.com/security/2017/05/windows-7-not-xp-was-the-reason-last-weeks-wcry-worm-spread-so-widely/
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/nginx_chunked_size.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/nginx_chunked_size.rb

[36] M. Noonan, A. Loginov, and D. Cok. Polymorphic type inference for machine
code. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 27–41. ACM, 2016.

[37] Oracle. Ksplice. http://www.ksplice.com/.
[38] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,

C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, et al. Automatically patching
errors in deployed software. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 87–102. ACM, 2009.

[39] E. Perla and M. Oldani. A guide to kernel exploitation: attacking the core. Elsevier,
2010.

[40] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-architecture bug
search in binary executables. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 709–724. IEEE, 2015.

[41] D. A. Ramos and D. Engler. Under-constrained symbolic execution: correctness
checking for real code. In 24th USENIX Security Symposium (USENIX Security
15), pages 49–64, 2015.

[42] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited.
In Reverse engineering, 2002. Proceedings. Ninth working conference on, pages
45–54. IEEE, 2002.

[43] Secunia. Resources vulnerability review 2015. http://secunia.com/resources/
vulnerability-review/introduction/.

[44] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice - auto-
matic detection of authentication bypass vulnerabilities in binary firmware. 2015.

[45] M. Siniavine and A. Goel. Seamless kernel updates. In Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on, pages
1–12. IEEE, 2013.

[46] A. Sotirov. Hotpatching and the rise of third-party patches. BlackHat USA, 2006.
[47] Tok, Teck Bok and Guyer, Samuel Z and Lin, Calvin. Efficient flow-sensitive

interprocedural data-flow analysis in the presence of pointers. In Compiler
Construction, pages 17–31. Springer, 2006.

[48] J. Troger and C. Cifuentes. Analysis of virtual method invocation for binary
translation. In Reverse Engineering, 2002. Proceedings. Ninth Working Conference
on, pages 65–74. IEEE, 2002.

[49] R. van der Meulen. Gartner says 6.4 billion connected "things" will be in use in
2016, up 30 percent from 2015. http://www.gartner.com/newsroom/id/3165317.

[50] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Steal this movie:
Automatically bypassing drm protection in streaming media services. In USENIX
Security, pages 687–702, 2013.

[51] Wikipedia. Dll injection. https://en.wikipedia.org/wiki/DLL_injection.
[52] L. Xu, F. Sun, and Z. Su. Constructing precise control flow graphs from binaries.

University of California, Davis, Tech. Rep, 2009.

A APPENDIX
A.1 Example
To shed more light into Piston’s operation, we provide an example
binary in which Piston can automatically patch out a stack-based
buffer overflow. In Listing 2 there is an overflow in line 12 with the
call to gets(). Piston will receive as inputs the original binary for
the code in Listing 2, the patched version, and an exploit specification
to achieve code execution. Note that we show the source code for
clarity, although Piston will run entirely on the compiled executables.

Piston will execute the following high-level steps to remotely patch
a process running the code in Listing 2:

Patch generation. Using binary diffing techniques, Piston will iden-
tify that the hello() function has changed in the replacement
binary. Piston then prepares a patch to insert the updated hello()
function into the memory of the remote process.

Repair planning. Piston will analyze the exploit specification and
trace the exploit off-line to determine what is corrupted during
the exploit. As shown in Figure 2 (b) the return address and value
of the variable counter are corrupted. Piston will automatically
generate a repair routine to recover the value of the stack variable
counter as well as the return address. In Figure 2 (c) the arrow
between main_counter and counter shows that the repair
plan uses the value of main_counter to restore the value of
counter.

Remote patching. Piston will exploit the process using the specifi-
cation provided to inject the patcher core. The patcher core first
receives the repair routine from Piston, which is used to restore the
corrupted stack values. Then the patcher core receives the prepared
patches to replace the hello() function. Finally, the process exe-
cution will be resumed on line 10, at the start of the patchedhello,
now running a patched version of the function.

1 void main () {
2 i n t m a i n _ c o u n t e r = 0 ;
3 whi le (1) {
4 h e l l o (m a i n _ c o u n t e r) ;
5 m a i n _ c o u n t e r += 1 ;
6 . . .
7 }
8 }
9 void h e l l o (i n t c o u n t e r) {

10 char buf [0 x20] ;
11 p u t s (" E n t e r your name : \ n ") ;
12 g e t s (buf) ;
13 p r i n t f (" h e l l o

%s , you a r e v i s t o r %d \ n " , buf , c o u n t e r) ;
14 . . .
15 }

Listing 2: An example of a stack-based overflow that Piston can
patch.

A.2 Glossary
We have been careful to use consistent terminology throughout the
paper, and collect its definitions here.

Corruption effects. A register or memory write that is influenced
by data that was corrupted by the exploit.

Exploitation point. The point, in the exploitation trace, at which it
becomes apparent that the binary has been exploited.

Exploit specification. Fundamentally, a script that carries out an
exploit against the remote process to achieve remote code
execution.

Exploitation trace. A detailed trace of the exploit running against
the original binary (configured with the remote configuration).
This trace is analyzed to generate the rollback and repair func-
tions.

Hijacked function. The function from which the exploit hijacks
control flow.

Original binary. The binary that is currently running on the remote
process.

Overflow instruction. The instruction that performs the write that
triggers the detection of the exploitation point.

Patch set. The specific set of patches that Piston will apply to the
remote process to transform it into a functional copy of the
replacement binary.

Patching stub. A small payload that is injected by Piston into the
remote process to facilitate the various patching tasks.

Persistence routine. An optional routine, provided by the user, that
tries to persist Piston’s changes on the remote machine (i.e., by
overwriting the original binary with the replacement binary).
In most use-cases for Piston, this is not actually possible due
to lack of access.

Recovery set. A set of registers and stack variables that Piston has de-
termined need to be recovered before resuming remote process
execution.

152

http://www.ksplice.com/
http://secunia.com/resources/vulnerability-review/introduction/
http://secunia.com/resources/vulnerability-review/introduction/
http://www.gartner.com/newsroom/id/3165317
https://en.wikipedia.org/wiki/DLL_injection

stack frame hello() stack frame main()

buf ret_addr counter ... main_counter

buf ... main_counter

ret_addr counter ... main_counter

restore

a)

b)

c) buf

0x00 0xff

buf ret_addr counter ... main_counterd)

stack frame hello_patched() stack frame main()

Figure 2: A view of the stack frames of the program shown in Listing 2 during the automated repair process. (a) Here the program is currently executing
the function hello(). At the bottom of the stack frame of hello() is the return address, followed by the variable counter. (b) After the call to
gets() the buffer overflows, corrupting the values of ret_addr and counter. (c) Piston restores the value of counter using the redundant data
on the stack that was not corrupted, specifically the value of main_counter. The value of the return address is also restored. (d) Piston replaces
hello() with the new version of the function hello_patched() which is taken from the patched binary. Finally, Piston chooses to restart the
function hello_patched() and program execution continues safely.

Remote configuration. The configuration of the remote process. For
example, if the remote process is a web server, this would be
the configuration file of the web server. Piston uses this to
recreate an accurate exploit trace.

Remote process. A process (or piece of firmware) running on the
remote system that the analyst wants to patch.

Repair routine. A function, either generated by Piston or provided
by the analyst, that repairs state corruption in the remote pro-
cess after Piston exploits it.

Replacement binary. The binary that the analyst wants to replace
the original binary with on the remote process.

Rollback routine. A function, either generated by Piston or pro-
vided by the analyst, that undoes the effects of the hijacked
function when the exploit prevents the hijacked function from
completing properly.

Scratch Space. Memory that can be used inside of a function, but
will not be accessed outside of the function. This includes local
stack space as well as data in the heap that will be freed before
the end of the function.

State transition routine. A function provided by the analyst which
is necessary when a patch introduces changes to structures.
This function is responsible for updating all instances of the
affected structures to fit the new definition of the structure.

153

