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ABSTRACT
Software is continually increasing in size and complexity, and there-
fore, vulnerability discovery would bene�t from techniques that
identify potentially vulnerable regions within large code bases, as
this allows for easing vulnerability detection by reducing the search
space. Previous work has explored the use of conventional code-
quality and complexity metrics in highlighting suspicious sections
of (source) code. Recently, researchers also proposed to reduce the
vulnerability search space by studying code properties with neural
networks. However, previous work generally failed in leveraging
the rich metadata that is available for long-running, large code
repositories.

In this paper, we present an approach, named B���, to reduce
the vulnerability search space by combining conventional code
metrics with �ne-grained repository metadata. B��� locates code
sections that are more likely to contain vulnerabilities in large code
bases, potentially improving the e�ciency of both manual and au-
tomatic code audits. In our experiments on four large code bases,
B��� successfully highlights potentially vulnerable functions, out-
performing several baselines, including state-of-art vulnerability
prediction tools. We also assess B���’s e�ectiveness in assisting
automated testing tools. We use B��� to guide syzkaller, a known
kernel fuzzer, in fuzzing a recent version of the Linux kernel. The
guided fuzzer identi�es 26 bugs (10 are zero-day �aws), including
arbitrary writes and reads.
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1 INTRODUCTION
Software is continually growing in both size and complexity. How-
ever, along with new products and features, such growth often
comes with new security vulnerabilities, which, when abused by
attackers, can drastically a�ect people’s lives. For instance, a high
severity vulnerability in Apache Struts, an open-source web devel-
opment framework used by an estimated 65 percent of Fortune 100
companies, led to a data breach at Equifax that a�ected 147 million
Americans [30].
Automated Vulnerability Discovery. Security researchers con-
stantly propose new approaches to detect security vulnerabilities
in source code before they are exploited by malicious attackers.
Nevertheless, discovering security vulnerabilities takes time, given
the size and complexity of modern software. Furthermore, once a
vulnerability is discovered, more time is needed for the vendors
to develop and release a patch, and for the patch to be deployed
on the end systems. During this whole time, software is exposed
to attacks. Thus, it is critical to promptly identify the vulnerable
portions of code in large code bases.

However, most of the existing source code analysis tools are
insu�cient when directly applied to large code bases. In fact, static
analysis approaches often need to make a trade-o� between sound-
ness and completeness when dealing with complex analysis tar-
gets [36, 44]. As a consequence, these approaches either produce too
many false positives, making them impractical, or are not generic
enough, preventing them from detecting more classes of bugs [38].

To address the aforementioned problems, researchers proposed
techniques to guide vulnerability detection tools toward code areas
that are likely to be vulnerable, reducing the amount of code to
be analyzed. Previous work tried to identify potentially vulnerable
code by leveraging software complexity metrics [46], or metrics
related to software evolution and maintenance [54, 62]. Others tried
to look at syntactic or semantic characteristics of source code that
relate to security vulnerabilities [34, 50]. Recently, with the ad-
vancement of deep learning techniques, researchers have proposed
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several methods to automatically learn and extract bug-related fea-
tures from the code [15, 24, 58]. Most of these methods focus solely
on the code itself to come up with suspicious code sections, ignor-
ing the crucial fact that any large, long-running software project is
the collective e�ort of a large number of di�erent engineers over a
non-trivial time span. A new comer to a project is more likely to
make mistakes than a core developer of the project; a code snippet
being modi�ed by a large group of engineers back-and-forth may
incur inconsistency; a large commit spanning many components of
a project often indicates high complexity, which may lead to a bug.
In other words, the human factors buried in repository metadata
can serve as an indicator for software quality. Luckily, most (if not
all) open-source projects use version control systems (VCS), like
Git, and have their code repositories publicly available. This gives
us rich repository metadata for analysis. By observing the whole
history of the studied repository, in part and as a whole, we are
able to capture key factors that in�uence the code quality of the
project, based on which we will be able to predict parts of code that
are more likely to contain bugs.
Our Approach. We propose an approach to characterize poten-
tially vulnerable code by examining bug symptoms, which is a col-
lection of both code metrics directly observable from the code and
the repository metadata that indirectly re�ects code quality. Di�er-
ent from previous work on vulnerability detection, which models
and identi�es the characteristics of vulnerabilities, our approach
focuses on the conditions in which vulnerabilities are born, and on
the di�erent types of symptoms that lead to their occurrence. Our
key observation is that vulnerabilities arise from errors that are
more likely to occur when either the code or the software develop-
ment process present certain patterns. While the idea of leveraging
code metrics and metadata is not novel, and it has been explored
by several previous works, existing tools fail to fully leverage the
power of such data, and they often lead to undesirable results.

To capture e�ective patterns and improve existing techniques,
we devise four categories of features to describe functions in large
code bases. The four categories focus on code complexity, use of
security- or quality-related primitives, code commit history, and
developer characteristics. We show that, using these features, we
are able to train amachine learningmodel that e�ectively highlights
bug-prone code sections.

We implemented our approach in B���, a system that is able
to learn di�erent types of bug symptoms for large code bases, and
that e�ectively predicts potentially vulnerable functions. Given a
code base, its history, and the list of past, known vulnerabilities (i.e.,
CVEs), B��� leverages machine learning techniques to generalize
the symptoms that characterize previously discovered bugs, provid-
ing a ranking of the functions that are more at risk for undiscovered
vulnerabilities. In another word, B��� looks at the past and the
present of a code base to predict its future.

B��� is not meant to identify the root cause of vulnerabilities,
nor it is focused on speci�c classes of vulnerabilities. Instead, B���
is designed to assist security experts and automatic vulnerability
detection tools in complex vulnerability auditing tasks by prioritiz-
ing high-risk code. In this way, it reduces the search space, making
vulnerability discovery more practical.

We evaluated B��� on four real-world, large code bases (Linux,
Wireshark, FFmpeg, and OpenSSL) showing that it is able to pre-
dict which functions are likely to be vulnerable. Finally, we used
B��� as a pre-step for fuzzing a recent version of the Linux ker-
nel. We provided syzkaller [13] with a list of 43,473 functions that
B��� reported as likely to be vulnerable, and discovered 26 bugs,
out of which 16 have been independently discovered by Google
syzbot [19], and 10 are zero-days, which would have not been dis-
covered without B���’s guidance.
Contributions. In summary, we make the following contributions:

• We propose an approach that extends previous works and
characterizes potentially vulnerable code by modeling bug
symptoms. Our key observation is that vulnerabilities are
more likely to appear in code sections with bug symptoms.
These symptoms are identi�able when one inspects soft-
ware from the perspectives of both the code itself and its
development process.

• Leveraging our approach, we design and develop a system,
B���, that is able to analyze and predict potentially vulner-
able code in large code bases.

• We evaluate B��� on four large code bases, the Linux Kernel,
OpenSSL, FFmpeg, and Wireshark. Results show that B���
can successfully predict unseen vulnerable functions. Our
evaluation highlights potentially vulnerable functions in a
recent version of the Linux Kernel, among which we identify
26 bugs (10 zero days).

In the spirit of open science, we make the code developed for
this work publicly available at https://github.com/ucsb-seclab/bran.

2 APPROACH
To highlight the sections of code that are more likely to contain
vulnerabilities, B��� takes two inputs: a database of CVEs, and
an open-source code base managed with a version control system.
B��� ingests the input code base and extracts two sets of functions:
the set V of vulnerable functions across the whole history of the
code base, identi�ed using the CVE database, and the set C of
all the functions in the current snapshot of the input code base.
By examining CVE records, B��� builds a ground truth dataset
of vulnerable functions (Section 3.1). However, we are not sure
about whether any function in C is vulnerable or not. A function
in C could be either safe or vulnerable. Fortunately, for any real-
world code base, non-vulnerable functions outnumber vulnerable
functions in C . This is especially true in the case of large, widely
used code bases with a long history. In light of this observation,
B��� can assume that a randomly sampled set of functions NV ⇢ C
is non-vulnerable.

B��� extracts code metric and repository metadata features
from both function sets. Using V as positive examples and NV
as negative examples, B��� trains a regression model that takes
in a function feature vector and generates a vulnerability score.
During vulnerability search, users may �rst use B��� to highlight
the parts of code that are more likely to be buggy. Then, they may
employ more computationally expensive tools, such as fuzzers,
targeting only the highlighted code sections for more �ne-grained
vulnerability information. Users are able to tune the threshold of
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the vulnerability score based on their computational budget. With
a suitable threshold, users get the chance to capture the majority of
vulnerabilities while testing only a small fraction of the repository.

2.1 Code Metric Features
Intuitively, large, complex functions are more likely to have un-
foreseen corner cases; code that shows known bad practices (e.g.,
no sanity checks on input parameters, many casting operations) is
more prone to bugs such as memory corruption issues.

B��� quanti�es these intuitions using code metric features as
summarized in Table 1 under category Complexity and category
Function Properties. Table 1 provides a brief intuition of why these
features can help capture bug symptoms. While each feature has its
own limitations, and there exist corner cases where the application
of a speci�c feature is not helpful, we argue that, on a large scale,
their combination can result in accurate predictions, as demon-
strated in our experiments.
Complexity. Complex functions, i.e., functions performing many
operations through non-trivial control �ows, are di�cult to debug
and maintain, and thus are more likely to contain bugs. To some
extent, the complexity of a function is also related to the complexity
of the module it belongs to. Functions that live in complex mod-
ules have a greater chance of encountering errors, which might
introduce vulnerabilities [11, 47, 62, 63].
Function Properties. Certain function characteristics might indi-
cate a higher probability of the presence of bugs. Functions may
contain examples of bad coding practices (e.g., many casts (F6), or
the lack of comments (F9) [6]), or they may present a large attack
surface (e.g., a long parameter list (F7), or the lack of sanity checks
(F10)).

2.2 Repository Metadata Features
While code metric features describe quality- and security-related
properties of the code directly, we can also leverage the rich reposi-
tory metadata information to derive useful signals for vulnerability
prediction. We devise a set of repository metadata features, as sum-
marized in Table 1 under category History and category Developers
& Reputation, where we also provide a brief rationale behind the
selection of each feature.
History. The history of a function also provides hints about the
likelihood of the function containing bugs. A function or module
that is frequently patched usually plays a critical role in the project.
Frequent modi�cation also makes code more prone to �aws (F11,
F12) [49, 62]. In version control systems, such as Git, a commit is
the basic unit for content update. Commits with radical changes
(F13, F14) usually imply major code refactors, which may introduce
new bugs or violate established conventions in the code. Commits
that involve too many parts of di�erent components (F13, F14)
indicate a tightly coupled design in the project. With more moving
parts, tightly coupled components are usually more bug-prone than
independent ones.

We note here that bugs related to a hard-to-maintain commit
are not necessarily introduced by the commit itself. It could be the
commit before or after this commit that actually implants the bug.
Therefore, predicting vulnerabilities using single commits as the
basic unit [54] is not enough. We try to capsule bug symptoms like

this by using functions as B���’s basic operation unit. A function
carries consistent semantics throughout its lifetime in the develop-
ment procedure. More importantly, most of the time, it honestly
re�ects the design changes in the code. By aggregating the his-
tory of a function, B��� is able to capture the correlation among
multiple commits and program components.
Developers & Reputation. Traits of a developer may re�ect the
quality of their code. For instance, well-known or experienced de-
velopers generally write more reliable code. The trustworthiness
of developers can be estimated through various indicators, such as
their average number of contributions (F21, F22), and their pop-
ularity in the community (F19). Sometimes, collaboration among
developers may also come into play. For example, having a larger
number of developers contributing to the same function is against
the separation of concerns and responsibilities principle, which,
in turn, is an evidence of poor project management (F17, F18). In
addition to the programmer information fetched from Github, we
also estimate developers’ expertise in terms of their contributions
towards the repository being studied (F24), as some experienced
engineers do not keep an active public pro�le. Feature (F24) also
re�ects the level of knowledge (familiarity) a developer has for the
project.

We note here that the features used in this paper are not complete,
and do not �t all scenarios.

2.3 Dataset
The dataset quality is essential to the performance of data-driven
vulnerability prediction techniques. With inappropriate datasets,
even advanced machine learning algorithms will be ine�ective.
For instance, small datasets may provide too little information
for models to learn proper features automatically, and incorrectly
labeled datasets give wrong feedback to models while training. All
these defects in datasets may lead to poor performance on real code
bases.

Past work on vulnerability-type agnostic, machine learning-
based vulnerability prediction techniques relied on �awed datasets.
Among them, Chernis and Verma [10] used only 100 vulnerable
functions during training; VulSniper [15] used only two types of
vulnerabilities in the SARD project [8]; Harer et al. [24] and Russell
et al. [58] collected dataset from sources including GitHub [17]
public repositories and Debian Linux distribution [12]. The size
of their dataset is approximately 12 million functions. However,
they labeled the dataset with static analyzers, like Cppcheck [2]
and Flaw�nder [3], which are known to have high false positive or
high false negative rates (i.e., incorrect labeling).

In this paper, we make use of a dataset that comprises four large,
real-world projects: the Linux kernel, OpenSSL, FFmpeg, and Wire-
shark. For each project, we collected the current code repository, its
history, and its corresponding CVE reports. We labeled vulnerable
functions based on CVE reports, and trained B��� to predict future
vulnerabilities based on history knowledge. In this way, our dataset
is able to provide B��� better knowledge about vulnerabilities with
respect to previous work.
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Table 1: Features computed by B���, grouped by category.

Feature Description & Rationale

Co
m
pl
ex
ity

(F1) Function lines of code (LOC) Long functions are more di�cult to debug and maintain, thus are more prone to bugs.

(F2) Cyclomatic complexity Complex functions are more prone to vulnerabilities. We measure the McCabe’s complexity [40].

(F3) Module LOC LOC of the module that the function belongs to. Using large modules is not a good practice.

(F4) Module complexity Sum of the McCabe’s cyclomatic complexity of all the functions in the function’s module.

(F5) Number of co-located functions Number of functions in the function’s module. Using large modules is not a good practice.

Fu
nc
tio

n
Pr
op
er
tie
s

(F6) Number of casts Casting is known to be a source of bugs.

(F7) Number of input parameters More function input parameters imply a larger attack surface.

(F8) Number of local variables Declaring many local variables is a sign that the function performs many tasks. Complex
functions are more prone to vulnerabilities.

(F9) Number of lines of comment The lack of comments is a bad practice.

(F10) Number of input sanity checks Sanity checks on input parameters reduce the function’s attack surface.

H
ist
or
y

(F11) Number of past changes Frequently patched functions may be poorly written and maintained, or play critical roles.

(F12) Number of module’s past changes Frequently modi�ed modules may contain critical tasks or be poorly written and maintained,
leaving functions in a more error-prone environment.

(F13) Size of second-largest commit addition Commits with more lines of addition usually indicate more radical changes in the code. As the
commit with the largest number of addition is mostly the �rst commit, we take the second
largest commit addition number.

(F14) Number of largest commit deletion Commits with more lines of deletion usually indicate more radical change in the code.

(F15) Max commit module span A commit that spans across more modules tends to be more complex and therefore more
bug-prone.

(F16) Max commit function span A commit that touches more functions tend to be more complex and therefore more bug-prone.

D
ev
el
op
er
s&

Re
pu

ta
tio

n

(F17) Number of function’s contributors A reason for having a modular software is separation of concerns and of responsibilities. Too
many developers contributing to the same function may cause issues.

(F18) Number module’s contributors Too many developers contributing to a module may indicate bad team management.

(F19) Avg. number of contributor followers Well-known developers in the open-source community are generally more reliable. Open-source
hosting services like GitHub allow developers to follow other developers.

(F20) Avg. number of contributor stars Open-source developers can star projects in public repositories to express appreciation. We
consider the average number of stars received by all the contributors of a given function. Each
contributor’s stars are counted as the sum of the stars of all the public repositories they own.

(F21) Avg. number of contributor forks We consider the average number of forks of all the contributors of a given function, counted as
the sum of the forks of all public repositories that they own.

(F22) Avg. number of contributor repositories Developers who frequently contribute to the open-source community are generally more
experienced. We consider the average number of public contributions across all of the function’s
contributors.

(F23) Avg. number of contributor watchers Watching a repository means receiving noti�cations about activities of the repository. The
number of watchers re�ects the popularity of a project, which can be an estimation of the
trustworthiness of its developers. Here, we consider the average number of watchers of all of
the function’s contributors.

(F24) Min. number of contributor’s contributions The number of contributions within the project of the least experienced developer among all
developers contributing to this function. Experience is measured as the number of commits a
developer has made for the project.

3 IMPLEMENTATION
In this section, we discuss relevant aspects of B���’s implementa-
tion. We �rst outline the process used to extract vulnerable func-
tions out of a code base, and then detail the implementation of
B���’s machine learning model.

3.1 Inputs Processing
Unlike other automated vulnerability detection systems (e.g., a
static analyzer), which may introduce a large amount of false pos-
itives into the dataset, the CVE database is a reliable source for
vulnerability-related information. Therefore, as mentioned in Sec-
tion 2.3, B��� relies on the CVE reports of the input code bases to
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create a ground truth dataset of vulnerable functions. In particu-
lar, B��� is able to enact an automated ground truth generation
process for any software product P that: 1) is open-source; 2) uses
git for version control; 3) is hosted on GitHub. Note that the same
data preparation logistics can be adapted to other version control
systems and hosting services as well.

To extract vulnerable functions, B��� performs the following
nine steps:

(1) Fetch a local copy of P ’s code base with git clone.
(2) Download lists of CVEs associated with P from the CVE

public database [53].
(3) For each CVE associated with P , refer to the National Vul-

nerability Database (NVD) for the git patch that �xed the
vulnerability. The patch information (SHA-1 hash of a git
commit) is not always available, as there might be missing
data or simply the CVE might not have a patch yet.

(4) If a given CVE has an associated �xing commit c, run git
checkout c to retrieve the corresponding revision.

(5) Extract all �les modi�ed by c and rename the patched �les.
For instance, a �le with name sample_file.c gets copied
to sample_file_fixed.c.

(6) Run git checkout cˆ to retrieve the revision right before
c was applied.

(7) Extract and copy the non-patched version of all the �les
modi�ed by c (e.g., sample_file.c is copied to sample_-
file_unfixed.c).

(8) For each (*_un�xed.c, *_�xed.c) pair, identify functions that
are modi�ed by c.

(9) Extract the body of each function identi�ed from the corre-
sponding un�xed �le, i.e., the version of the function right
before c was applied.

Following the steps above, we generate a dataset of vulnerable
functions. Furthermore, we can con�gure the above procedure to
extract vulnerable code considering only CVEs within a given time
span (for example from 2012 to 2014) or considering only speci�c
submodules of the code base.

It is worth mentioning that VUDDY [27] proposed a similar vul-
nerable code extraction process. The main di�erence between the
two approaches lies in the way they identify commits associated to
CVEs. While we rely on the National Vulnerability Database (NVD),
allowing B��� to retrieve patches for CVEs precisely, VUDDY looks
for commit messages containing the “CVE-20” string. It then �lters
out irrelevant commits (i.e., commits that contain “CVE-20” but
did not �x any CVE) using a number of heuristics (e.g., excluding
merging commits and reverting commits). VUDDY’s heuristics-
based approach may cause the resulting dataset to be inaccurate
and incomplete. Indeed, irrelevant commits may be included in the
dataset while relevant commits may be ignored.

In addition to the NVD, B��� allows for the integration of other
sources that provide a mapping between CVEs and git commits.
For example, in the case of the Linux kernel, we augment the NVD
with the mapping provided by the nluedtke/linux_kernel_cves
GitHub repository [52], which allows us to retrieve 168 more com-
mits than those retrievable by solely relying on the NVD.

3.2 Learning Bug Symptoms
We compute code metric features and repository metadata fea-
tures with a set of external tools and services. More speci�cally,
we use Joern [72] to extract features (F5), (F6), (F7), (F8) and (F10).
We feed Joern with the source code of all the functions for which
context properties need to be extracted. Joern treats the set of func-
tions as an entire program and produces the Program Dependency
Graph (PDG). We then query the PDG to extract context properties.
Through multiple git operations, we compute features (F11), (F12),
(F17) and (F18). Features (F13-F16) and feature (F24) are extracted
with the help of git log. Features (F19), (F20), (F21), (F22) and
(F23) are computed by querying code bases through GitHub’s pub-
lic APIs [18]. These features are fairly straightforward counts of
events or basic properties. Features (F1), (F3) and (F9) are collected
directly from raw code �les. Features (F2) and (F4) are computed
with pmccabe [56], which provides a complexity score for functions
and modules.

Code base context properties extraction is implemented as a par-
allel and distributed data pipeline on top of Apache Flink [1]. This
allows us to e�ciently process large code bases. We use random
forest as the classi�cation model for context properties represen-
tation, as this gives us a score which lies between 0 and 1, rather
than a binary output. Although we also experimented with others
classi�ers (e.g., a neural network composed of a sequence of dense
layers), we did not experience signi�cant performance improve-
ments. Using scikit-learn, B��� trains a random forest classi�er
over the vector representation of input functions. In particular,
B��� uses the extremely randomized trees training algorithm. The
number of trained tree is 1000.

4 EVALUATION
In this section, we evaluate B��� and demonstrate that, by studying
both code metric and repository metadata features, B��� is able
to e�ectively reduce the search space of vulnerability search. We
organize this section around the following research questions:
RQ1: Is B��� e�ective in predicting previously unseen vulnerabil-
ities? We evaluated the vulnerability prediction ability of B���
comparing to previous work. We considered four large real-world
code bases: the Linux kernel, OpenSSL, FFmpeg, and Wireshark.
Results indicate that B��� is e�ective in identifying previously
unseen (i.e., not in the training set) vulnerabilities (Section 4.2). We
compared our system to existing tools, demonstrating that it out-
performs state-of-We made it clear, mostly in Section 1 and 7, that
the idea of leveraging code metrics and meta the-art approaches
(Section 4.3).
RQ2: How does the non-vulnerable to vulnerable functions ratio in
the training set a�ect machine learning-based methods? The severe
imbalance between vulnerable and non-vulnerable functions poses
a practical challenge for machine learning-based vulnerability de-
tection methods [14]. In search of a proper ratio for training set,
we evaluated B��� on di�erent non-vulnerable function to vulner-
able function ratios. Results suggest that a severe imbalance in the
training set does indeed harm performance. However, we show that
e�ective machine learning models can still be trained considering
only part of the data, overcoming the imbalance issue (Section 4.4).
RQ3: Are learned bug symptoms unique to the training code base?
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Otherwise, are they generalizable to other code bases? Although the
choice of a feature set is generically applicable to di�erent code
bases, whether the trained model on one code repository is e�ective
for another repository is not clear. We evaluated models trained
using one code repository and applied them to a di�erent reposi-
tory. Results show that bug symptom knowledge is generally not
repository agnostic. (Section 4.5).
RQ4: Is B��� e�ective in assisting large scale software testing? We
show one of the possible applications of B��� in the context of
guided fuzzing (Section 4.6). We con�gured a fuzzer to prioritize
functions marked as highly-vulnerable by B���. In this way, B���
restricts the exploration space of the fuzzer. Experimental results
show that the fuzzer guided by B��� signi�cantly outperforms the
unguided fuzzer.

4.1 Datasets
We evaluated B��� against four large, real-world projects: the
Linux kernel, OpenSSL, FFmpeg, and Wireshark. For each of these
projects, we considered the current code repository, its history, and
the corresponding CVE reports.

To evaluate the performance of B���, we have the following
setup. Given the snapshot of the code base at time T in its history,
we collect a training set for model training, and an evaluation set
for performance evaluation. The training set is composed of the
vulnerable functions that appeared in CVE reports before time T (as
vulnerable examples), and a set of functions sampled from the code
base snapshot at time T (as non-vulnerable examples). The data
collection procedure is described at the beginning of Section 2.3. We
tried to keep a balance between the vulnerable and non-vulnerable
classes in the training set by controlling how many non-vulnerable
functions we sample (Section 4.4). The evaluation set is used to
evaluate the performance of machine learning models in �nding
vulnerabilities that were not known at time T. More speci�cally, to
create the ground truth dataset of vulnerable functions, we look
at the CVEs that have been reported after time T. The primary
objective of our evaluation is to study how many of such functions
are correctly predicted by B���. The non-vulnerable functions in
the evaluation set are all the functions belonging to the code base
snapshot at time T, with the exclusion of those functions sampled
to build up the training set and the functions that were included in
the vulnerable set. Note that not all functions belonging to this set
are guaranteed to be non-vulnerable. Some of them might actually
be vulnerable, and the vulnerability has not yet been discovered.

To answer our research questions, we gathered di�erent training
sets and evaluation sets under two settings:

Setting I. T = end of 2015: In this setting, we use knowledge
up to the end of year 2015 to predict vulnerabilities that were
discovered in 2016 or later. By setting T back to 2015, we were
able to accumulate enough CVEs to build a vulnerability ground
truth for the evaluation set. We answer questions RQ1-RQ4 with
experiments under this setting.

Setting II. T = end of 2018: In this setting, we used knowledge
up to the end of year 2018 to predict vulnerabilities that were not
known at that point in time. In this setting, we do not have a su�-
ciently large ground truth of vulnerable functions in the evaluation
set, as only few vulnerabilities have been reported since the end

of 2018. Therefore, the only way to con�rm B���’s predictions is
to check them with testing tools ourselves. We use this setting to
answer question RQ4.

The size of each dataset generated in the two settings is re-
ported in Table 2. For each code base studied, we balanced the
non-vulnerable-to-vulnerable function ratio to 6 for the training
set (including validation) (see Section 4.4). In this paper, we use the
output of the classi�er as a vulnerability score for the input func-
tion. Higher scores indicate a better chance to �nd a vulnerability
in the input function.

4.2 Prediction Capabilities
In this section, we use Setting I to answerRQ1 about B���’s ability
to predict vulnerable functions. Under this setting, we are interested
in how many of the functions that are found to be vulnerable after
2015 are correctly predicted by models trained with the knowledge
available up to 2015. Formally, letVP be the set of functions that are
predicted as vulnerable by B��� and LV be the set of vulnerable
functions in the evaluation set; we calculate the recall of B��� on
the set LV with

recall =
|VP \ LV |

|LV |
as the primary metric for e�ectiveness. Note that, since some bugs
in the code base remain unidenti�ed, recall in this experiment is
an underestimation of B���’s performance.

A key aspect of computing recall is how we de�neVP , i.e., based
on what criteria B��� judges a function to be vulnerable. B���
assigns a vulnerability score (a probability of being vulnerable) to
each function. Therefore, naturally, we can set a vulnerability score
threshold � for each code base, and label functions with a score
higher than � as vulnerable. How to pick a suitable � , however,
is not trivial. In the scenario of large-scale automated vulnerabil-
ity discovery, the number of functions that one is able to inspect
depends on the available computing resources. Therefore, the objec-
tive of B��� is to maximize recall given the maximum size ofVP as
imposed by the available computing budget. We evaluate recall for
di�erent values of � to simulate various computing budgets. More
speci�cally, we ranked all functions according to their vulnerability
score and considered the highest k% as the VP set. We set k to
[0, 20] and [0, 1] and show the results of all sub-models together
with B��� combined model in Figure 1 and Figure 2, respectively.

As shown in Figure 1, with the help of B���, by inspecting only
the top 20% functions in a code base, security experts are able to
cover more than 70% of the vulnerabilities in all the four considered

Table 2: Number of functions in each dataset.

Dataset

T Set Class Linux OpenSSL FFmpeg Wireshark

2015
Training Vuln 1,473 91 167 127

Non-Vuln 8,838 546 1,002 762

Evaluation Vuln 927 128 107 388
Non-Vuln 257,290 4,965 14,081 24,419

2018
Training Vuln 2,400 219 274 515

Non-Vuln 14,400 1,314 1,644 3,090

Evaluation Both 271,624 6,243 16,377 25,367
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Figure 1: Models trained using data from a single code base and then used to rank functions in the same code base: recall on
predicting vulnerable functions over top k% of ranked functions. k 2 [0, 20].
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Figure 2: Models trained using data from a single code base and then used to rank functions in the same code base: recall on
predicting vulnerable functions over top k% of ranked functions. k 2 [0, 1].

code bases. For more time-consuming human inspections, users
can conveniently set the threshold of B��� to a higher value and
only invest in high-con�dence suspicious functions. As Figure 2
shows, by inspecting only 1% of the code base, B��� achieved more
than 20% recall of vulnerabilities on all four code bases tested.

We conclude that B��� is able to e�ectively distinguish vulnera-
ble functions from non-vulnerable ones.

Precision Analysis. B��� is not designed to pinpoint bugs as
a stand alone tool. Instead, it assists other vulnerability discovery
tools in reducing their search space (as we will demonstrate in
Section 4.6). While classi�cation problems are generally evaluated
with both recall and precision, avoiding a high false positive rate in
our case is particularly challenging but not rewarding. We therefore
choose not use precision as a key metric of the e�ectiveness of
B���.

4.3 Comparison with Existing Tools
To further assess the performance of B���, we compared it against
existing tools for source code vulnerability prediction.

Code metric based approaches.We compared B��� against
two code metric baselines, namely the manual-down approach and
LEOPARD [14]. The manual-down approach ranks functions by
their source lines of code in descending order and labels longer
functions to be more prone to bugs. Simple as it is, past work has
shown that manual-down approach achieves similar or even better
results compared to state-of-art vulnerability prediction models [14,
29, 83]. LEOPARD is a recent tool that leverages both complexity
and vulnerabilitymetrics in code defect detection. It �rst categorizes
target functions into a set of bins based on the complexity metrics,
then ranks functions in each bin by their vulnerability metrics (e.g.,

number of pointer operations), and labels the top n functions in
each bin as vulnerable.

We implemented the manual-down approach ourselves, and
the authors of LEOPARD kindly tested LEOPARD on our dataset.
Manual-down processed all functions successfully; LEOPARD failed
to process the Wireshark dataset according to the LEOPARD au-
thors. The results of both baselines are shown in Figure 1 and Fig-
ure 2. In Figure 1 where the top k% (k 2 (0, 20]) functions were
considered vulnerable, B���’s outperformed metrics baselines in
the Linux, FFmpeg, and Wireshark datasets and got comparable
results in the OpenSSL dataset. In the high-con�dence zone, where
only the top 1% functions were inspected (Figure 2), B��� achieved
twice the recall of any of the tools on three of the four code bases.
Similar to the baseline techniques, B��� also used code metric
features for classi�cation. However, in addition to the code met-
rics employed by both manual-down and LEOPARD, B��� further
takes the repository metadata features into consideration. With
richer context features, B��� is able to predict vulnerabilities more
e�ectively.

Static analyzers. We ran two popular static source code ana-
lyzers, namely Flaw�nder [3] and Cppcheck [2], on our Setting I
dataset as baseline comparisons. Both Flaw�nder and Cppcheck
examine C/C++ source code for possible bugs and unde�ned behav-
iors by matching a built-in database of known problems. Neverthe-
less, B��� and such static analyzers are designed di�erently. B���
assigns a continuous score to each analyzed function, e�ectively
producing a ranking. It is then up to the users to set a threshold
score according to their time and computational budgets to further
analyze only the top k% of the functions. On the other hand, static
analyzers make binary decisions for matches, such that a function
is either suspicious (i.e., leads to warnings or errors being raised) or
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safe. This still leads to only k% of the input functions being further
analyzed by security experts, with k being the ratio between the
number of reported suspicious functions and the total number of
analyzed functions. In both the cases, given k% of the input func-
tions, we use recall, i.e. how many of these suspicious functions
are actually vulnerable, as the performance measure. For Cppcheck,
we only have one single value for k , which re�ects the number of
reported suspicious functions. Flaw�nder allows users to choose
from 5 risk levels, which, in turn, gives 5 di�erent values of k in the
test.

Results for Cppcheck and Flaw�nder are shown in Figure 1 and
Figure 2. B��� outperformed both baselines by a large margin in
all code bases except the OpenSSL dataset. For low-budget inspec-
tion assistance, where only the top 1% functions are considered
interesting, both analyzers gave near-zero recall, while B��� was
able to provide a recall of more than 30%. One interesting observa-
tion is that Cppcheck exhibited only near-zero recall for all code
bases. This might be due to the fact that while Cppcheck strives
to achieve a low false positive rate, it inevitably su�ers from low
true positive rates [2]. We note here that we are aware that it seems
unfair to compare Flaw�nder and Cppcheck to B��� in terms of
recall as they are designed to match vulnerabilities in a much more
�ne-grained way. However, these are the ones among others in this
category that are close to B���’s design goal. We believe that the
comparison adds interesting perspectives to the discussion.

We conclude that current static analyzers only match known pat-
terns and are sub-optimal in the setting of vulnerability prediction
compared to B���.

VCCFinder We compared B��� with VCCFinder [54], a sim-
ilar work that also leverages code-metrics and repository meta
information for bug �nding. We replicated VCCFinder on top of Py-
Driller [65], trained and tested it against the same repositories used
for B���. VCCFinder uses commits as the basic unit for analysis. It
aims to �nd vulnerability-contributing commits (VCC) and does not
have the notion of a function being vulnerable. However, in order
to have a fair comparison with B���, we tag all the functions that
are modi�ed as a part of a commit marked by VCCFinder, as vul-
nerable. The recall is calculated based on function numbers instead
of commit numbers. As opposed to B���, VCCFinder is designed
to be trained on a mixture of repositories. We trained VCCFinder
on the mixture all four repositories and tested it on each repository
individually.

Figure 1 and Figure 2 showcase the results for VCCFinder and
B��� with respect to performance. Note that out of the four reposi-
tories, B��� outperformed VCCFinder in three and got comparable
results in one of them i.e., OpenSSL. Although B��� and VCCFinder
both examine code-metrics and repository metadata as features,
they approach similar abstractions from di�erent perspectives. For
instance, to describe the complexity of a basic programming unit,
VCCFinder focuses more on the patch and does not fully utilize
the information about the location of the patch. However, B���
captures function and module complexity naturally but may have
trouble modeling commit information in a straightforward way.
It can be an interesting open problem to analyze which way of
modeling is more suitable for the task of bug �nding. However, as
we observe in the experiments shown above, B��� clearly has an
advantage.

VCCFinder outperformed other baselines and tools tested on
the Linux kernel and OpenSSL repository, but failed to achieve
comparable results on FFmpeg and Wireshark. One possible expla-
nation of VCCFinder’s mixed performance can be attributed to the
fact that it is designed to be trained on a composition of di�erent
repositories(both smaller and larger), and is likely to over-�t to
larger code bases. This may results in both positive or negative
e�ects to a di�erent code base depending on how similar it is to
the dominating code bases used during the training phase.

Automatic feature learning.With the recent advancement of
deep learning, researchers also propose to locate suspicious code
sections by studying code properties with neural networks. Vul-
Sniper [15] and Russell et al. [24, 58] leveraged neural networks for
type-agnostic bug �nding, which is similarly to B���. We contacted
both groups for help in reproducing their results on our dataset but
unfortunately we were turned down.

To compare B��� to automatic feature learning methods, we
designed and implemented two neural network models based on
previous work, and compared them to B���. The �rst model ex-
tracts syntax pattern [34] of functions with tree-shaped convolu-
tional neural network [48] by abstract syntax tree vectorization.
We refer to this model as the syntax model for the remainder of
this paper. The second model captures semantically relevant vec-
torial representation of functions. More speci�cally, it leverages
the word2vec [45] approach from the natural language processing
(NLP) community and embeds the functions as a paragraph [58].
We refer to this model as the semantic model for the remainder
of this paper. The word semantic here is borrowed from NLP. It
does not refer to program semantics as de�ned in the programming
language community. Both models are trained on the same dataset
as B��� as binary classi�ers.

In the syntax model, the convolution layer of the syntactic model
deployed 128 kernels (feature detectors). The classi�cation sub-
network was a fully connected network with one hidden layer of
width 20. The model was trained for 30 epochs with batch size 16.
The learning rate was set to 0.001. In the semantics models, the one-
dimensional convolution layer deployed 16 kernels, each of the size
of 3 words, and used a ReLU activation function. The LSTM layer
was initialized using 50 memory units. The �nal dense layer used a
sigmoid activation function. The model was trained for 5 epochs
with batch size of 50. In our experiments, di�erent con�gurations
did not show signi�cant performance improvements.

For the high-budget scenario shown in Figure 1, B��� achieved
similar results in the OpenSSL dataset comparing to both the syntax
and the semantic model. For the other three datasets, B��� greatly
outperformed both models. In the low-budget case, as shown in
Figure 2, B��� beat the syntax model in all four datasets. The se-
mantic model displayed comparable result as B��� on the OpenSSL
dataset, but only got half the recall on the other three datasets.

As a side note, both neural-network-based models generally
outperformed the two code-metric-based methods.

4.4 Training Set Balance
Known vulnerable functions are rare in real-world projects, com-
pared to the total number of functions in a code base. This im-
balance between vulnerable and non-vulnerable code hinders the
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Figure 3: Model performance with various non-vulnerable
function to vulnerable function ratio in the training set: re-
call on predicting vulnerable functions among the top k% of
ranked functions.

adaptation of machine-learning-based methods for vulnerability
detection [14]. The reason is that an imbalance in training data
often results in poor classi�cation accuracy.

In practice, fortunately, we do not have to stick to the actual
ratio between non-vulnerable function and vulnerable function
(denoted as R) in the code base when it comes to training. For
B���, we tuned R in the training set by sampling only a part of
non-vulnerable functions. Empirically, we tested several R values
to search for the best R setup for training.

Figure 3 shows how data balance in the training set R in�uences
vulnerability detection performance for B���. We found that mod-
els trained with R between 3 and 6 generally outperform other
models by a notable margin. Much higher or too low R values have
negative e�ects on the classi�cation performance. The results also
indicate that machine learning based methods are in fact practical
in use cases where vulnerabilities are very sparse.

4.5 Bug Symptoms Knowledge Transfer
An interesting question to consider when modeling bug symptoms
is whether such symptoms are code-base-dependent. If bug symp-
toms are shared across code bases, it is possible to use models
trained on one code base to predict vulnerabilities in other ones. In
other words, if bug symptoms are transferable across code bases,
the resulting machine learning models would be generic, drastically
widening their scope of applicability.

To assess how well bug symptoms generalize, we repeated the
experiment discussed in Section 4.2 (again under Setting I). How-
ever, this time, instead of using models trained on one code base to
predict future vulnerabilities in the same code base, we used models
trained on a di�erent code base. For example, we used the model
learned from Linux using context properties to predict vulnerable
functions on OpenSSL, FFmpeg, and Wireshark. We did this for
all 12 transfer pairs (training code base -> prediction code base).
The results are shown in Figure 4. Each subplot also reports, as a
baseline, the performance of the native model, whose training code
base is the same as its prediction code base.

From Figure 4 we notice that, for half of the target repositories,
native models delivered the best performance, while for the other
half of the target repositories, one (and only one) of the transferred
models outperformed the native model. Considering all transfer
pairs tested, most of the time transferred models had poor per-
formance. Sometimes the transferred model was even worse than

chance (e.g., Linux -> Wireshark). This indicates that code metrics
and repository metadata features like traits of developers are highly
correlated to the code base being analyzed.

To conclude, bug symptoms learned from one code base have a
certain level of ability to be transferred to a di�erent one. However,
in most cases, using the symptoms learned from the same repository
derives better results.

4.6 B���-guided Fuzzing
In this section, we want to understand the e�ectiveness of B���
in helping automated testing tools to �nd new bugs in very large
and well-tested code bases. Thus, we present a real-world scenario
whereB��� can be directly applied. Speci�cally, we use syzkaller [13],
a widely used Linux kernel fuzzer, in two con�gurations:
syzkaller: The recommended con�guration as suggested in the

o�cial documentation [70].
syzkallerbp: syzkaller guided toward fuzzing functions marked

with high con�dence as vulnerable by B���.

To con�gure s�zkallerbp , we �rst obtained all the functions that
B��� marked as vulnerable with more than 80% con�dence. These
is our initial set of functions (I ). We want the fuzzer to generate
inputs that have a high likelihood of exercising such functions. An
input from user space can reach a function f in I either directly (if
f is a syscall [7]) or through one of its callers in the call-graph.
To create the static call-graph, we �rst compile the Linux kernel
with LLVM [32] to get bitcode �les of all the source �les. Second,
we use a custom script that takes all the bitcode �les and creates a
call-graph by mimicking the linking process ignoring indirect calls.

Given the call-graph [59] of the Linux kernel and the initial
functions (I ), we obtained all the additional functions (A) that can
reach, in the call-graph, a function in I .

Any input that reaches a function in A has the potential to reach
a function in I . Thus, we added the functions in A to the list of the
functions used to guide syzkaller. Doing so, we obtained a list of
T = I [A ⇡ 100K functions—compared to the ⇡ 500K functions in
the Linux Kernel. However, the actual number of functions that get
compiled in the kernel is much less and depends on the correspond-
ing kernel con�guration [81]. This reduces T , the list of functions
that need to be fuzzed, to 43,473 functions. Finally, we modi�ed the
kcov [69] pass in gcc [20] to instrument only the functions T , so
that syzkaller prioritizes the inputs that have a high likelihood of
exercising the target functions.

We ran our customized s�zkallerbp con�guration for 48 hours.
On the other hand, to reduce any non-deterministic e�ect and
to perform a stronger comparison, we ran the default s�zkaller
con�guration for twice as long, i.e., 96 hours. Note that, we also
compared our �ndings to Google syzbot [19], which performs con-
tinuous analyses. Table 3 shows the total number of crashes we
found using the two fuzzer con�gurations on the latest version of
the Linux kernel (April 2019). In total, the fuzzer guided by B���
(s�zkallerbp ) found, in half the time, 26 bugs compared to only 2
bugs found by the default con�guration (s�zkaller ). This shows
that B��� is e�ective in guiding fuzzers to �nd more bugs quickly.
Indeed, 18 (out of 26) functions where we found crashes were actu-
ally predicted by B��� to be vulnerable with 100% con�dence. Among
such 26 bugs, we found that 16 of them have been independently
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Figure 4: Models trained using data from one source code base and used on a di�erent target code base (source -> target): recall
on predicting vulnerable functions among the top k% of ranked functions.

discovered by Google syzbot [19], and 10 are previously unknown
bugs. Note that, at the time of our evaluation, only 13 bugs were
known, while 3 more bugs have been discovered by Google syzbot
later on. We manually con�rmed the discovered bugs and reported
all the unknown bugs to the Linux Kernel core developers.

5 DISCUSSION AND LIMITATION
Ground Truth Dataset. Despite our e�orts to provide B��� with
appropriate ground truth during the training phase, the collected
datasets might still bear some inaccuracies, which might introduce
a bias in B���’s predictions, and in turn a�ect its e�ectiveness. In
particular, when extracting vulnerable functions from CVE reports,
we label all functions modi�ed in the patching commit as vulnera-
ble. However, in some cases a patch modi�es multiple functions, but
only some of them are directly related to the actual root of the vul-
nerability. In future work, we may re�ne our procedure to precisely
identify vulnerable functions by leveraging other available sources
of information, e.g., CVE descriptions and commit messages [80].

Similarly, to label non-vulnerable functions, we rely on the as-
sumption that, given a snapshot of a large code base, the vast ma-
jority of the functions can be assumed to be safe. Thus, a random
sample of the functions in a code base can be used as a ground truth
for non-vulnerable functions. Inevitably, such a ground truth might
contain functions that are indeed vulnerable but are not discovered
yet, introducing inaccuracies. This could also be a�ected by the fact
that not all the developers and security researchers apply for CVEs.

Table 3: Results of guided fuzzing (Section 4.6).

Type of crash Number of crashes

syzkaller (96 hrs) syzkallerbp (48 hrs)

Arbitrary memory write 0 16
Arbitrary memory read 2 5
Null-pointer-deref 0 1
Use-after-free 0 4

Total 2 26

Distinguish Types of Bugs. By design, B��� is only able to detect
potentially vulnerable functions, without providing information
about the type of vulnerability. Future work could address such
limitation by extending B��� to distinguish di�erent classes of
bugs. However, this would require a labeled training dataset.
Precision and Recall. B��� incurs a relatively high false positive
rate compared to stand-alone bug �nding tools, such as Flaw�nder
and Cppcheck. However, as a search space reduction tool, B��� is
not designed to achieve high precision. When being compared to
tools like LEOPARD with similar design objectives, B��� delivered
both higher precision and higher recall.
Identi�cation of Functions. B��� uses function as the basic unit
for repository metadata analysis, and relies on the pair of �le path
and function name as the unit identi�er. This abstraction intro-
duces inaccuracy when the function or the �le is refactored to a
di�erent name. We believe that the accuracy of the analysis can be
further improved by tracking renames and moves. For the purpose
of this paper, however, this simpli�ed abstraction already works
well enough.
Cold Start Problem. B���may su�er from the cold start problem
where new functionalities in the project may have fewer meta-
data items upon which to base the analysis, compared to the long-
running ones, causing B��� to have a slight bias towards code
with longer history. While we admit that B��� is likely to have
an systemic bias favoring older functionalities, we point out that
this bias is reasonable as there is simply more chance of making
mistakes for functionalities with longer history. Also, as most of
the features that B��� uses (all of the code metric features and
many of the repository metadata features - e.g., author reputation)
are in fact unbiased against new functions, B��� should be able to
handle newly added functionalities reasonably in practice.
Assembly Code. Source code written in C/C++ may contain hand-
written assembly code. However, the current implementation of
B��� does not support assembly. Providing such support might
require adapting some of the features that B��� uses.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

740



Feature Selection & Future Work. We acknowledge that there
exist scenarios in which some of our features might not be e�ective
(e.g., functions with less parameters might indicate that the func-
tion uses globals, which can lead to insecure concurrent accesses).
However, we argue that, on a large scale, the combination of our
features can lead to e�ective predictions—as validated in our exper-
iments. Nonetheless, to alleviate the manual feature engineering
process and explore new metrics that can capture bug symptoms,
we plan to leverage deep learning techniques in future work. This,
however, comes with the cost of producing models that are di�cult
to explain.

6 RELATEDWORK
Pattern-based. Pattern-based approaches make use of already-
known vulnerability patterns to �nd potential vulnerable code.
Some of the popular tools are Flaw�nder [3], PScan [4], RATS [5],
and ITS4 [68]. Though these tools are very e�cient and practical,
they incur very high false positive and false negative rates, because
they often fail to identify complex vulnerability patterns. Since
then, several e�orts have been made to build more advanced static
analysis techniques for pattern-based vulnerability detection [22, 31,
37, 64, 67, 71, 73, 75, 77] . However, these techniques rely on previous
knowledge of vulnerability patterns, and thereby fail to discover
new ones. In addition, there are approaches [41, 66, 76] that aim to
�nd vulnerabilities automatically. However, they target only speci�c
types of vulnerabilities, e.g., taint-style vulnerabilities [41, 76] or
missing-check vulnerabilities [66]. On the contrary, our approach
is agnostic to speci�c types of vulnerability.
Code Similarity-based. These approaches [25, 28, 33, 55, 60] start
by dividing the entire program into code fragments, which are then
converted into abstract representation, e.g., tokens [25, 28, 60],
trees [26, 55], or graphs [33, 55]. Lastly, those abstracted code frag-
ments are used to infer similarities between them. The main advan-
tage of this kind of approach is that it can �nd similar occurrences
of vulnerabilities from a single instance. However, these approaches
heavily rely on the fact that two semantically similar code frag-
ments are not signi�cantly di�erent from a syntax perspective,
which could be false. Instead of �nding vulnerable patterns, which
cannot be modeled exhaustively, our approach focuses on the con-
ditions that lead to vulnerabilities.
ML &Metric-based. Prior work [9, 10, 21, 23, 24, 34, 35, 39, 57, 58,
74] attempted to apply various machine learning techniques for
vulnerability prediction at the source-code level. In addition, other
work [11, 16, 46, 50, 51, 61, 63, 78, 79, 82] combined machine learn-
ing with software quality metrics, code churns, or token frequency
metrics to identify vulnerable code. A recent paper [14] leverages
complexity and vulnerability metrics to identify potentially vul-
nerable functions. B��� is di�erent from these works, as B���
considers repository metadata features in addition to code metrics
features, which, as we showed in our experiments, signi�cantly
enhance prediction capabilities.
Repository-based. There is a line of research investigating the cor-
relation between repository metadata and software defects [42, 43,
50, 54]. Among them, VCCFinder [54] is the most similar work com-
pared to B���. VCCFinder tries to locate vulnerability-contributing
commits (VCC) incrementally by learning from code metrics and

repository meta-information within the commit, using SVM classi-
�ers. Unlike VCCFinder, B��� operates on functions as the basic
analysis unit. By doing this, B��� is able to correlate di�erent com-
mits instead of focusing only on one commit at a time. Second,
B��� introduces new additional classes of features (e.g., Developers
& Reputation, Table 1) that have not been explored by VCCFinder
and that showed to be e�ective in identifying potentially vulnerable
code.

7 CONCLUSIONS
In this paper, we discussed the need for methods and tools aimed at
assisting real-world security testing of large code bases by predict-
ing potentially vulnerable portions of code. To do so, we presented
an approach that analyzes code by leveraging both code metric
features and repository metadata. We extended existing techniques
by introducing new features and we implemented our approach in
B���, a tool that is able to highlight potentially vulnerable func-
tions in large code bases. B��� relies on CVE reports and machine
learning techniques to train classi�ers that are able to identify bug
symptoms, which capture patterns from both the code and the
software development process perspectives. By evaluating B���
against four large code bases, we showed that it is able to e�ec-
tively predict unseen vulnerable functions. Experimental results
also show that although learned bug symptoms have a certain level
of ability to transfer from one code base to another, it is best practice
to use learned bug symptoms from the same project. Finally, we
leveraged B���’s results to guide a Linux kernel fuzzer, discovering
10 zero-day bugs that would have not been discovered without
B���’s guidance.
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