
C������: Automated Modeling of Hardware Peripherals
Chad Spensky
Allthenticate

UC Santa Barbara
MIT Lincoln Laboratory

Goleta, CA, USA
chad@allthenticate.net

Aravind Machiry
Purdue University

West Lafayette, IN, USA
amachiry@purdue.edu

Nilo Redini
UC Santa Barbara
Goleta, CA, USA

nredini@cs.ucsb.edu

Colin Unger
UC Santa Barbara
Goleta, CA, USA

colinunger@ucsb.edu

Graham Foster
UC Santa Barbara
Goleta, CA, USA

gmfoster@ucsb.edu

Evan Blasband
Allthenticate

UC Santa Barbara
Goleta, CA, USA

evan@allthenticate.net

Hamed Okhravi
MIT Lincoln Laboratory
Lexington, MA, USA

hamed.okhravi@ll.mit.edu

Christopher Kruegel
UC Santa Barbara
Goleta, CA, USA
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
Goleta, CA, USA
vigna@cs.ucsb.edu

ABSTRACT
Emulation is at the core of many security analyses. However, em-
ulating embedded systems is still not possible in most cases. To
facilitate this critical analysis, we present C������, a hardware
emulation framework that can automatically generate models for
hardware peripherals, which alleviates one of the major challenges
currently hindering embedded systems emulation. C������ en-
ables individual peripherals to be modeled, exported, and combined
with other peripherals in a pluggable fashion. C������ achieves
this by �rst obtaining a recording of the low-level hardware in-
teractions between the �rmware and the peripheral, using either
existing methods or our source-code instrumentation technique.
These recordings are then used to create high-�delity automata
representations of the peripheral using novel automata-generation
techniques. The various models can then be merged to facilitate
full-system emulation of any embedded �rmware that uses any of
the modeled peripherals, even if that speci�c �rmware or its target
hardware was never directly instrumented. Indeed, we demonstrate
that C������ is able to successfully emulate a peripheral-heavy

Distribution Statement A. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15- D-0001. Any
opinions, �ndings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily re�ect the views of the Under Secretary
of Defense for Research and Engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3437532

�rmware binary that was never instrumented, by merging the mod-
els of six unique peripherals that were trained on a development
board using only the vendor-provided example code.

CCS CONCEPTS
• Computer systems organization ! Firmware; Embedded
hardware; Embedded software.

KEYWORDS
embedded systems, emulation, hardware peripherals

ACM Reference Format:
Chad Spensky, Aravind Machiry, Nilo Redini, Colin Unger, Graham Foster,
Evan Blasband, Hamed Okhravi, Christopher Kruegel, and Giovanni Vigna.
2021. C������: Automated Modeling of Hardware Peripherals. In Proceed-
ings of the 2021 ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong Kong. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3433210.3437532

1 INTRODUCTION
When presented with a system to analyze, the �rst step usually in-
volves performing dynamic analyses to understand how the system
works. Unfortunately, in the world of embedded systems, which are
the most proli�c type of computing devices today, this simple step
is not trivial, and, in many cases, it is prohibitively expensive. In
fact, no approach exists today that can emulate embedded systems
in the general case. This problem stems from a few key challenges:
1) embedded systems run on a variety of architectures (e.g., ARM,
MIPS, or AVR), 2) some systems implement custom instruction set
architectures (ISAs) with undocumented instructions, 3) embed-
ded software has strict hardware dependencies with little-to-no
hardware abstraction software, 4) the �rmware’s code is typically
interrupt driven, and 5) embedded code depends on a multitude of
peripherals, which are unique for each system.

While there have been multiple approaches that address various
aspects of the emulation problem, it is still far from “solved.” For ex-
ample, researchers have put signi�cant manual e�ort into systems
like the Quick EMUlator (QEMU) [5] to support more architectures
and instructions. Similarly, hardware-in-the-loop record and re-
play systems (e.g., Avatar [37] and Pretender [17]) are capable of
replaying hardware interactions that were obtained through a de-
bug interface. Finally, recent proposals that depend on a hardware
abstraction layer (HAL) being present (e.g.,HALucinator [9] and Fir-
madyne [8]) are able to satisfy hardware interactions by manually
implementing speci�c routines (e.g., read_from_uart). However,
no system has addressed the problem of e�ciently emulating pe-
ripherals, on which the majority of these embedded systems (and
their emulation) depends. In theory, these peripherals could be
manually implemented for a speci�c system, but the sheer num-
ber of peripherals, and the rate at which new peripherals are being
introduced to the market, make manual implementation intractable.

Peripherals interactions are typically implemented directly as
memory-mapped input and output (MMIO), where interactions
with the peripheral appear as normal memory reads and writes.
While traditional operating systems (OSes) implement a HAL to in-
teract with hardware, in the form of drivers and common interfaces,
embedded systems typically have their own customHAL or interact
with the peripherals directly. Herein lies the problem — the values
returned from an MMIO read are unknown to any analysis that
does not have access to the hardware (either directly or indirectly).
As such, the analysis must over-approximate the range of possible
values, or infer them through best-guess heuristics by analyzing the
�rmware mounted by the considered system. For static analyses,
this over-approximation might introduce a signi�cant overhead,
which can make the analysis intractable [10], and cause a loss of
precision (e.g., due to numerous spurious program states that would
not be possible during any real execution of the system). In the case
of dynamic analysis, the inability to return an expected value will
likely result in the execution stalling inde�nitely or entering some
error-handling code. Either way, the analysis would likely fail to
delve deep into the �rmware code.

To make matters worse, most embedded systems are heavily
dependent on interrupts that are issued from external peripherals
(e.g., when data has arrived) to advance their execution. In fact, it is
common for embedded �rmware to be completely interrupt-driven
(i.e., the �rmware will only perform a simple control loop until an
interrupt is issued). An emulator that is incapable of issuing these
interrupts will be unable to achieve any realistic functionality, as it
will never execute the interrupt handlers.

The goal of this work is to automatically create a software-
based version of a hardware peripheral that is capable of conning
the �rmware into believing that the actual hardware peripheral
is present by returning valid MMIO values and issuing relevant
interrupts. Indeed, our current technique can be employed on Linux-
based, RTOS-based, and bare-metal [28], but the scope of this paper
is limited to bare-metal systems. While our work is currently lim-
ited to MMIO-based systems (e.g., ARM, MIPS, SPRAC), we believe
the techniques could be extended in future work to include a more
diverse set of peripheral interactions (e.g., port-mapped input and
output that is seen in PIC and Intel systems). Similarly, our cur-
rent work requires access to hardware for the training phase, we

hope that future work will expand these techniques to also support
model-generation from inference-based, software-only techniques.

C������ works by �rst ingesting logs of real hardware interac-
tions (i.e., interrupts, reads, and writes) of the peripheral in question,
which can be obtained by using either our novel source-code instru-
mentation technique, or existing hardware-in-the-loop techniques
(e.g., Avatar [27]). These recordings are converted into directed
acyclic graphs (DAGs), where the edges are annotated with MMIO
writes, and the interrupts and memory values are encoded as a
peripheral state in the nodes. Then, the DAGs (one per peripheral)
are converted into l-automata using a novel graph-transformation
technique, which serves as a generalized representation of the pe-
ripheral. Additionally, multiple recordings can be merged to create
an automaton that accurately represents and generalizes all of the
recorded interactions.

By representing peripherals as composable automata, C������
is able to not only combine recordings of the same peripheral, but it
can also be used to merge disjoint peripherals to create a complete
system that has multiple independent peripherals attached. For
example, an Internet of Things (IoT) camera may consist of an
ARM processor, a camera, a microphone, and a WiFi controller. To
emulate this camera’s �rmware, one could purchase those same
components and connect them to the appropriate ARM processor
on a development board. Models for each of these peripherals could
then be generated, independently, by running the example source
code that is provided with the di�erent peripheral components.
These recordings could then be converted into automata, combined,
and attached to an emulation environment that can be used to
successfully emulate the �rmware of the camera, which was never
instrumented. To the best of our knowledge, C������ is the only
system capable of creating generalized peripheral models that can
be used on multiple �rmware samples.

In summary, we claim the following contributions:
• an LLVM-based tool to automatically instrument source code
to record all peripheral interactions (i.e., MMIO and inter-
rupts) on embedded systems,

• a novel technique for generating l-automaton models of
peripherals,

• a novel technique formerging peripheral models to facilitate
portable models and full-system emulation,

• C������: an open-source framework1 for recording, mod-
eling, and emulating embedded peripherals, and

• an analysis of C������ on popular embedded peripherals,
demonstrating its e�cacy by successfully modeling 10 pe-
ripherals and emulating one peripheral-heavy �rmware that
was never instrumented.

2 BACKGROUND
Generally, the goal of any analysis tool is to observe the system
under analysis (SUA) in a realistic environment to extract features
and draw conclusions about its inner workings. Thus, an e�ective
embedded systems analysis framework must create a realistic repre-
sentation of the hardware to ensure that the software will execute
correctly and produce useful results. In the literature, this concept
is known as survivability, which is “the ability for the �rmware to
1https://github.com/ucsb-seclab/conware

execute the same regions of code as it would if the original hard-
ware were present, without faulting, stalling, or otherwise impeding
this process [17]” or “the �rmware never ... crashes, stalls, or skips
operations due to peripheral IO errors. [12]”.

There are four general approaches to achieve survivability:

Hardware Debugging. Hardware debugging is capable of running
the SUA on the actual hardware and debugging the real system. This
can be done by leveraging existing debugging interfaces, e.g., JTAG,
or potentially interposing or snooping on the hardware components
themselves. On production devices, it is increasingly rare for these
interfaces to be exposed. Moreover, in many cases it is prohibitively
expensive to acquire the SUA itself, instrument it, and potentially
replace it if the analysis go awry — imagine irreversibly damaging
an electric car.

Hardware-in-the-Loop Emulation. Debugging directly on the hard-
ware can be slow, and lack certain features to aid analysis (e.g., the
ability to record every instruction or set a large number of break-
points). Thus, hybrid, hardware-in-the-loop techniques [22, 37]
have emerged to address this issue by emulating the main central
processing unit (CPU) and intelligently forwarding any interactions
with hardware peripherals to the actual hardware. While this ap-
proach o�ers a more feature-rich analysis, and a potentially much
faster analysis environment, it does not scale, as the number of
analyses executing is still limited by the physical hardware devices
that are available. This lack of scale is due to the fact that a real,
production hardware system is needed for each emulation platform,
versus emulation which scales as a factor of computation resources.
Similarly, there are numerous hardware constraints that are much
more di�cult with hardware-in-the-loop approaches (e.g., frequent
peripheral-initiated interrupts [15]).

Record-and-Replay. This approach involves removing the hard-
ware dependency by obtaining a high-�delity recording of the inter-
actions, using the actual hardware, and then using this recording to
e�ectively “replay” the interactions with the hardware. This tech-
nique is especially useful when the portion of code being analyzed
does not have many hardware dependencies or the interaction in
question is being replaced by the analysis itself (e.g., fuzzing [34]).
This technique has been implemented by systems like PANDA [11],
which record the interactions in real time and then later use this
recording to feed “real” data into a more heavyweight analysis.
However, record-and-replay techniques do not facilitate any analy-
ses that aim to exercise hardware interactions that were not directly
observed in the recording phase.

Full-System Emulation. Full-system emulation executes the �rmware
in a completely emulated environment, ensuring survivability with-
out the need for any hardware. Ideally, a full-system emulator
would also enable the �rmware to exercise all of its functionality,
and interact with all of the assumed hardware peripherals. This
can either be achieved by implementing the hardware peripherals
either manually (e.g., %2�" [12], HALucinator [9], or Simics [26])
or automatically (e.g., Pretender [17]). Despite the various advances
in this area, scalable full-system emulation of embedded systems
is still an open problem. Pretender is a promising �rst step, but
it requires debugging interfaces to be enabled on the system un-
der test and is only capable of replaying the basic interactions of

�=8Cstart '403~ ⌫DB~

parameters

initialized

*

full

empty"

Figure 1: A state-machine representation of a simple
universal asynchronous receiver-transmitter (UART) con-
troller, where the peripheral is either awaiting to be initial-
ized, ready to received any (⇤) data, or in a busy state, which
is transitioned to when the bu�er is full and transitioned
out of when the bu�er has space (potentially triggering an
interrupt)

the same hardware and �rmware that were recorded in a mostly
linear fashion. More precisely, Pretender is incapable of replaying
peripherals that were not observed in the same recording nor is it
capable of inde�nitely emulating stateful peripherals. C������ is
capable of creating portable and composable models that can be
executed inde�nitely, and is a strictly more general technique than
Pretender.

Indeed, full-system emulation particularly useful for security
analyses since it can provide the ability to analyze the entire �rmware
with limited false positives, since the identi�ed problems will be in
context of the complete system, and can even be used to generate
proofs-of-concept that can be directly tested on the real system.
Nevertheless, this valuable tool is still currently lacking in the world
of embedded system security analyses. C������ has advanced the
state-of-the-art in full-system emulation by facilitating portable
and composable peripheral models, which can be leveraged by any
emulation framework to enable unbounded execution of arbitrary
�rmware, even if the speci�c �rmware and hardware being emu-
lated have never been instrumented. Moreover, C������ does not
require access to hardware used by the system under test at all, as a
similar board could be used to generate the recordings and models,
which can then be used to execute the �rmware in question.

2.1 Motivation
As a motivating example, we examine the humble UART controller,
which provides a simple interface to either read or write a single
byte at a time (e.g., a text-based interface).

UART, as is the case with many peripherals, has the ability to
operate with or without interrupts. If an analyst uses a tool that
does not use interrupts to generate a model of the peripheral, it
is unlikely that this model would be useful for emulating a di�er-
ent system that does use interrupts. Indeed, the interrupt-based
�rmware would fail to execute, as it would wait inde�nitely for an
interrupt to be �red. Similarly, a naïve replay of MMIO values that
were recorded with interrupts would not work on a non-interrupt-
based �rmware because the observed writes (i.e., enabling inter-
rupts for cached values) would di�er from the observed values (i.e.,
busy-waiting for a ready bit), requiring the emulation framework
to “guess” what to do next. Thus, to ensure the complete function-
ality of this peripheral, a valid model must account for at least two

di�erent scenarios, which are unlikely to ever occur in a single
�rmware. Even worse, UART is capable of reading and writing any
byte. If the recorded UART interaction was non-variable (e.g., it
always output a �xed string) and the �rmware being analyzed had
more varied interactions (i.e., exercising more of the peripheral’s
functionality), simple record-and-reply-based systems would fail
to adequately handle these interactions.

Table 1: An recording obtained from instrumenting a simple
�rmware that prints "ON\r\n" and "o�\r\n" repeatedly over
UART, without interrupts

Operation Address Value
...

...
...

WRITE 0x400E0800 (control) 0x50
READ 0x400E0814 (status) 0x40001A1A (ready)
WRITE 0x400E081C (TX) 0x4F | O
READ 0x400E0814 (status) 0x40001818 (busy)
READ (repeats 434⇥) (repeats 434⇥)
READ 0x400E0814 (status) 0x4000181A (ready)
WRITE 0x400E081C (TX) 0x4E | N
READ 0x400E0814 (status) 0x40001818 (busy)
READ (repeats 2,634⇥) (repeats 2,634⇥)
READ 0x400E0814 (status) 0x4000181A (ready)

...
...

...

Despite the di�culties with replaying a UART recording, the
actual state-machine of a typical UART peripheral is quite simple
(see Figure 1). In fact, almost all embedded systems are implemented
as state machines [32]. A high-level UART state machine consists
of three states: an initialization state, where the �rmware can set
parameters like the bits of actual usable data (BAUD) rate; a ready
state, where the controller is ready to receive and transmit data;
and a busy state for when the controller is currently transmitting
or receiving. These states are conveyed to the �rmware through
MMIO status registers. Thus, the �rmwaremust either continuously
check the status register before it can write new data (see Table 1) or
ask the controller to trigger an interrupt when the state transitions
from busy to ready (i.e., empty").

C������ is the �rst system capable of extracting models of the
high-level state-machines that de�ne the peripheral, using only
recorded interactions.

3 SYSTEM DESIGN
C������ has three core components (see Figure 2):

• a source-code instrumentation framework capable of record-
ing MMIO interactions and sending the log over any hard-
ware interface (Section 3.1). This module is not necessary
for C������ to work, as it can use recordings produced by
previous work [17, 27];

• a model generation and optimization framework that con-
verts a raw recording log into a DAG, and then into a l-
automata (Section 3.4); and

• an emulation framework that is capable of using the gener-
ated models (Section 3.7).

Indeed, these three components are standalone contributions, as
each provides a unique contribution to the �eld.

Recording. C������ requires a recording of the low-level in-
teractions (i.e., MMIO and interrupts) with the target peripheral,
which can be obtained through various methods. Indeed, hardware-
based recording has already been explored, and the output of the
existing tools can be used by C������. These recordings can be
of any �rmware interacting with the peripheral; C������ does
not require a recording from �rmware being emulated. However,
hardware-based methods require access to the original hardware
and a debugging or instrumentation interface and are more likely to
result in the Heisenberg e�ect (i.e., the act of observing the phenom-
ena alters its outcome) because of the timing overhead imposed.
Thus, we created a new source-code instrumentation method for
obtaining accurate hardware recordings to supplement this work.

Modeling. C������ generatesmodels by �rstmapping the record-
ings of observed interactions (raw recordings) into directed graphs
(one per peripheral), which are then converted into l-automata.
These automata are human-readable and facilitate unbounded ex-
ecution since they more accurately represent the internal state
machine of the real peripheral. Unfortunately, existing state ma-
chine minimization techniques (e.g., the Hopcroft minimization
algorithm [19], implication tables, or the Moore reduction proce-
dure) are ill-suited for our purposes. This necessitated the creation
of a novel automata-generation algorithm (Section 3.5).

Emulation. The ultimate goal is to emulate the �rmware for the
SUA, which can typically be obtained from the vendor’s website
or through more invasive techniques (e.g., using a Bus Pirate [36]
or advanced hardware hacking techniques [16]). Our automata,
which can be generated from any example source code on any
similar hardware (e.g., a development board), can be plugged into
any popular emulation framework as a stand in for the physical
peripheral. More precisely, C������ is able to emulate arbitrary
�rmware without ever instrumenting the actual �rmware or the
hardware that it was intended for.

3.1 Source Code Instrumentation
C������ uses the LLVM framework [24] to instrument the �rmware’s
source code. Consequently, our instrumentation works at the LLVM
Bitcode level [23] and works on all of the source languages sup-
ported by LLVM (currently over 20). The purpose of this instrumen-
tation is to record all of the interactions with MMIO peripherals
(i.e., reads, writes, and interrupts). This is implemented as a bu�ered
logger that exposes two functions:

• conware_log(address, value, type) is used to log the
addresses and values that were read from or written to (i.e.,
type).

• conware_interrupt_log(num) is used to log the �ring of
an interrupt of a speci�c interrupt request line (IRQ) number
(i.e., num).

This logging infrastructure maintains an in-memory bu�er and also
takes care of �ushing the bu�er to a known interface (e.g., the Joint
Test Action Group (JTAG) or UART interface) when it is full or a
programmed trigger is hit. This technique even works with high-
bandwidth peripherals (e.g., Ethernet) since we disable interrupts
while �ushing the bu�er, which e�ectively halts the execution of
the embedded system, permitting to operate a high-speed in small,

6RXUFH�&RGH

//90�,QVWUXPHQWDWLRQ

6RXUFH�&RGH7UDLQLQJ�6RXUFH

7UDLQLQJ�%LQDU\
/RJJLQJ�+RRNV

5HDO�
&38

3HULSKHUDOV

5HFRUGLQJ

*UDSK�(QFRGLQJ

0RGHO�0HUJLQJ

$XWRPDWD�*HQHUDWLRQ

(PXODWHG�
&38

0RGHOV

$QDO\VLV
%LQDU\

�UG�3DUW\�7RRO

5HFRUGLQJ 0RGHOLQJ (PXODWLRQ

Figure 2: High-level design of C������: logging hooks are inserted into the compiled binary, the binary is run on real hard-
ware to extract a detailed log, these logs are then converted into concise state-machine representations, and then both the
uninstrumented binary and the models are run on emulated hardware, enabling detailed, scalable analyses.

bu�ered spurts. By logging directly to memory, C������ incurs
a minimal performance overhead, and thus a minimal Heisenberg
e�ect. In fact, inline binary recording enables C������ to over-
come the challenge of recording frequent interrupts accurately [17].
Furthermore, our logger provides a single place to handle multi-
threading and reentrancy [13], which is necessary for accurately
recording interrupts in practice. In addition to recording the imme-
diately relevant information, we also log the program counter to
facilitate debugging and future analysis.

3.2 Recording MMIO accesses
Though, theoretically, it is important to instrument all of the loads
and stores to not miss any MMIO access, previous work [31] has
shown that MMIO is usually accessed via hardcoded addresses,
which can be retrieved by analyzing the �rmware code of an em-
bedded system. Exploiting this insight provides a lower overhead
and is more tractable. Thus, all of the accesses that use hardcoded
addresses are instrumented by inserting a call to conware_log af-
ter loads and before stores, with the value being read, or that is
about to be written, respectively. In fact, in our speci�c examples,
we found that this could be optimized even further, as all of the
peripheral interactions were represented as structs in the source
code (greatly reducing the overhead costs).

Due to memory limitations, C������ stores all of the reads in a
compressed array format for each entry, where repeated reads are
stored only once, with an associated counter. This counter and log
are reset every time a new write is observed, as writes are akin to
state transitions of the peripheral. This is a necessary optimization
since manyMMIO values are read repeatedly until they change (e.g.,
a status register) and would quickly exhaust the bu�er otherwise.

3.3 Recording Interrupts
To record interrupts, we �rst retrieve all the interrupt service rou-
tines (ISRs) alongwith corresponding interrupt number they service
from the interrupt vector table, which is always linked at a static
address. C������ instruments all the identi�ed ISRs by inserting
a call to the conware_log function at the entry of the function

with the corresponding interrupt number. These interrupts are sim-
ilarly compressed with a repeat counter to save bu�er space and
optimize our recording. The correlation between interrupts and
their associated peripheral are discerned from the data sheet of the
microcontroller, which are manually entered once per chipset. For
example, page 38 of the datasheet for the SAM3X chipset explicitly
lists every peripheral interrupt in the nested vectored interrupt
controller (NVIC) [3], and the handlers to these routines are triv-
ially found in the source code or compiled binaries. These memory
locations will be constant across all variants of the same processor
(i.e., all Cortex-M3 processors will have the same values [25]).

3.4 Encoding Recordings
Hardware peripherals typically only change states when the soft-
ware writes a value to one of the registers on the peripheral [17]
(e.g., the �rmware writes a command to the peripheral). Thus, C���
���� �rst encodes the recordings as simple DAGs where the edges
are labeled with MMIO writes and the nodes encode the “state” of
the peripheral, which includes the values that each memory region
should return when they are read, as well as the interrupts that
should be �red (and how many times). We call this graph a linear
model, which is later converted into a more robust automata.

Formally, the DAG is denoted as (# , ⇢) where ⇢ is the set of
directed edges and # is the set of nodes. An edge 412 2 ⇢ from
=1 to =2 is represented by the tuple (=1,=2). Each node = has an
associated state, such that =.BC0C4 2 (, where (is the set of all
states in a given DAG. This simple linear DAG can only reproduce
a verbatim replay of the recorded content, as any out-of-order
operations would not have a valid state transition and could only
be handled by an educated guess.

As an explicit example, a write to the UART transmit (TX) reg-
ister would traverse the edge with that speci�c value, and put the
peripheral into a “new” state. This state would then return the fol-
lowing pattern: BUSY for the �rst 434 reads, and then READY on the
435C⌘ . An explicit example of a node in our model for the UART
peripheral is shown in Figure 3, where each address has its own

���
%DXG�5DWH�*HQHUDWRU�5HJLVWHU
7UDQVPLW�+ROGLQJ�5HJLVWHU
5HFHLYH�+ROGLQJ�5HJLVWHU

�6WDWXV�5HJLVWHU
,QWHUUXSW�0DVN�5HJLVWHU

�,QWHUUXSW�'LVDEOH�5HJLVWHU
�,QWHUUXSW�(QDEOH�5HJLVWHU

0RGH�5HJLVWHU
&RQWURO�5HJLVWHU

,QGLYLGXDO�6WDWH

6WRUDJH

3DWWHUQV

6WRUDJH

Figure 3: A individual node representation in our graph
(each node contains a single peripheral state) of a UART con-
troller, where edges are writes and the state encodes the val-
ues to be read from speci�c addresses. Each address has a
sub-model: for example, Storage works as normal memory
and Patterns return more complex data.

sub-model, within the overarching peripheral graph. And an exam-
ple output of converting Table 1 into our DAG representation can
be seen in Figure 4.

Within in each state, each memory address is encoded as sub-
model to ensure that the appropriate values are returned when
that address is read. These memory models are lumped into three
general types [17]:

• storage – acts like normal memory,
• pattern – a single or repeated pattern, and
• monotonic – returns a monotonically changing value

For example, if a particular address in the peripheral (e.g., a status
register), always returns the same value, we will simply model
that as a static pattern, which will always return the same value,
regardless of how many reads occur. Conversely, if the register
always returns a string of 0xAs, followed by a 0xB, our model will
keep these semantics. This is currently the state of the art [17].

3.4.1 Interrupts. C������ must not only support interrupts, but
must be able to automatically learn when to trigger which interrupt.
Fortunately, the NVIC is standardized for most architectures (i.e.,
every NVIC for ARM has the same structure), which permits us to
manually hardcode the appropriate actions for various timers etc. by
reading the datasheet. For example, our Cortex-M3 has eight timer
counters (i.e., Timer Counter Channels 1 through 8), that can be
enabled or disabled. Thus, when a speci�c timer interrupt is enabled,
we can programmatically trigger that interrupt periodically until
the interrupt is later disabled. Somewhat unintuitively, the actually
frequency of triggering the interrupt does not actually matter. For
example, if the interrupt is supposed to trigger every 50<B on a
real board, deviating from this is unlikely to result in an erroneous

�HPSW\�

�[���(�������[��

�[���(������ �[�����$�$� �3DWWHUQ�

�[���(���&���[�)�³2´

�[���(������ �[������������[� �3DWWHUQ�
�[�����$�$

�[���(���&���[�(�³1´

�[���(������ �[��������������[�3DWWHUQ�
�[�����$�$

Figure 4: A DAG representation of a simple UART device,
where each node represents a state and encodes the address
to be read from (e.g., status register) and the values to be re-
turned (i.e., TXRDY or BUSY). Nodes are traversed when writes
are observed (i.e., writing “O” to the TX register).

emulation. The reason for this is that embedded systems rely on
these interrupts for their time, and have no other timekeeping
mechanisms. Thus, the code treats the interrupts as a single time
unit, but does not make any assumptions as to the actual time that
has passed. This assumption is only true of timer-like interrupts.

For peripheral-triggered interrupts (e.g., a data ready interrupt),
this problem is exacerbated by the fact that interrupts can depend
on the context of the peripheral and the �rmware. To ensure that
interrupts are triggered at the correct time, they are encoded as
part of a node’s state (i.e., the speci�c IRQ numbers and how many
of each), and triggered when the incoming edge is taken. Thus,
interrupts will only be triggered after a write was observed that was
also immediately followed by interrupts in the recordings (i.e., that
speci�c state in our model was reached, not just the address/value
pair). This is contrary to previous work [17], which would observe
a speci�c write and then begin triggering interrupts inde�nitely,
which is likely to lead to over-approximation in practice. When
observing our UART controller, the interrupt was never explicitly
disabled, but one interrupt per write was issued (i.e., each write
queues a future interrupt).

An explicit example of this can be seen in Figure 5, which was
generated by recording and optimizing a �rmware that prints
“Knock!\r\n” every time that a piezo transducer is knocked. Our
model correctly encodes the interrupts into the state where the
�nal byte was written, and all subsequent byte writes to the TX
register are encoded as a self-loop. In practice this corresponds
to our emulator returning busy the appropriate number of times,
and triggering a ready interrupt every time a valid write to the TX
register is observed. Indeed, this automata can be used to emulate
any �rmware that supports interrupts. If the execution deviates
from our model (i.e., the execution wrote a value that is not present
in our model), we perform a breadth-�rst search (BFS) to identify an

�[���(�������[�����$�$

��[���(���&��[))))))))����[���(������[������[���(������[�����
��[���(������[������[���(������[$&����[���(������[������

���������������������[���(������[����

�[���(���&���[���³.´

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[��������

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[��������

�[���(���������7;5'<�

�[���(�������[�����$�$
,QWHUUXSW������������2QFH�

�[���(���������7;5'<�

�[���(���������7;5'<�

�[���(���&��
��:LOGFDUG�

,QLWLDO�6WDWH

Figure 5: An l-automata for a UART peripheral generated
from a recording that prints “Knock!\r\n” repeatedly. The
initial state will accept all con�guration parameters, once a
“K” is written, the peripheral becomes BUSY until the READY
state is reached and interrupts are thrown.

acceptable state within our model (e.g., any write to the TX register
other than “K” would ultimately take the wildcard edge where the
bu�er is READY). This, as shown in Section 4.3, will result in the
proper actions ultimately being taken (e.g., when enough bu�ered
writes are observed, it will transition into the ready state, and the
interrupts will �re until the bu�er is emptied).

3.5 Automata Generation
The next step of our approach involves transforming our DAGs,
obtained as explained in Section 3.4, into l-automata. Before gen-
erating our l-automata we must �rst de�ne what it means for two
states to be mergeable (i.e., they can be merged into one), or, put
another way, which nodes in the graph are in the same equivalence
class. Two generic states 0 and 1 can be merged, indicated by 0 [1,
if they are equivalent. The states 0 and 1 are equivalent, indicated as
0 ' 1, if they have the same identi�ed type (e.g., storage, constant,
or pattern) for every overlapping memory address, and those types
are also equivalent (i.e., they encode the same data). Nodes are
mergeable if and only if their states are mergeable. Additionally,
we consider two edges to be equivalent, also denoted by ', if they
have the same labels (i.e., the same write address and value).

For example, take states 0,1 2 (where 0 has memory models
for address 0G100 (Storage) and 0G200 (Pattern) and 1 has memory
models for 0G100 (Storage) and 0G300 (Pattern). These states would
be considered to be mergeable, since there is no risk of returning
a wrong value. The returned values would be the same for both 0
or 1 and 0 [1. Indeed, 0 [1 is strictly more verbose than either
of the individual states. Patterns are only considered equal if they
are identical. While this could potentially be relaxed, there are
numerous cases where the exact values are critical, e.g., the NEC
infrared (IR) encoding protocol.

While this de�nition of mergeability is intuitive, its lack of tran-
sitivity does slightly complicate the state-reduction phase. More
precisely, it is possible for � ' ⌫ and ⌫ ' ⇠ but � [⌫ ; ⇠ (e.g.,

A:[0G100:Storage], B:[0G200:Pattern], C:[0G100:Pattern]). Thus, we
must be diligent when merging equivalence classes to make sure
that all of the merges will succeed without violating the soundness
of our model.

The goal of the automata-generation phase is to combine all
of the mergeable states to create a more general representation
that can be used for inde�nite execution and handle out-of-order
operations. For example, a linear DAG, which is the current state
of the art [17], is incapable of handling execution beyond the last
node in the graph, and would completely fail if �rmware were to
execute functionality in a di�erent order. A generalized automata,
in theory, should not su�er any of these shortcomings.

Our automata-generation algorithm starts at the initial node (i.e.,
the node that corresponds to the �rst action in the recording) in
the graph (8), and traverses the graph using a nested depth-�rst
search (DFS) such that 8 is compared to every node that is reachable
from 8 . This search is then repeated for every subsequent node
in the graph, until a set of nodes that can be merged (i.e., in the
same equivalence class, ⇠) is successfully identi�ed. If two nodes
are mergeable, the algorithm then traverses all of the equivalent
outgoing edges (i.e., the edges have the same labeled memory write
address and value) recursively to ensure that after the two nodes are
merged all of the edges will remain valid. More precisely, for two
nodes to be merged, they must be mergeable, and all of the nodes
on the same outgoing edges must also be equivalent. This recursive
comparison is done by �rst identifying equivalent edges for the two
initial nodes, and then recursively identifying all of the equivalent
edges for any other identi�ed nodes, until a cycle is completed or
the two nodes in question share no common outgoing edges. If two
unequal nodes are found, the nodes are marked as unmergeable.
Finally, because our equivalence comparison is non-transitive, we
con�rm the equivalence of the cross product of the various node
equivalence classes before merging the equivalence class into a
single node and combining the relevant edges.

After a successful merge, the algorithm is then run again, starting
at the initial node (8). This process is repeated until the algorithm
reaches a �xed point, which is de�ned by reaching the end of the
nested DFS for every node in the graph without any nodes being
merged. The entire algorithm is shown more formally in Algo-
rithm 1. This algorithm guarantees that we have obtained an l-
automaton, but not necessarily the best or smallest representation,
as the order of operations could impact the outcome. Nevertheless,
this automaton is more than su�cient for the purpose of emulat-
ing and understanding the general structure of the peripheral’s
internals. The results of this algorithm on a UART recording which
prints “Knock!\r\n” inde�nitely is show in Figure 5.

To achieve more general automata, we consider an edge to be
a wildcard (i.e., any value is an acceptable state transition for that
address), and merge the associated edges, if and only if all of the
outgoing edges with that address have the same destination node
and the number of similar edges is above a threshold (e.g., �ve).
Indeed, this merging of edges greatly increases C������’s ability
emulate unobserved code branches in our training data, as well as
never-before-seen �rmware (see Figure 5).

Function GetEdges(=1, =2):
, 1 =1 .BC0C4 ;
, 2 =2 .BC0C4 ;
if , 1 ', 2 then

if =1 2 ⇠ ^ =2 2 ⇠ then
return;

end
⇠ ⇠ [{, 1,, 2 };
⇢⇠ ⇠>==42C43⇠><?>=4=CB (⇠,=1) ;
$ $DC6>8=6⇢364B (⇢⇠,=1) ;
' ;;
forall 41 2 $ do

forall 42 2 =1 .4364B [=2 .4364B do
if 41 ' 42 then

' ' [(41 .34BC, 42 .34BC) ;
end

end
end
return ';

else
return ?;

end
Function GenerateAutomata(#):

forall =1,=2 2 # | =1 < =2 do
⇠ ;;
" GetEdges(=1,=2) ;
while G, ~ ?>? (") do

" " [GetEdges(G, ~) ;
end
if " <? then

Merge(⇠);
end

end
return;

Algorithm 1: Functions for determining if two nodes are equal
and can be merged, which will ultimately update the graph by
merging all “equal” nodes, and all of their annotations, into a
single node.

3.6 Combining Models
Because of the way in which our automata generation is imple-
mented, merging recordings is relatively straightforward. First, we
combine the initial linear DAGs by starting at the initial nodes and
merging every mergeable state until there is a convergence (i.e., the
current node is equivalent but the outgoing edges are not equiva-
lent). Given that peripherals are expected to power on into a known
state, it is unlikely to ever have a read value di�er without �rst
seeing a deviation in the written value (i.e., putting the peripheral
in a di�erent state). The resulting merged graph will then have
only a few nodes with multiple outgoing edges and no cycles (i.e.,
a tree).

Regardless of the number of recordings that are merged, the
automata-generation step proceeds as it did in the single-recording
scenario – iteratively merging equivalent states until no more nodes
can be merged. The result of this step is a model that is generalized
and satis�es the constraints of every input model. Said another
way, this model can be used to successfully emulate any of the
original �rmware, and likely many other �rmware that use the
same peripherals.

3.7 Hardware Emulation
Our current emulation framework is built in Python as an extension
of Avatar2, and is loosely based on Pretender.C������ implements
a custom AvatarPeripheral that encompasses the entire MMIO
memory region, where the reads and writes interact directly with
the generated models, advancing states on writes and returning
appropriate values on reads. Within this class, the memory is split
into individual peripherals, which can either be identi�ed manually
(e.g., by reading the data sheet) or automatically [17]. Each indi-
vidual peripheral has its own disjoint automaton that is actuated
in isolation. Once the emulator is running, the write command
will result in the model advancing, either to the next state if that
forward edge exists, or by performing a BFS in the case that is it
does not. If the BFS fails, the �rst fallback is to pick the node in
the entire graph that has the most observed incoming edges with
that address value. If a write to this address was never observed,
we simply stay in the same state and create a Storage model for
that address.

If a state is entered that has interrupts, a thread is started for each
interrupt that will trigger it the appropriate number of times. This is
done to ensure that the �rmware still executes seamlessly, without
waiting until the interrupts are handled. Similarly, this permits
C������ to trigger continuous interrupts (e.g., a counter that is
triggered every -<B). As previously mentioned, known interrupts
are hard-coded in our emulation framework and triggered when
the appropriate enable bit is written to a speci�c address, while
peripheral-speci�c interrupts are triggered during state transitions.

3.8 Porting Models
C������ models are also portable across di�erent chipsets and
memorymaps. For example, if the training device had the peripheral
mapped at memory addresses X - Y and the emulated peripheral
mapped the device at X’ - Y’, the C������model can be updated
appropriately. In the C������ framework each peripheral is stored
as a self-contained object, which is mapped to the speci�c memory
region. More precisely, each memory address has a direct mapping
to the corresponding peripheral object. Moreover, within the pe-
ripheral object, each memory address is also mapped to a speci�c
model for memory reads to ensure that the proper value is always
returned. Thus, porting a model to a di�erent region of memory is

as easy and remapping each of these objects in the nested dictionary
object.

In fact, these memory models are readily available [29] for many
embedded processes as System View Description (SVD) �les. These
�les explicitly list the MMIO peripherals, and even which registers
are mapped to which address. Therefore, a simple transformation
tool that changes the address locations between device models
could be trivially constructed to move a peripheral model between
chipsets.

4 EVALUATION
The Arduino platform proved to be a perfect testing ground for
C������ — it is open-source, is compatible with a large array of
peripherals, and has well-documented example code for the sup-
ported peripherals. Indeed, analysis aside, C������ provides the
ability to fully emulate Arduino �rmware with arbitrary peripher-
als, making it the �rst system capable of this feat. To ensure the
applicability of our evaluation to real-world systems, we opted to
use the Arduino Due, which has a 32 bit ARM Cortex-M3 processor
(the Atmel SMART SAM3X/A [3]). To instrument the Arduino code,
we modi�ed the build environment to instrument both the Arduino
environment and the program that was being compiled on top of
that environment (i.e., the .ino �le). This instrumentation is capa-
ble of automatically injecting logging into any Adruino program,
including library packages, and outputting the recorded log over
any standard interface (e.g., UART) after the speci�ed bu�er has
been exhausted (e.g., 2,000 entries with compression) or a triggered
event was detected (e.g., a button press). This bu�er can be �lled,
emptied, and recorded inde�nitely, which enables the recording of
long-running or MMIO-intensive interactions.

For our evaluation we ran a spread of unique experiments to
demonstrate the practicality our modeling framework:

• Recording and replaying the same �rmware, with a C���
���� model replacing the hardware (Section 4.2);

• Recording and replaying the same �rmware with a merged
and generalized automaton — multiple recordings where
merged into one model and the original �rmware was run
against it (Section 4.3);

• Recording and replaying an “unseen” �rmwarewith amerged
and generalized automaton — the model was generated using
di�erent recordings of individual peripherals using the ex-
ample source code that was provided with those peripherals
(Section 4.4).

The purpose of these experiments was to demonstrate that C���
���� is a viable solution for emulating hardware peripherals, and
that it is capable of handling real-world peripherals. All of these
experiments were run in a fully-automated fashion (i.e., a single
script was executed to generate all of the models and execute the
emulator). We do not claim that these �ndings indicate that C���
���� is the solution or that emulating embedded systems is solved,
but instead advocate graph-based, automata modeling of peripher-
als as a viable technique for the research community to continue
to address this critically important problem (i.e., the full-system
emulation of embedded systems).

Before delving into the results, we want to �rst emphasize the
complexity involved with emulating an embedded system. We �rst

void loop() {
printf(�ON\n\r�);
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
printf(�off\n\r�);
digitalWrite(LED_BUILTIN, LOW);
delay(500);

}

Listing 1: Simple Arduino program that blinks an LED and
prints the lumination status over UART

instrumented an Arduino program that simply blinks the on-board
light emitting diode (LED) and prints text over UART (see Listing 1).
With a 2,000 entry recording bu�er (with compression), our instru-
mentation logged 88,287 MMIO accesses, which consisted of 65
unique addresses across 11 peripherals. The breakdown of these
accesses were as follows: 52 unique addresses were written to (159
unique address-value combinations), 21 unique address were read
from (37 unique address-value combinations), and zero interrupts
(excluding SysTick) were observed. To represent these logs in our
linear DAG it requires 11 separate graphs (one for each peripheral),
which in total contain 1,014 nodes, 1,003 edges, and encode 87,284
values in their states (i.e., values to return when certain memory
addresses are read). The UART peripheral accounts for 367 of those
nodes and the platform input and output B (PIOB) peripheral, which
is used to control the LED, accounted for 506 nodes. Emulating even
a simple �rmware such as this one is no trivial task. After applying
our automata-generation technique, the graphs contained a com-
bined 26 nodes (a 22⇥ reduction) and 45 edges, 21 of which are self
loops. This reduction can be made arbitrarily high by recording for
longer, as the number of equivalence classes is static.

4.1 Dataset and Experimental Setup
To demonstrate the breadth of devices, and interactions, we strate-
gically choose a few indicative peripherals, many of which are
used by a hobbyist smart door lock �rmware that we emulate in
Section 4.4:

• IR: an IR remote controller [14] and an IR receiver,
• LCD: a standard HD44780 liquid crystal display (LCD) display,
• Knock: a piezo transducer to detect a "knock,"
• UART: various UART interactions, both with and without
interrupts,

• Color: a Cadmium-Sul�de (CdS) photo resistor used to de-
tect the color of incoming light,

• Servo [4]: a 180 degree servo motor,
• LED: both onboard and external LEDs,
• Ethernet: an Ethernet board capable of 100 Mbit communi-
cation,

• Button: an external button, and
• RF TX: a 433 MHz radio frequency (RF) receiver.

The source code for all of the experiments in this section is available
in our GitHub repository hosted at https://github.com/ucsb-seclab/
conware.

The IR remote is particularly interesting, as it works by starting
a timer (TC5), which will �re interrupts inde�nitely. The interrupt
controller reads the value from the IR receiver (e.g., high or low), and

will continue to receive data, according to the NEC IR transmission
protocol [2], until an entire data unit was received. At this point,
the individual bits in the bu�er are decoded into their respective
byte values (e.g., the number “1” is encoded as 0xFF30CF), which
can then be parsed and handled by the application. This means that
in order to properly emulate this peripheral, the interrupts must be
triggered appropriately, the individual bits must be fed in correctly,
and in order, and the subsequent actions must also be supported
(e.g., �ashing an LED, or printing values over UART, which also
uses interrupts).

The LCD code is high-bandwidth, and indicative of more compli-
cated peripherals that display detailed information to users (e.g., an
alarm clock, weather app, or smart electronic). The Knock sensor is
representative of any analog sensor (e.g., temperature, acceleration,
or humidity) that has a range of values, of which the �rmware
is typically concerned with some “threshold” value. UART is still
one of the most popular protocols for interacting with embedded
systems, and presents an interesting case because, while its actual
functionality is simple, the implemented functionality is unbounded
(e.g., complete shell interfaces). Color is an analog sensor that also
depends on actuating nearby LEDs (e.g., red, green, and blue) to
detect the re�ected light. Buttons, servos, and LEDs are common
interfaces for most embedded systems that need to communicate
with the user e�ciently or actuate some external motor. And, �-
nally, to ensure that our peripherals were indicative of popular
IoT devices, which communicate with external devices, we also
included an Ethernet controller and a popular 433 MHz wireless
radio. Both of these communication peripherals were running echo
servers, and were appropriately actuated in training.

All of these sensors came with accompanying libraries and ex-
ample code, i.e., File|Examples in the Arduino integrated devel-
opment environment (IDE), that was used in our experiments to
remove any biases. These examples programs were used “as is” to
generate our recordings. Emulations were run on a laptop with an
Intel® Core™ i7-8550U CPU @ 1.80 GHz and 16GB of memory.

Real-world Relevance. In addition to the chosen peripherals being
popular in IoT devices, the Arduino platform is also used by many
rapid prototyping companies [7]. Thus Arduino-based peripherals
and their interactions in Arduino products should be indicative
of real-world applications, as the major di�erence from prototype
to production is typically cost reduction by choosing smaller, less
expensive parts and creating a custom printed circuit board (PCB)
that only includes the necessary components [6]. In our smart door
lock �rmware, the peripheral interactions are also non-trivial. The
interrupts for the IR sensor are constantly �ring to accept user input.
If the “knock” command is received, it then enters a loop that reads
the piezo transducer for a �xed amount of time (using a hardware
timer), and then will actuate the servo appropriately based on the
correctness of the knock pattern. Similarly, if the “color” command
is received, the �rmware will enter a function that illuminates three
LEDs in sequence (red, green, and blue), while reading the value
of the photo resistor to determine the color of the object that is
near the sensor. If the correct color is detected, the servo is actuated
accordingly. These peripheral dependencies, which are typical of
IoT devices necessitate a high-�delity emulation framework — a
simple replay of these peripherals would not su�ce in exercising

any of the interesting functionality of this �rmware (i.e., unlocking
the door).

4.2 Record and Replay
First, we wanted to demonstrate that C������ is able to achieve
the basic record-and-replay functionality on which existing system
have focused. In these experiments, we took the example code for
our test cases and compiled both an instrumented (i.e., logging
enabled) and uninstrumented version of the �rmware for each.
The instrumented version was then executed on the real hardware,
in combination with manual interaction with the peripheral (e.g.,
pressing buttons on the IR remote or knocking the piezo transducer)
until the record bu�er was full and the recording was dumped
over UART. The recording was then converted into a linear model,
and then an automaton. Replaying the linear model is e�ectively
equivalent to the current state of the art (i.e., Pretender [17]).

For each of these direct record-and-replay cases, both the linear
graphs and generalized graphs were able to replay the originally
recorded �rmware. However, after the logs were exhausted (i.e.,
the emulation ran for more time than the original recording), the
di�erences were clear. In fact, without a technique like C������,
there is currently no proposal (aside from guessing) for how to
handle future execution. Nevertheless, C������’s state-machine-
like models were able to successfully execute inde�nitely. We used
the generated models to run each of the samples for 10 minutes in
our emulation framework. To enable a straightforward comparison,
our emulation framework outputs logs in the same format as our
recordings. Thus, we are able to compare the accesses to each
peripheral, in order. Since our replays are deterministic and will
return the same recording every time, there is no value in running
the experiments more than once.

This comparison is done by �rst splitting the output of each log
into its respective peripheral. For example, if 11 peripherals were
observed, the log would be split into 11 separate logs where the
entries for each peripheral are in sequential order. The logs for
each peripheral (i.e., the recorded log and the emulated log) are
then compared directly using sequence matching, where duplicates
are treated as a single value. More precisely, any repeats reads are
e�ectively collated into a single entry, which ensures that the same
sequence, but not necessarily the same exact observation. This
ensures that we do not unnecessarily punish ourselves for things
like status registers, which can return the same valuable a variable
number of times without impacting the code execution, but still
enforces strict order, which should only be the same if the states
are advancing correctly.

The results of executing each example �rmware against its own
automaton is shown in Table 2. All but �ve of the �rmware samples
replayed exactly as they did in the recording. Four of them (i.e.,
IR, Color, RF RX, and Ethernet had a few missing entries due to
UART bu�er inconsistencies) and LCD had some executions appear
out of order, due to interrupts arriving in a di�erent order. Indeed,
the di�erences indicate, more than the identical comparisons, that
our automaton is better than a simple replay. Somewhat more inter-
esting than the order of the accesses is the total number of MMIO
accesses that were observed. All but two (i.e., IR and Servo) ac-
tuated far more MMIO accesses than were observed in the initial

Table 2: A comparison of the in-order MMIO access logs of
both the recorded and emulated �rmware

Firmware Con�icts Additional (%) Missing (%) Total (Emu.) Total (Rec.)
Knock 0 (0.000) 0 (0.000) 0 (0.000) 34,028 5,607
UART 0 (0.000) 0 (0.000) 0 (0.000) 653,793 222,123
Servo 0 (0.000) 0 (0.000) 0 (0.000) 949 4,571

Blink2 0 (0.000) 0 (0.000) 0 (0.000) 15,393 2,606
Blink 0 (0.000) 0 (0.000) 0 (0.000) 212,594 88,286

IR 0 (0.000) 0 (0.000) 1 (0.002) 53,955 205,977
LCD 10 (0.221) 56 (1.237) 136 (3.005) 533,997 4,506

Ethernet 0 (0.000) 1 (0.022) 16 (0.356) 153,170 4,491
Button 0 (0.000) 0 (0.000) 0 (0.000) 614,354 4,603
Color 0 (0.000) 1 (0.039) 1 (0.039) 17,237 2,570
RF RX 1 (0.001) 2 (0.002) 3 (0.004) 82,478 124,807

recording, emphasizing the power of C������. IR, RF RX, and
Servo are very MMIO-heavy, which accounted for the lower number
of observed accesses since the MMIO accesses incur a larger over-
head in emulation. The same one-to-one correlation was observed
beyond 10 minutes, and the values observed over UART were also
identical.

As a sanity check, we attempted to execute the �rmware for
Blink, which does not use interrupts, using the model that was
generated from Knock, which does, to see if the UART peripheral
would work correctly. Unsurprisingly, this emulation failed to print
any characters after the �rst one, since the UART status register
would continually return BUSY, expecting that the �rmware would
bu�er them, and then request interrupts. This experiment demon-
strates the subtlety that must be accounted for when emulating
embedded systems.

4.3 One Model to Emulate Them All
To demonstrate the e�cacy of our technique and to quantify the
compression that is achieved by our automata-generation phase, we
examined the resulting graphs at each step in our process. Table 4
shows the number of states (i.e., nodes), edges, and self-loops for
each peripheral in the case of a linear graph (i.e., the current state of
the art) and our automata graphs (i.e., after our automata-generation
step), which are denoted with a ⌧ subscript. Looking at this table, it
is clear to see that our state-reduction is highly e�ective, reducing
the number of required states bymore than 10 fold in every instance.
Again, these reductions can be made arbitrarily large by inputting
longer recordings. Moreover, this table again demonstrates the
complexity of the “re-hosting problem” (i.e., emulating embedded
systems). While these examples are objectively simple, they still
require the proper emulation of multiple peripherals to execute
successfully, even if they do not explicitly use them.

The true value of our automata-generation is not to create mod-
els that can be used beyond the recorded execution, but to create
portable models by merging the recordings from various �rmware
samples to capture the full gamut of peripheral interactions, and
enabled the emulation of any �rmware. As a �rst step toward this
goal, we show that C������ can generate merged models that are
at least able to emulate their original recordings. This would not be
possible with simple linear models alone (i.e., Pretender) — at least
a tree would be required to encode the divergence point. Moreover,
merging multiple recordings with a simple tree would result in
very large models, and would be incapable of handling a �rmware

Table 3: Summary of executing the various �rmware sam-
ples on a merged model that is a composition of their indi-
vidual recordings. The example �rmware samples are em-
ulated for 10 minutes, while the smart-lock �rmware exe-
cuted for 60 minutes. MMIO writes, reads and peripheral-
speci�c interrupts are reported, as well as graph traversal
statistics: long jumps (took a non-existent edge), wildcards
(took a wildcard edge), and BFS (performed a BFS to �nd the
appropriate next state).

Firmware Writes Reads Interrupts Long Jumps Wildcards BFS
Knock 14,112 15,562 3,288 6 427 13
Servo 185,067 111,791 0 3,681 16 191
Button 344,876 173,157 0 0 16 3,985

IR 228 90,179 24 0 19 0
Blink2 10,718 4,305 0 16 6,947 81
Color 1,601 1,744 226 0 36 22
Lock 795,597 1,598,900 397 136 17 26,895

sample that actuates a mixture of the functionality observed in
multiple training recordings.

Our Knock and IR examples both read sensor values and report
the value over UART. However, these sensors are very di�erent, and
the UART output is completely divergent: more precisely, the text
“Knock” versus a hexadecimal representation of the encode button
press. This made these two samples an ideal ground for testing
the portability of our models. When the models were merged, they
were both able to emulate successfully, using the same automaton.

With the basic functionality con�rmed, we merged the models
for multiple non-overlapping peripherals (i.e., they all use di�erent
physical pins) in an attempt to create a full-system emulation model,
capable of handling any of the modeled peripherals. Speci�cally, we
created a single model using the recordings from Color, IR, Knock,
Blink2 (which blinks external LEDs), Servo, and Button. These
peripherals were chosen because they are all used by the smart lock
�rmware that is our ultimate emulation target, and thus we will
refer to this automaton as Lock.

Indeed, we were able to use the Lock model to successfully em-
ulate all of the original �rmware samples. Given the added com-
plexity of these graphs, it is reasonable to assume that some state
transitions may no longer be as straightforward. To investigate ex-
actly “how” the model was emulating these �rmware samples, we
kept track of every MMIO interaction and the e�ect that it had on
the graph traversal. Table 3 enumerates the various non-standard
transitions (i.e., state transitions that did not have an immediately
available edge from the current state). We de�ne long jumps as
a state transition that had to temporarily create a new transition
(i.e., the destination node was not reachable from the current node).
The edge selection process is prioritized by locality and the number
of edges that were merged to create the selected edge (i.e., how
many times that speci�c state transition was observed). Wildcards
are edges that our algorithm deemed safe to accept any value (e.g.,
the TX bu�er in a UART controller). Finally, BFS transitions occur
when the existing transition is not valid but a BFS through the graph
was able to locate an acceptable edge. Fallback transitions were
uncommon when emulating any of the initial �rmware samples, as
their recordings were used to generate the automata.

Table 4: Summary of the complexity of both the linear and generalized graphs for our �ve indicative �rmware samples, show-
ing edges, ⇢, self-loops, !, and nodes, # , for each peripheral. Models were generated from recordings with a 2,000 item bu�er
(with compression). The columns relate to the peripheral controller that the ARM processor interfaces with (i.e., the actual
peripheral is behind by these standard interfaces)

UART PIOA PIOB PIOC PIOD UOTGHS TC1 EEFC0 ADC PMC WDT EEFC1 Total
Name E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N

IR 304 0 305 50 0 51 25 0 26 27 0 28 22 0 23 13 0 14 8 0 9 1 0 2 10 0 11 15 0 16 1 0 2 1 0 2 477 0 489
IR⌧ 128 10 103 7 3 3 4 2 2 4 2 2 4 2 2 4 2 2 3 2 2 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 171 30 128

Knock 963 0 964 50 0 51 391 0 392 27 0 28 17 0 18 13 0 14 - - - 1 0 2 714 0 715 12 0 13 1 0 2 1 0 2 2,190 0 2,201
Knock⌧ 11 2 9 7 3 3 126 62 62 4 2 2 4 2 2 4 2 2 - - - 1 1 1 705 352 352 9 3 6 1 1 1 1 1 1 873 431 441

UART 552 0 553 50 0 51 31 0 32 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 715 0 726
UART⌧ 44 22 23 7 3 3 6 3 3 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 85 41 47

Servo 7 0 8 50 0 51 25 0 26 1,842 0 1,843 17 0 18 13 0 14 459 0 460 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 2,439 0 2,451
Servo⌧ 1 1 1 7 3 3 4 2 2 274 137 137 4 2 2 4 2 2 203 4 69 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 514 158 228
Button 7 0 8 50 0 51 2,451 0 2,452 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 2,591 0 2,602

Button⌧ 1 1 1 7 3 3 813 406 406 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 850 423 428
Blink 366 0 367 50 0 51 505 0 506 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 1,003 0 1,014

Blink⌧ 4 2 2 7 3 3 6 3 3 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 45 21 26
RF RX 97 0 98 50 0 51 25 0 26 57 0 58 52 0 53 13 0 14 - - - 1 0 2 10 0 11 15 0 16 1 0 2 1 0 2 328 0 340

RF RX⌧ 32 2 27 7 3 3 4 2 2 12 6 6 15 7 7 4 2 2 - - - 1 1 1 4 1 3 11 4 6 1 1 1 1 1 1 95 32 61
LCD 7 0 8 50 0 51 25 0 26 2,029 0 2,030 759 0 760 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 2,908 0 2,919

LCD⌧ 1 1 1 7 3 3 4 2 2 135 39 39 103 50 50 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 270 104 109
Ethernet 74 0 75 65 0 66 25 0 26 33 0 34 17 0 18 13 0 14 - - - 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 1,189 0 1,201

Ethernet⌧ 32 2 26 7 3 3 4 2 2 4 2 3 4 2 2 4 2 2 - - - 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 524 21 395
Blink2 7 0 8 50 0 51 205 0 206 1,080 0 1,081 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 1,397 0 1,408

Blink2⌧ 1 1 1 7 3 3 64 31 31 72 36 36 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 168 82 87
Color 375 0 376 50 0 51 30 0 31 477 0 478 17 0 18 13 0 14 - - - 1 0 2 56 0 57 13 0 14 1 0 2 1 0 2 1,034 0 1,045

Color⌧ 11 2 9 7 3 3 4 2 2 55 18 19 4 2 2 4 2 2 - - - 1 1 1 47 23 23 10 3 6 1 1 1 1 1 1 145 58 69

K+ir 1,260 0 1,261 50 0 51 391 0 392 27 0 28 22 0 23 13 0 14 8 0 9 1 0 2 1 0 2 15 0 16 1 0 2 714 0 715 2,503 0 2,515
K+ir⌧ 122 11 105 7 3 3 126 62 62 58 29 29 4 2 2 4 2 2 3 2 2 1 1 1 1 1 1 10 3 6 1 1 1 704 352 352 1,041 469 566
lock 1,628 0 1,629 50 0 51 396 0 397 3,333 0 3,334 22 0 23 13 0 14 467 0 468 1 0 2 1 0 2 18 0 19 1 0 2 760 0 761 6,690 0 6,702

lock⌧ 151 11 111 7 3 3 126 62 62 723 354 354 4 2 2 4 2 2 329 38 132 1 1 1 1 1 1 12 4 6 1 1 1 751 375 375 2,110 854 1,050
PIO - Parallel Input/Outputs UOTGHS - USB OTG High Speed TC - Timer Counter EEFC - Enhanced Embedded Flash Controller

ADC - Analog-to-Digital Converter PMC - Power Management Controller WDT - Watchdog Timer

In Table 3, both Blink2 and Knock observed multiple wildcard
traversals due to their heavy usage of UART, which lends itself well
to this. The 3,000+ long jumps in Servo are due to an interrupt
handler accessing a memory address that was not available in the
current state (i.e., there was no sub-model for it). This is due to
the fact that the emulated interrupts do not happen at the exact
time that they were observed in the recording. Nevertheless, the
long jump selects a satisfactory node every time, and the execu-
tion continues correctly. This same phenomena occurred in the
UART controller for Blink2 and Knock, since the UART automaton
is capable of supporting any of the interactions that were previ-
ously observed. Likewise for the multiple BFS traversals that were
required.

4.4 Emulating Arbitrary Firmware
Finally, we exhibit C������’s ability to emulate a complete new
�rmware that was never seen in the training data. The hobbyist
smart door lock program that we selected permits users to unlock
the door by a knock pattern, a personal identi�cation number (PIN)
entered on the IR remote, or by presenting a speci�c color. In our
recordings with the initial peripherals, we input sequences that
would be accepted by the smart door �rmware. However, these

inputs could be replaced by a fuzzer, for example, in a straightfor-
ward way [9, 17, 28]. This particular �rmware would require 13
wires to be connected to the Arduino, and has 11 di�erent physical
peripherals, making it a non-trivial emulation target. Nevertheless,
we were able to emulate the �rmware using our Lock model (i.e.,
the automaton that was created from the individual recordings of
the various peripherals using Arduino’s included example code).
Surprisingly, we observed zero failed reads or writes (i.e., there were
no reads or writes that our model was not able to handle). Verifying
that our models worked “correctly” is not straightforward, since
our goal is survivability of execution as opposed to a perfect rep-
resentation. Thus, we �rst used high-level metrics, such as UART
output, which this �rmware had, and the distribution of MMIO
accesses. In fact, the UART output was identical as when we built
and ran the real �rmware.

To ensure that the peripherals were actually facilitating this in-
teraction, and that our models were not just getting “lucky,” we
logged every MMIO accesses that the Lock �rmware exercised, and
compared them to the peripheral recordings. Indeed, after aggregat-
ing all of the MMIO accesses from the recordings of each peripheral
on the real hardware (using example code) and comparing the ac-
cesses to the execution of the Lock �rmware, we found that the

same interrupts were �red, and only �ve MMIO addresses (out of
94) were in the training data that were not observed in the record-
ing. Indeed, these �ve addresses where all associated with the servo
— speci�cally the PIOB controller and a PIO Pull Up Register. This
makes sense, because the servo example code would increment
the servo one degree at a time to move the motor slowly between
every position, while the Lock only had an “on” and “o�” position,
which requires far less interaction. Moreover, we found that 348 of
the address-value pairs that were observed in the recording were
also observed during the emulation. In fact, 35 new unique address-
value pairs where observed, while 375 pairs were never exercised
by Lock.

Finally, we wanted to ensure that our peripherals were actually
causing the �rmware to execute most of its code (versus an error
handler or a simple surface-level function). Tomeasure this, we used
QEMU’s trace feature to record every basic block and function that
was executed in the emulator. While the emulated �rmware exe-
cuted 738 unique basic blocks in the �rmware, it was unclear if these
were “interesting” basic blocks (i.e., executing notable functionality).
Thus, we used angr [33], a popular binary analysis platform, to
identify every basic block (609 in total) and function entry point
(68 in total) that was reachable from the loop() function (the main
function in Arduino �rmware). This list was then compared against
the execution trace from QEMU, revealing that the emulation exe-
cuted 362 (59%) of those basic blocks and 58 (85%) of the functions.
Indeed, these were not super�cial functions either. The maximum
depth of the call stack originating from loop(), as discerned by
angr, was six. The emulation results are shown in Table 5.

Table 5: Depth of call graph executed in emulation for Lock
(the maximum possible is 6).

Depth of Function 0 1 2 3 4 5 6
Number of Functions Executed 1 6 21 17 21 7 4

These measurements demonstrate that C������ is not only
able to emulate �rmware so that it survives, but that our models are
successfully coning the �rmware into executing its full functionality.

5 RELATEDWORK
The handling of peripheral interactions is one of the linchpins of
the dynamic analysis for embedded �rmware.

Initial dynamic analysis techniques leveraged hardware-in-the-
loop analysis, where all of the interactions with the peripherals
are forwarded to the real device. Avatar [37] was the �rst such
emulation framework. Similarly, Charm [35] targeted smartphone
drivers. However, Charm is designed for kernel drivers rather than
arbitrary peripherals. Prospect [21] forwards peripheral accesses at
the syscall layer. However, the syscall interface does not exist
in most of the bare-metal �rmware.

Several optimizations have been made over naïvely forward-
ing all of the peripheral accesses to the hardware. Surrogates [22]
signi�cantly improves the forwarding performance of Avatar via
customized hardware. Kammerstetter et al. [20] uses cached pe-
ripheral accesses to minimize the interaction with real hardware.
And Avatar2 [27] generalized caching by allowing the replaying of
forwarded peripheral input and output without using the hardware.

Recently, several works proposed domain-speci�c models to
handle peripherals. Here, e�ective peripherals models are carefully
engineered, mostly manually, for a speci�c set of �rmware. HALuci-
nator [9] uses a model of a known HAL implementation to emulate
embedded systems with the HAL. Similarly, PartEmu [18] and Ex-
vivo [30] create peripheral models that can handle ARM-based,
Trusted OSes, and Android kernel drivers, respectively.

Few works try to handle peripheral interactions in a generic
manner automatically. Pretender [17] is a record-and-model ap-
proach that �rst records peripheral accesses, generates access mod-
els, and then tries to intelligently replay. However, Pretender needs
debug access to the chip being modeled and only supports sim-
plistic peripheral models. P2IM is a fuzzing-based approach that
generates acceptable inputs by randomly fuzzing the �rmware [12].
P2IM only considers on-chip peripherals and requires their abstract
models to be generated manually and o�ine by a domain expert.
This expert knowledge may be hard to provide for new peripherals.
However, C������ automatically generates appropriate models
for arbitrary peripherals without expert knowledge. Furthermore,
C������ supports both on- and o�-chip peripherals.

6 LIMITATIONS AND FUTUREWORK
While this work makes many advances in peripheral emulation,
there are still many avenues that we believe will provide interesting
future research. First, it is likely possible to make even more concise
automata by relaxing the comparison of Pattern sub-models to
permit more generalized states. More precisely, we currently only
consider two “patterns” equal if they are identical to ensure that we
do not lose any encoded information. However, it is conceivable,
and realistic, that the actual number of items in the pattern does not
matter, but only the order. For example, a status register that reads
busy, and then ready would operation the same with 10 busy reads
or 1,000. By constructing and automated reinforcement-learning
based technique, we believe that identifying these instances in an
automated-fashion is possible.

Second, we made a simplifying assumption that state transitions
are strictly based on MMIO memory writes (i.e., a write will in-
stantly transition the state). However, in practice state transitions
within peripherals can happen in ways that violate this model. For
example, a state transition may occur based on a read value instead
of a write value. In one scenario, the peripheral may not depend on
the status register, by may instead transition after a certain value
was read to indicate the end. In another scenario, the very act of
reading a value, may alter the state, which is the case in it does not
matter how many times BUSY is returned, but it does matter how
many times a 1 is returned in an encoding scheme. While C������
does not currently support these cases, it could be easily extended
to transition on speci�c reads by appending a super�uous write in
the proper place during model construction and then annotating
the appropriate read to force the state transition during emula-
tion. However, detecting these instances remains unsolved. Expert
knowledge or di�erential analysis techniques would be required to
faithfully emulate a peripheral with these interactions.

Finally, accurately correlating interrupts to the speci�c write
that triggered them, versus the state transition, makes more sense
for some peripherals (e.g., UART). More precisely, since interrupts

on encoded on state transition edges, C������ currently relies on
the fact that the proper state will eventually be reached. However,
in the case of the UART controller, each write to the Interrupt
Enable Register register will trigger exactly one interrupt once
the bu�er is available. Thus, extending C������ to identify these
interacts and trigger the interrupts accordingly would result in a
more accurate emulation. To demonstrate the viability of this tech-
nique, we wrote a script to simply (⇡ 10 lines of Python) to disable
bu�ering on our emulated UART controller for debugging pur-
poses by always returning TXRDY in the Status Register. Again,
this could be done through expert knowledge or more advanced
pattern recognition techniques, which would require signi�cant
testing to avoid false positives. Methods for automatically detecting
when these correlations do and do not hold will likely lead to more
accurate emulation.

Finally, while we do not see never-before-seen reads and writes
in our evaluation, this scenario is inevitable. Employing a method
that leverages static analysis to deduce appropriate reactions, and
modifying the automata (i.e., perform on-the-�y static analysis to
construct a suitable response) appropriately sounds particularly
fruitful [1].

7 CONCLUSION
The ability to emulate a system for analysis is critical for most
security analyses, and yet this tool is currently absent form the
world of embedded systems, despite importance of securing these
proli�c systems. In this work, we present C������, a system that
is capable of automatically modeling hardware peripherals used by
embedded systems, and uses these models to facilitate full-system
emulation. C������ is a complete suite of software that facilitates
recording peripheral interactions on real hardware, generating high-
�delity models from these recordings, and emulating �rmware
using popular emulation frameworks (e.g., QEMU and Avatar2).
C������’s di�erentiator is that it is able to merge recordings in a
pluggable way, enabling analysts to generate models based on one
(or more) �rmware recording and then use those models to execute
a complete di�erent �rmware. This enables C������ to emulate
the hardware for systems without access to the original source code
or hardware, in an automated way. C������ was tested against
various popular peripherals, andwas able to successfully emulate all
of them. Moreover, we demonstrated C������’s ability to emulate
a black-box �rmware sample by merging six independent models,
which were generated using the sample code that accompanies each
peripheral, to create an emulation environment that was suitable
for the new, never-before-seen, �rmware.

ACKNOWLEDGEMENTS
We would like to acknowledge Fabian Monrose for his invaluable
feedback on this work, Noah Spahn for supporting our develop-
ment e�orts, and the various reviewers that helped to focus and
strengthen this work through their comments. Similarly, we would
like to thank Eric Gustafson and Marius Muench for their seminal
work in the area and their support on this work.

This material is based upon work supported by the O�ce of
Naval Research under Award No. N00014-17-1-2011, and by the

Department of Homeland Security under Award No. FA8750-19-2-
0005. Any opinions, �ndings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not
necessarily re�ect the views of the O�ce of Naval Research or the
Department of Homeland Security.

REFERENCES
[1] Open Review Mobicomm 2020. [n.d.]. Device-agnostic Firmware Execution

is Possible: A Concolic Execution Approach for Peripheral Emulation. https:
//openreview.net/pdf?id=rylaZ6iIDr.

[2] Altium. 2017. NEC Infrared Transmission Protocol. https://techdocs.altium.com/
display/FPGA/NEC+Infrared+Transmission+Protocol.

[3] Atmel. 2015. SAM3X/ SAM3A Series (DATASHEET). https://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-
SAM3X-SAM3A_Datasheet.pdf.

[4] BARRAGAN. 2013. Sweep. https://www.arduino.cc/en/Tutorial/Sweep.
[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

Annual Technical Conference, FREENIX Track, Vol. 41. 46.
[6] Jacob Beningo. 2016. Prototype to production: Arduino for the professional.

https://www.edn.com/prototype-to-production-arduino-for-the-professional/.
[7] Duane Benson. 2015. Arduino as a rapid prototyping system. https://www.

embedded.com/arduino-as-a-rapid-prototyping-system/.
[8] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. To-

wards Automated Dynamic Analysis for Linux-based Embedded Firmware.. In
Proceedings of the Network and Distributed System Security Symposium (NDSS),
Vol. 16. 1–16.

[9] Abraham Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
2020. HALucinator: Firmware Re-hosting through Abstraction Layer Emulation.
Proceedings of the 29th USENIX Security Symposium (USENIX ’20) (2020).

[10] Furkan Comert and Tolga Ovatman. 2015. Attacking state space explosion prob-
lem in model checking embedded TV software. IEEE Transactions on Consumer
Electronics 61, 4 (2015), 572–579.

[11] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. 1–11.

[12] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling
(extended version). Proceedings of the 29th USENIX Security Symposium (USENIX
’20) (2020).

[13] Jack Ganssle. 2004. Reentrancy. In The Firmware Handbook. Elsevier, 231–244.
[14] Geeetech. 2012. Arduino IR Remote Control. http://www.geeetech.com/wiki/

index.php/Arduino_IR_Remote_Control.
[15] Giovani Gracioli and Sebastian Fischmeister. 2012. Tracing and recording in-

terrupts in embedded software. Journal of Systems Architecture 58, 9 (2012),
372–385.

[16] Joe Grand and July Friday. 2004. Advanced hardware hacking techniques. DEF-
CON 12 (2004), 59.

[17] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,
Yanick Fratantonio, Davide Balzarotti, Aurelien Francillon, Yung Ryn Choe,
Christophe Kruegel, et al. 2019. Toward the Analysis of Embedded Firmware
through Automated Re-hosting. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019). 135–150.

[18] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, Michael
Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon,
Hayawardh Vijayakumar, et al. 2020. Partemu: Enabling dynamic analysis of
real-world trustzone software using emulation. In Proceedings of the 29th USENIX
Security Symposium (USENIX ’20).

[19] John Hopcroft. 1971. An n log n algorithm for minimizing states in a �nite
automaton. In Theory of machines and computations. Elsevier, 189–196.

[20] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner. 2016. Embedded
security testing with peripheral device caching and runtime program state ap-
proximation. In 10th International Conference on Emerging Security Information,
Systems and Technologies (SECUWARE).

[21] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. 2014. Prospect:
peripheral proxying supported embedded code testing. In Proceedings of the 9th
ACM symposium on Information, computer and communications security. 329–340.

[22] Karl Koscher, Tadayoshi Kohno, andDavidMolnar. 2015. SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems. In 9th USENIX Workshop
on O�ensive Technologies (WOOT ’15).

[23] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD conference, Vol. 5.

[24] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[25] ARM Limited. 2010. Cortex-M3 Technical Reference Manual (Revision
r2p1). http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM3_
TRM_r2p1.pdf.

[26] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. 2002. Simics: A full system simulation platform. Computer 35, 2 (2002),
50–58.

[27] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2: A multi-target orchestration platform. In Workshop on Binary Analysis
Research (Colocated with NDSS Symposium), Vol. 18. 1–11.

[28] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is NotWhat You Crash: Challenges in Fuzzing
Embedded Devices.. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[29] Osbourne, Paul. [n.d.]. CMSIS-SVD Repository and Parsers. https://github.com/
posborne/cmsis-svd.

[30] Ivan Pustogarov, Qian Wu, and David Lie. [n.d.]. Ex-vivo dynamic analysis
framework for Android device drivers. ([n. d.]).

[31] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. 2020. KARONTE:
Detecting Insecure Multi-binary Interactions in Embedded Firmware. In 2020
IEEE Symposium on Security and Privacy (SP). 431–448.

[32] Miro Samek. 2016. State Machines for Event-Driven Systems. https://barrgroup.
com/embedded-systems/how-to/state-machines-event-driven-systems.

[33] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: O�ensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[34] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An E�ective Probing and Fuzzing Framework for the
Hardware-OS Boundary.. In Proceedings of the Network and Distributed System
Security Symposium (NDSS).

[35] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng
Zhang, Ardalan Amiri Sani, and Zhiyun Qian. 2018. Charm: Facilitating dynamic
analysis of device drivers of mobile systems. In 27th USENIX Security Symposium
(USENIX ’18). 291–307.

[36] LLC. Where Labs. 2019. Bus Pirate. http://dangerousprototypes.com/docs/Bus_
Pirate.

[37] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti, et al. 2014.
AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares.. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), Vol. 14. 1–16.

