
Bullseye Polytope: A Scalable Clean-Label
Poisoning Attack with Improved Transferability

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{hojjat, dmeng, yuxiangw, chris, vigna}@cs.ucsb.edu

Abstract—A recent source of concern for the security of neural
networks is the emergence of clean-label dataset poisoning at-
tacks, wherein correctly labeled poison samples are injected into
the training dataset. While these poison samples look legitimate
to the human observer, they contain malicious characteristics
that trigger a targeted misclassification during inference. We
propose a scalable and transferable clean-label poisoning attack
against transfer learning, which creates poison images with their
center close to the target image in the feature space. Our attack,
Bullseye Polytope, improves the attack success rate of the current
state-of-the-art by 26.75% in end-to-end transfer learning, while
increasing attack speed by a factor of 12. We further extend
Bullseye Polytope to a more practical attack model by including
multiple images of the same object (e.g., from different angles)
when crafting the poison samples. We demonstrate that this
extension improves attack transferability by over 16% to unseen
images (of the same object) without using extra poison samples.

I. INTRODUCTION

Machine-learning-based systems are being increasingly de-
ployed in security-critical applications, such as face recogni-
tion [28], [41], fingerprint identification [45], and cybersecu-
rity [40], as well as applications with a high cost of failure
such as autonomous driving [6]. The possibility of generating
adversarial examples in deep neural networks has raised serious
doubt on the security of these systems [10], [2], [43]. In these
evasion attacks, a targeted input is perturbed by imperceptible
amounts at test time to trigger misclassification by a trained
network. But neural networks are also vulnerable to malicious
manipulation during the training process. As neural networks
require large datasets for training, it is common practice to use
training samples collected from other, often untrusted, sources
(e.g., the Internet), and it is expensive to have these datasets
carefully vetted. While neural networks are strong enough to
learn powerful models in the presence of natural noise, they
are vulnerable to carefully crafted malicious noise introduced
deliberately by adversaries. In particular, gathering data from
untrusted sources makes neural networks susceptible to data
poisoning attacks, where an adversary injects data into the
training set to manipulate or degrade the system performance.

Our work focuses on clean-label poisoning attacks, a branch
of poisoning attacks wherein the attacker does not have any
control over the labeling process. In this threat model, the
poison samples are created by introducing imperceptible (yet
malicious) alterations that will result in model misbehavior in
response to specific target inputs. These perturbations are small
enough to justify the original images’ labels in the eye of a
domain expert. The stealth of the attack increases its success

(a) Original images. (b) Convex Polytope (c) Bullseye Polytope

Fig. 1: Simplified representation of poison samples in a two-
dimensional feature space. The blue circles are poison samples
and the red circle is the target. Convex Polytope moves poison
samples until the target is inside their convex hull, making no
further refinements to move the target away from the polytope
boundary, whereas Bullseye Polytope enforces that the target
resides close to the center.

rate in real-world scenarios compared to other types of data-
poisoning attacks, as the poison data (1) will not be identified
by human labelers, and (2) does not degrade test accuracy
except for misclassification of particular target samples.

Clean-label poisoning on transfer learning was first studied
in a white-box setting [35], where the attacker leverages
complete knowledge of the pre-trained network φ that the
victim employs to either (1) extract features for training a
(linear) classifier (linear transfer learning) or (2) fine-tune
on a similar task (end-to-end transfer learning). The Feature
Collision attack [35] selects a base image xb from the intended
misclassification class, and creates a poison sample, xp, by
adding small (bounded) adversarial perturbations to xb that
brings it close to the target image xt in the feature space, i.e.,
φ(xt) ≈ φ(xp). This triggers misclassification of xt to the
targeted class by any linear classifier that is trained on the
features of a dataset containing xp. This approach fails when
the feature extractor φ is unknown to the attacker. To mitigate
such limitation, Zhu et al. proposed Convex Polytope [50],
which, instead of finding poison samples close to the target,
finds a set of poison samples that form a convex polytope
around it, increasing the probability that the target lies within
(or at least close to) this “attack zone” in the victim’s feature
space. Convex Polytope relies on the fact that every linear
classifier that classifies a set of points into label l will classify
every point in the convex hull of these points as label l.

As we will show later, Convex Polytope suffers from one
inherent flaw. The target feature vector tends to be close to the
boundary of the attack zone, potentially hampering the attack
transferability. Furthermore, the Convex Polytope algorithm is
very slow. For example, crafting a set of five poison samples

���

�����*&&&�&VSPQFBO�4ZNQPTJVN�PO�4FDVSJUZ�BOE�1SJWBDZ�	&VSP4�1

¥�����
�)PKKBU�"HIBLIBOJ��6OEFS�MJDFOTF�UP�*&&&�
%0*���������&VSP41����������������

ϮϬ
Ϯϭ

�/�
��
��
Ƶƌ
ŽƉ

ĞĂ
Ŷ�
^Ǉ
ŵ
ƉŽ

ƐŝƵ
ŵ
�Ž
Ŷ�
^Ğ
ĐƵ
ƌŝƚ
Ǉ�
ĂŶ

Ě�
Wƌ
ŝǀ
ĂĐ
Ǉ�
;�
Ƶƌ
Ž^

Θ
WͿ
�ͮ
�ϵ
ϳϴ

Ͳϭ
Ͳϲ
ϲϱ

ϰͲ
ϭϰ

ϵϭ
Ͳϯ
ͬϮ
ϭͬ
Ψϯ

ϭ͘
ϬϬ

�Ξ
ϮϬ

Ϯϭ
�/�
��
�ͮ
��
K
/͗�
ϭϬ

͘ϭ
ϭϬ

ϵͬ
�h

ZK
^W
ϱϭ

ϵϵ
Ϯ͘
ϮϬ

Ϯϭ
͘Ϭ
ϬϬ

Ϯϭ

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

for a single target takes ∼17 GPU-hours on average.
To address these limitations, we propose Bullseye Polytope,

which refines the constraints of Convex Polytope such that the
target is pushed toward the “center” of the attack zone (i.e., the
convex hull of poison samples). The geometrical comparison of
Bullseye Polytope and Convex Polytope is shown in Figure 1.
Bullseye Polytope improves both the transferability and speed
of the attack. When the victim adopts linear transfer learning,
our method improves the attack success rate by 7.44% on
average, while being 11x faster. In end-to-end transfer learning,
Bullseye Polytope outperforms Convex Polytope by 26.75% on
average, while being 12x faster. For some victim models, the
attack success rate of Bullseye Polytope is ∼ 50% higher than
Convex Polytope. In a weaker threat model, where the adversary
has limited knowledge of the training set of the victim’s feature
extractor φ, Bullseye Polytope provides a 9.27% higher attack
success rate in linear transfer learning.

We also extend Bullseye Polytope to a more practical threat
model. Current clean-label poisoning attacks are designed to
target only one image at a time, rendering them ineffective
against unpredictable variations in real-world image acquisition.
Such attacks disregard the following major point: to succeed in
real-world scenarios, the attack needs to cope with a spectrum
of test inputs. By including a larger number of target images
(of the same object) when crafting the poison samples, we
are able to obtain an attack transferability of 49.56% against
unseen images (of the same object), without increasing the
number of poison samples. This is an improvement of over
16%, compared to the single-target mode, when testing against
the same set of images (in linear transfer learning).

We further evaluate Bullseye Polytope against l2-norm
centroid and Deep k-NN defenses [29], which are shown to be
effective against poisoning attacks on transfer learning. These
defenses employ neighborhood conformity tests to sanitize the
training data. Our evaluation shows that Bullseye Polytope
is much more resilient than Convex Polytope against less
aggressive defense configurations. To completely mitigate the
attacks, Deep k-NN and l2-norm centroid defenses need to
remove 5% and 10% of the training data, respectively, of
which 1% are the poison data. We show that increasing the
number of poison samples makes the l2-norm centroid defense
completely ineffective, as it needs to aggressively prune the
dataset, which, in turn, degrades the model’s performance. This
gives our attack a major advantage, as, unlike Convex Polytope,
Bullseye Polytope can incorporate more poison samples into
the attack process, with virtually no cost in attack-execution
time. As we will show later, Convex Polytope scales poorly as
the number of poison samples increases. In particular, running
the Convex Polytope attack for 800 iterations to craft ten poison
samples takes 603 minutes on GPU, while Bullseye Polytope
takes only seven minutes.

The Deep k-NN defense is able to completely mitigate the
attack by increasing the neighborhood size until poison samples
cannot become a majority, but it suffers from low detection
precision (20%). On the other hand, if the number of poison
samples is larger than the number of samples in the target

object’s original class, the majority test can be overwhelmed,
leaving many poison samples undetected. Furthermore, in some
applications, the target object does not belong to one of the
classes in the training set, but rather is an unclassified object
that the adversary aims to “smuggle in.” In this case, poison
samples are not likely to have nearby neighbors in the fine-
tuning set from a single class other than the poison class.
Therefore, to fully mitigate the attack, the Deep k-NN defense
needs to adopt a much larger neighborhood size, which results
in discarding a higher number of clean samples.

Concurrent to our work, a recent study was published on
arXiv [34]. That study develops standardized benchmarks for
data poisoning and backdoor attacks to promote fair comparison.
Interestingly, the authors already include our work as presented
in this paper. The results for linear transfer learning settings
demonstrate that Bullseye Polytope outperforms all other
attacks. Especially in the white-box setting, the independent
third-party study showed that our attack achieved more than
50% higher success rates across experiments compared to the
runner-up. The study also benchmarks from-scratch training
scenarios, where the victim’s network is trained from random
initialization on the poisoned dataset. This is a much more
challenging scenario for attacks that are designed for transfer
learning settings (like Bullseye Polytope). However, it is a
scenario that is specifically taken into consideration by another
attack, Witches’ Brew (WiB) [8], which was also recently
published on arXiv (and parallel to this work). The from-scratch
benchmarks are evaluated on two datasets: CIFAR-10 [17] and
TinyImageNet [18]. On the former dataset, WiB demonstrated a
success rate of 26%, while all other attacks (including Bullseye
Polytope) succeeded less than 3% of the time. Interestingly,
however, for the TinyImageNet benchmark, our attack achieved
the highest success rate (44%), 12% higher than the runner-up
(WiB), while other attacks failed most of the times.

To some readers, Bullseye Polytope might appear as a
simple extension of prior work, such as Convex Polytope.
We argue that this would be myopic — compelling ideas
often appear simple in hindsight. Our experiments show that
Bullseye Polytope is not only more successful than current
state-of-the-art poisoning attacks on transfer learning, but,
perhaps more importantly, it is also an order of magnitude
faster. This performance improvement is significant, as it
unlocks our practical ability to build defenses against this
class of attacks with higher detection precision. When creating
solutions to detect poisoning attacks, researchers have to
experiment with ideas and parameters and perform statistical
evaluations. These experiments take a significant amount of
time, even when deploying substantial amounts of resources
in the cloud. The proposed technique in this paper cuts
down this time by a factor of 10, enabling a much faster
cycle of experimentation. We also make all source code as
well as poison samples available, which can be found at
github.com/ucsb-seclab/BullseyePoison.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

II. THREAT MODEL

In our threat model, we assume that the victim employs
transfer learning, where a model trained for one task is reused
as part of a different model for a second task. Transfer learning
is shown to be a common practice, as it obtains high-quality
models without incurring the cost of training a model from
scratch [11]. We consider two transfer learning approaches
that the victim may adopt; linear transfer learning and end-to-
end transfer learning. In the former, a pre-trained but frozen
network acts as a feature extractor φ, and an application-specific
linear classifier is fine-tuned on φ(Γ), where Γ is the fine-
tuning training set. In end-to-end transfer learning, the feature
extractor and linear classifier are trained jointly on Γ, and,
therefore, the feature extractor is altered during fine-tuning. In
both scenarios, the attacker injects a small number of poison
samples into Γ, obtained by imperceptibly perturbing some of
the original samples. The attacker does not have any control
over the labeling process, therefore, the poison samples remain
correctly labeled according to their original class. We consider
both black-box and gray-box settings. The attacker has no
access to the victim model in the black-box setting. In the gray-
box setting, only the victim network’s architecture is known.
We assume that the attacker knows the training set that is used
to build φ.1 The attacker uses this training set for training
substitute networks, which will be used to craft poison samples.
Unless explicitly stated, by “attack transferability” we mean
the transferability of the poison samples’ characteristics (i.e.,
targeted misclassification) to the victim’s (fine-tuned) model.
We do further evaluation in more limited settings where the
adversary has no or partial knowledge of the training set of φ.

III. RELATED WORK

Data Poisoning Attacks. A well-studied portion of data-
poisoning attacks aims to use malicious data to degrade the
test accuracy of a model [24], [3], [46], [20], [4]. While
such attacks are shown to be successful, they are easy to
detect, as the performance of a model can always be assessed
by testing the model on a private, trusted set of samples.
Another important branch of data-poisoning attacks, known
as backdoor attacks [11], fools models by imprinting a small
number of training examples with a specific pattern (trigger)
and changing their labels to a different target label. During
inference, the attacker achieves misclassification by injecting
the trigger into targeted examples. This strategy relies on
the assumption that the labels of the poison data will not
be inspected. To avoid injecting wrong labels, clean-label [44]
and hidden-trigger [32] backdoor attacks are proposed, where
poison samples are crafted with optimization procedures. In
general, similar to evasion attacks, backdoor attacks present
the following shortcoming: they require the modification of
test samples during inference to enable misclassification.

Clean-label Poisoning Attacks. A recent branch of data-
poisoning attacks has no control over the labeling process.

1Note that the attacker has no knowledge of Γ (other than the added poisons).

The first clean-label poisoning attack is Feature Collision [35],
which mainly targets linear transfer learning, where the adver-
sary has complete knowledge of the feature extractor network
φ employed by the victim. Feature Collision suffers from
one major problem; it tends to fail in black-box settings [50].
To mitigate such limitations, Zhu et al. proposed the Convex
Polytope attack [50], which crafts a set of poison samples that
contain the target’s feature vector within their convex hull. In
particular, this attack outperforms Feature Collision by 20% on
average in terms of success rate. As we will show in Section VI,
Convex Polytope suffers from two shortcomings; (1) Speed:
Convex Polytope is significantly slow. (2) Robustness: The
target’s feature vector tends to be close to the boundary of
the polytope formed by the poison samples, leaving the full
potential for attack transferability untapped.

To mitigate such limitations, we design Bullseye Polytope
by crafting poison samples centered around the target image in
the feature space. As we will show later, our attack accelerates
poison construction by an order of magnitude compared to
Convex Polytope, while achieving higher attack success rates
in both transfer learning setups. We further improve the attack
robustness by incorporating multiple images of a target object.
Current clean-label poisoning attacks are designed to target
only one image at a time, rendering them ineffective against
unpredictable variations in real-world image acquisition. We
show that the resulting attack is effective on unseen images
of the target while maintaining good baseline test accuracy on
non-targeted images. To the best of our knowledge, Bullseye
Polytope is the first clean-label poisoning attack being proposed
for a multi-target threat model, which is an important feature
for practical implementations on real-world systems.

Concurrent to our work, a recent paper [8] – published on
arXiv – proposed a clean-label poisoning attack, named WiB,
against from-scratch training scenarios, where the victim’s
model is trained from random initialization on the poisoned
dataset. Such a setting is more challenging for previous clean-
label poisoning attacks and Bullseye Polytope, as they are
designed for transfer learning scenarios. However, as we will
show later, our attack outperforms WiB in some experiments.
This is quite interesting, as unlike WiB, Bullseye Polytope is
not originally designed for from-scratch training scenarios.

Defenses Against Clean-label Poisoning. Parallel to this work,
a recent study by Peri et al. [29] proposed defenses against
clean-label poisoning attacks, i.e., Feature Collision [35] and
Convex Polytope [50]. They adopted defenses that are shown
to be effective against both evasion and backdoor attacks [27],
[39].2 For the Feature Collision attack, they observed that a
Deep k-NN based method applied to the penultimate layer
(i.e., the feature layer) of the neural network outperforms
other types of defenses, such as adversarial training or l2-norm
centroid defenses. In the Convex Polytope attack, Deep k-
NN and l2-norm centroid defenses demonstrate comparable
resilience, however, the Deep k-NN defense removes fewer

2A detailed discussion of defenses against evasion and backdoor attacks is
provided in the Appendix F.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

clean samples from the training data. In this work, we evaluate
Bullseye Polytope and Convex Polytope against both Deep
k-NN and l2-norm centroid defenses. As we will show in
Section VI-D, Bullseye Polytope is generally more robust than
Convex Polytope against less aggressive defense configurations.

IV. BACKGROUND

As discussed earlier, Feature Collision fails when the victim’s
feature extractor φ is unknown to the attacker. To mitigate such
limitation, Zhu et al. [50] proposed Convex Polytope (CP),
which crafts a set of poison samples that contain the target
within their convex hull. CP exploits the following mathematical
guarantee: if the victim’s linear classifier associates the poison
samples with the targeted class, it will label any point inside
their convex hull as the targeted class. CP creates a larger
“attack zone” in the feature space, thus increasing the chance
of transferability, as argued by the authors. In particular, CP
solves the following optimization problem:

minimize
{c(i)},{x(j)

p }

1

2m

m∑

i=1

∥∥∥φ(i)(xt)−
∑k

j=1 c
(i)
j φ(i)(x(j)

p)
∥∥∥
2

∥∥φ(i)(xt)
∥∥2

subject to
k∑

j=1

c(i)j = 1, c(i)j ≥ 0, ∀i, j,
∥∥∥x(j)

p − x(j)
b

∥∥∥
∞
≤ ε , ∀j, (1)

where x(j)
b is the original image of the j-th poison sample,

and ε determines the maximum allowed perturbation. Eq. 1
finds a set of poison samples {x(j)

p }kj=1 such that the target xt

lies inside, or at least close to, the convex hull of the poison
samples in the feature spaces defined by m substitute networks
{φ(i)}mi=1. In the i-th substitute network, the target feature
vector φ(i)(xt) is ideally a convex combination of the feature
vectors of poison images, i.e., φ(i)(xt) =

∑k
j=1 c

(i)
j φ(i)(x(j)

p),
where c(i)j determines the j-th poison’s coefficient. To solve
the non-convex problem in Eq. 1 (i.e., find the optimal poison
samples), CP repeats the following steps for 4,000 iterations:
1) Freezing {x(j)

p }kj=1, use forward-backward splitting [9] to
optimize the coefficients for each individual network {c(i)}.

2) Given {c(i)}, optimize {x(j)
p }kj=1 using one gradient step.

3) Clip {x(j)
p }kj=1 to the ε-ball around the base images

{x(j)
b }kj=1.

Poor Scalability of Convex Polytope. We observed that when
using 18 substitute networks, solving Eq. 1 for five poison
samples takes ∼17 GPU-hours on average.3 Of this time, step
one alone takes ∼15 hours. We list the details of step one in
the Appendix (Algorithm 1). Within this process, we noticed
two major time-consuming operations: (1) checking whether
the new coefficients result in a smaller loss compared to the
old coefficients (this is done in every iteration of coefficient
optimization), and (2) projection onto the probability simplex,

3This is the exact same setting used in the original paper [50].

which happens whenever the new coefficients satisfy the above
condition. While we believe that there is room for improvement
of this algorithm, e.g., by checking the condition every few
steps rather than each step, we did not make any such changes
in order to avoid degradation of the attack success rate, and to
allow for a fair comparison.

V. BULLSEYE POLYTOPE

Apart from scalability, CP has an inherent flaw: as soon as
the target crosses the boundary into the interior of the convex
polytope, there is no incentive to refine further and move the
target deeper inside the attack zone (Figure 1). Therefore, the
target will lie close to the boundary of the resulting poison
polytope, which reduces robustness and generalizability. We
design Bullseye Polytope (BP) based on the insight that, by
fixing the relative position of the target with respect to the
poison samples’ convex hull, we speed up the attack while also
improving its robustness. Instead of searching for coefficients
by optimization, which is neither efficient nor effective, BP
predetermines the k coefficients as equal, i.e., 1

k , to enforce that
the target resides close to the “center” of the poison samples’
polytope.4 BP then solves the special case of:

minimize
{x(j)

p }

1

2m

m∑

i=1

∥∥∥φ(i)(xt)− 1
k

∑k
j=1 φ

(i)(x(j)
p)

∥∥∥
2

∥∥φ(i)(xt)
∥∥2

subject to
∥∥∥x(j)

p − x(j)
b

∥∥∥
∞
≤ ε , ∀j. (2)

As we show later, BP indeed improves attack transferability by
effectively pushing the target toward the center of the attack
zone. Also, by precluding the most time-consuming step of
computing coefficients, BP is an order of magnitude faster
than CP. It should be noted that, while BP seems to be a
special case of CP, the objective loss of Eq. 2 has a significant
difference with respect to Eq. 1. That is, the closer the target
gets to the polytope’s center, the smaller the loss becomes,
which is not true for Eq. 1. For this reason, the solution of
Eq. 2 (BP) is not necessarily a special case of Eq. 1 (CP), since
an optimizer that uses Eq. 1 might never find such a solution.
Although CP initially sets the k coefficients as equals (i.e., 1

k),
we observed that the coefficients become skewed from the very
beginning. This happens because at each step of optimizing
the coefficients, the solution of Eq. 1 is skewed towards poison
samples that are closer to the target.

Kernel Embedding-view of Bullseye Polytope. Besides im-
proved computational efficiency, our approach in Eq. 2 can
be viewed as optimizing distribution of poison samples via its
mean embedding. Informally speaking, when φ is a sufficiently
descriptive feature map,5 then Ex∼P [φ(x)] = Ex∼Q[φ(x)] if
and only if distributions P and Q are identical (see, e.g.,
[38, Theorem 1]; also see a recent survey of kernel mean
embedding [22]). Deep neural networks are closely related

4Our notion of center coincides with the center of mass of the poison set.
5For example, φ(x) = k(x, ·) for a characteristic reproducing kernel k,

e.g., the Gaussian-RBF kernel k(x, y) = e−‖x−y‖2 .

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

to kernel methods [23], [31], [15]. The pre-trained network
is a powerful feature extractor, thus is often viewed as an
even better descriptor of the input feature x than kernels for
prediction purposes. As a result, if {x(j)

p }kj=1 are drawn from
a distribution P , then Eq. 2 is essentially optimizing this
distribution using the plug-in estimator of mean embedding:
1
k

∑k
j=1 φ(x

(j)
p).

Deep Sets. Bullseye Polytope is also backed by the more
recent approach of deep sets [49], which establishes that
for any function f of a set of poison samples x(1)

p , ..., x(k)
p

that enjoys permutation invariance admits a decomposition:
f = ρ(1k

∑k
j=1 φ(x

(j)
p)) for some function ρ,φ. Notice that

due to the random reshuffling steps in training machine
learning models, the learned prediction function (i.e., classifier)
is permutation invariant by construction with respect to
the training dataset (containing the set of poison samples).
That is, the classifier’s prediction f can be decomposed to
ρ(1k

∑k
j=1 φ(x

(j)
p)) — a function of the mean embedding. Thus,

our simplification from Eq. 1 to Eq. 2 that optimizes the mean
embedding rather than a more general convex combination
is arguably without loss of generality (See Appendix G for a
more detailed discussion).

A. Improved Transferability via Multi-Draw Dropout
Attack transferability improves when we increase the number

of substitute networks for crafting poison samples. While
it is impractical to ensemble a large number of networks
due to memory and time constraints, introducing dropout
randomization provides some of the diversification afforded by
a larger ensemble. With dropout, the substitute network φ(i)

provides a different feature vector for the same poison sample
each time. This randomization was observed to result in a
much higher variance in the (training) loss of Eq. 2 compared
to that of Eq. 1. Since the solution space of Eq. 2 is much
more restrictive than Eq. 1, and moves around for different
realizations of dropout, gradient descent has a harder time
converging for Eq. 2. We use averaging over multiple draws
to alleviate this problem. In each iteration, we compute the
feature vector of poison samples R times for each network, and
use their average in optimizing Eq. 2. Of course, increasing
R results in higher attack execution time, but even a modest
choice of R=3 is enough to achieve an 8.5% higher success
rate compared to when R=1 is used for end-to-end transfer
learning. Even in this case, BP is 12 times faster than CP.

B. Multi-target Mode
We further improve the robustness of BP by incorporating

multiple images of a target object. This is similarly achieved
by simply replacing φ(xt) in (2) with a mean embedding
of the distribution of the targets 1

Nim

∑n
j=1 φ(x

(j)
t) where

x(1)
t , ..., x(Nim)

t are drawn i.i.d from a target distribution
that captures the natural variations in lighting conditions,
observation angles, and other unpredictable stochasticity in
real-world image acquisition. To say it differently, instead
of attacking one individual instance, we are now attacking a

distribution of instances by creating a set of poison samples that
match the target distribution in terms of the mean embedding
as much as possible. In Section VI-B, we demonstrate that the
resulting attack is highly effective not only on the “training”
instances of the targets but also generalizes to unseen images
of the target, while maintaining good baseline test accuracy
on images of non-targeted objects. In contrast, current clean-
label poisoning attacks only work with one image at a time,
rendering them ineffective in more realistic attack scenarios.

C. End-to-End Transfer Learning
In end-to-end transfer learning, the victim retrains both the

feature extractor and the linear classifier, altering the feature
space in the process. This causes unpredictability in the attack
zone, even in the white-box setting. To tackle this issue, inspired
by Zhu et al. [50], we jointly apply BP to multiple layers of
the network, crafting poison samples that satisfy Eq. 2 on the
feature space created by each layer. This adds to the complexity
of the problem, which is especially problematic for the already
slow CP algorithm.

VI. EXPERIMENTS

We first evaluate BP in single-target mode and compare
against CP, and then demonstrate its transferability on unseen
images of the target object (multi-target mode). BP-3x and
BP-5x represent the case where multi-draw dropout is enabled,
with R set to 3 and 5, respectively. Unless stated otherwise,
we use the same settings as used by Zhu et al. [50] to provide
a fair comparison. We also study the effect of the perturbation
budget ε and the number of poison samples on the attack
success rate through ablation studies. Furthermore, we evaluate
both BP and CP against defenses that are proposed by a recent
study [29]. In the end, we further evaluate BP using standard
benchmarks that are developed in a recent study [34]. We ran
all the attacks using NVIDIA Titan RTX graphics cards.

A. Single-target Mode

Datasets. We use the CIFAR-10 dataset. If not explicitly stated,
all the substitute and victim models are trained using the first
4,800 images from each of the 10 classes. In all experiments,
we use the standard test set from CIFAR-10 to evaluate the
baseline test accuracy of the poisoned models and compare
them with their unpoisoned counterparts. The attack targets,
base images of poison samples, and victim’s fine-tuning set are
selected from the remaining 2,000 images of the dataset. We
assume that the victim models are fine-tuned on a training set
consisting of the first 50 images from each class, i.e., the fine-
tuning dataset, containing a total of 500 images. Zhu et al. [50]
randomly selected “ship” as the misclassification class, and
“frog” as the target’s image class. We assume the same choice
for comparison fairness. Specifically, the attacker crafts clean-
label poison samples from ship images to cause a particular
frog image to be misclassified as a ship. We craft the poison
images x(j)

p from the first five images of the ship class in the
fine-tuning dataset. We run CP and BP attacks with 50 different
target images of the frog class (indexed from 4,851 to 4,900)

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) CP (b) BP

(c) BP-3x (d) BP-5x

Fig. 2: Linear transfer learning - success rates of CP, BP, BP-3x, and BP-5x on victim models. Notice ResNet18 and
DenseNet121 are the black-box setting.

(a) Linear transfer learning (b) End-to-end transfer learning

Fig. 3: Attack success rates of CP, BP, BP-3x, and BP-5x, averaged over all eight victim models.

to collect performance statistics. Thus we ensure that target
images, training set, and fine-tuning set are mutually exclusive
subsets. We set an $∞ perturbation budget of ε = 0.1.

Linear Transfer Learning. For substitute networks, we
use SENet18 [13], ResNet50 [12], ResNeXt29-2x64d [48],
DPN92 [7], MobileNetV2 [33], and GoogLeNet [42]. Each
network architecture is trained with dropout probabilities of
0.2, 0.25, and 0.3, which results in a total of 18 substitute
models. To evaluate the attacks under gray-box settings, we
use the aforementioned architectures (although trained with
a different random seed). For black-box settings, we use
two new architectures, ResNet18 [12] and DenseNet121 [14].
Dropout remains activated when crafting the poison samples to
improve attack transferability. However, all eight victim models
are trained without dropout, and dropout is disabled during
evaluation. We perform both CP and BP for 4,000 iterations
with the same hyperparameters used by CP. The only difference
is that BP forces the coefficients to be uniform, i.e., c(i)j = 1

5 .

We use Adam [16] with a learning rate of 0.1 to fine-tune the
victim models on the poisoned dataset for 60 epochs.

Figure 2 shows the progress of CP, BP, BP-3x, and BP-
5x over the number of iterations of the attack against each
individual victim model. Figure 3a shows the attack progress
wherein the attack success rate is averaged over eight victim
models. In general, BP outperforms CP and converges faster.
In particular, on average over all iterations, BP-3x and BP-5x
demonstrate 7.44% and 8.38% higher attack success rates than
CP. Both CP and BP hardly affect the baseline test accuracy
of models (Figure 6a).6 BP is almost 21 times faster than CP,
as it excludes the computation-heavy step of optimizing the
coefficients. Figure 5a shows the attack execution time based on
the number of iterations. Running CP for 4,000 iterations takes
1,002 minutes on average, while BP takes only 47 minutes.
BP-3x and BP-5x take 88 and 141 minutes, respectively. It is
worth noting that BP needs fewer iterations than CP to achieve

6BP has slightly less severe effect on the baseline test accuracy.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) CP (b) BP (c) BP-3x

Fig. 4: End-to-end transfer learning - success rates of CP, BP, and BP-3x on victim models. Notice MobileNetV2, GoogLeNet,
ResNet18 and DenseNet121 are the black-box setting.

(a) Linear transfer learning

(b) End-to-end transfer learning

Fig. 5: Attack execution time.

(a) Linear transfer learning

(b) End-to-end transfer learning

Fig. 6: Average baseline test accuracy variation.

the same attack success rate for some victim models (Figure 2).

End-to-end Transfer Learning. In this mode, the victim
feature extractor is altered during the fine-tuning process, which
results in a (slightly) different feature space. This causes the
conventional CP attack to have a success rate of less than 5%.
To tackle this problem, CP creates convex polytopes in different
layers of the substitute models. We follow the same strategy
for BP, this time limiting each attack to 1,500 iterations to
meet time and resource constraints. For substitute networks, we
use SENet18, ResNet50, ResNeXt29-2x64d, and DPN92, with
dropout values of 0.2, 0.25, and 0.3 (a total of 12 substitute
models). For gray-box testing, we evaluate the attacks against
these four architectures. In the black-box setting, MobileNetV2,
GoogLeNet, ResNet18, and DenseNet121 are used as victim
networks. We use Adam with a learning rate of 10−4 to fine-
tune the victim models on the poisoned dataset for 60 epochs.

Similar to what we observed for linear transfer learning, but
with a wider margin, BP presents higher attack transferability
than CP, especially in the black-box setting. Figure 4 shows the
progress of CP, BP, and BP-3x over the number of iterations
of the attack against each individual victim model. Here we
report attack success rates after 1,500 iterations. BP and BP-3x

improve average attack transferability (over victim models) by
18.25% and 26.75%, respectively (Figure 3b). Figure 20 in the
Appendix shows attack success rates against each individual
victim model. BP and BP-3x have 10-30% and 10-50% higher
attack transferability than CP, respectively (except against
GoogLeNet). Poor transferability against GoogLeNet is also
reported for CP [50]. Since the GoogLeNet architecture differs
significantly from the substitute models, it is, therefore, more
difficult for the “attack zone” to survive end-to-end transfer
learning. For other black-box models (MobileNetV2, ResNet18,
and DenseNet121), BP and BP-3x improve attack transferability
by ∼18% and ∼24%, respectively. Both CP and BP have hardly
any effect on the baseline test accuracy of models (Figure 6b).
As Figure 5b shows, BP and BP-3x take 15 and 98 minutes,
while CP takes 1,180 minutes, which is 36x slower.

It is worth noting that we found multi-draw dropout not
beneficial to CP in the experiments. Since using multi-draw
dropout makes CP (much) slower, with no gain in attack success
rate, to fairly compare the execution time of BP with CP, multi-
draw dropout is always disabled for CP.

Transferability to Unseen Training Sets. Until now, we have
assumed that the substitute models are trained on the same

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) Zero overlap (b) 50% overlap

Fig. 7: Comparison of CP, BP, and BP-3x in linear transfer learning, with zero and 50% overlap between training sets of the
substitute networks and the victim’s network.

training set (Ψ) on which the victim’s feature extractor network
is trained. In this section, we evaluate CP and BP using
substitute models that are trained on a training set that has (1)
zero or (2) 50% overlap with Ψ. Such a setting is more realistic
compared to when the attacker has complete knowledge of Ψ.
We use the same setting as in linear transfer learning except
for the following changes: (i) We train the victim models on
the first 2,400 images of each class; (ii) In the zero overlap
setting, we train substitute models on samples indexed from
2,401 to 4,800 for each class; (ii) For the 50% overlap setting,
we train substitute models on samples indexed from 1,201 to
3,600 for each class. Figure 7 shows the attack success rates
(averaged over victims) for both zero overlap and 50% overlap
setups. When we have 50% overlap, BP, BP-3x, and BP-5x
demonstrate 5.82%, 8.56%, and 9.27% higher attack success
rates compared to CP (on average over all iterations), with BP
converging significantly faster than CP. For the zero overlap
setup, BP provides hardly any improvement over CP. They
both achieve much lower attack success rates of 20-25%. It
should be noted that the zero overlap scenario is much more
restricted than what is usually assumed in threat models for
poisoning attacks. The victim’s network, training set, and even
the fine-tuning training set (except for, of course, the poison
samples) are all unseen to the adversary. All attacks hardly
affect the baseline test accuracy (Figure 17 in the Appendix).

Effectiveness of the Bullseye Idea. We have argued that
the effectiveness (robustness and transferability) of BP stems
from the fact that predetermining the convex coefficients
as uniform weights draws the target to the “center” of the
attack zone, increasing its distance from the poison polytope
boundary. In order to evaluate this claim quantitatively, we
run the attack with different sets of nonuniform coefficients,
to see if the improvement is truly due to target centering (i.e.,
the “bullseye” idea) or simply from “fixing” the coefficients
instead of searching for them. We evaluate BP against nine
alternatives {BP′t}9t=1, each with a different set of positive
predefined coefficients that satisfy

∑k
j=1cj = 1. Figure 8

depicts a geometrical example for each set (sorted from left
to right based on the entropy of the coefficient vector), with
BP having the highest possible entropy of log2 5 ' 2.32. As
Figure 9 shows, variations of BP with higher coefficient entropy
generally demonstrate higher attack success rates compared to

those with smaller entropy, especially in the black-box setting.
This finding indicates that predetermining the coefficients to
uniform weights (BP) is preferable to simply fixing them to
some other plausible values. This backs our intuition behind
BP that the further the target is from the polytope boundary,
the lower its chances of jumping out of the attack zone in
the victim’s feature space. In fact, the average entropy of
coefficients in CP roughly converges to 1.70, which means
the coefficient distribution is more skewed, with some poison
samples having a relatively small contribution to the attack.
Figure 10 shows the mean values of the (sorted) coefficients
to provide a sense of the coefficient distributions used by CP.

Different Pairs of <original class, poison class>. Until now,
the adversarial goal in all experiments was to make the victim’s
model identify an image of a frog (original class) as a ship
(poison class). For comparison fairness, we have followed Zhu
et al. [50] for this selection of the original and poison classes.
To assess the impact of selecting different original and poison
classes on the performance of the attack, we evaluate BP-3x
for all 90 pairs of <original class, poison class>; each with
5 different target images (indexed from 4,851 to 4,855 in the
original class), resulting in a total of 450 attack instances. We
focus on linear transfer learning and limit each attack to 800
iterations to meet time and resource constraints. On average,
against all eight victim networks, BP-3x achieved a success
rate of 40.83%. In the original setting of <frog, ship>, BP-3x
showed a success rate of 47.25% (Figure 3a). See Appendix D
for the attack performance against individual victim networks
as well as a comparison of different class pairs.

B. Multi-target Mode
We now consider a more realistic setting where the target

object is known, but there is unpredictable variability in the
target image at test time (e.g., unknown observation angles).
This is the first attempt at crafting a clean-label and training-
time dataset poisoning attack that is effective on multiple
(unseen) images of the target object at test time. To this
end, we consider a slight variation of BP that takes multiple
images of the target object (capturing as much observation
variability as possible), and performs BP on the averages of
their feature vectors. We use the Multi-View Car dataset [26],
which contains images from 20 different cars as they are rotated
by 360 degrees at increments of 3-4 degrees. We expect to

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Nine alternatives of Bullseye Polytope with different sets of nonuniform coefficients. The blue circles are poison samples
with their coefficients written next to them, and the red cross is the target. The entropy of the coefficients increases from left to
right. Note that the bottom right represents BP.

(a) Averaged over victim models (b) DenseNet121 (c) ResNet18

Fig. 9: Comparison between BP and the other nine alternatives.

Fig. 10: Distribution of poison samples’ coefficients defined
in Eq. 1 (averaged over all targets and victim networks). The
coefficients are sorted, c1 denotes the highest coefficient, and
c5 denotes the lowest coefficient. In Convex Polytope, the
coefficient distribution is more skewed with some poison
samples having a relatively small contribution to the attack.

see lower accuracy when testing the substitute models on the
Multi-View Car dataset, as it contains a different distribution
of images compared to CIFAR-10. We observed that images
from the car dataset are most commonly misclassified as “ship,”
therefore to avoid contamination from this inherent similarity,
this time we choose “frog” as the intended misclassification
label, and perform the attacks only for the 14 cars with baseline
accuracy of over 90% to obtain pessimistic results. We use
the same settings as the single-target mode. We discuss in the
Appendix E how the car images of the Multi-View Car dataset
are adapted for our models, which are trained on CIFAR-10.

We evaluate both CP and BP setting the number of target

images Nim to {1, 2, 3, 4, 5, 10} to verify the effect of Nim on
the attack robustness against unseen angles. Note that when
Nim = 1, the attack is in single-target mode. To select the Nim
target images, we take one image every 360

Nim
degree rotation of

the target car. Figure 11 and Figure 12 show the attack success
rates against unseen images. In linear transfer learning, using
five targets instead of one improves attack robustness against
unseen angles by over 16%. In end-to-end transfer learning,
BP-3x demonstrates an improvement of 12%. When Nim = 5,
BP achieves 14% higher attack success rate compared to CP,
while being 59x faster. We emphasize that the total number of
poison samples crafted for multi-target attacks is the same as
single-target mode (i.e., 5). Figure 19 in the Appendix depicts
poison samples crafted for one particular target car.

More Realistic Transfer Learning. We argue that the setting
of this (multi-target) experiment is also relevant for another
reason: the source of the fine-tuning set is different from the
source of the original training set. In particular, we assume that
the victim fine-tunes a model – pre-trained on CIFAR-10 – on
the Multi-View Car dataset. Our results show that BP achieves
comparable success rates in such a more realistic setting. For
example, when Nim = 1 in end-to-end transfer learning, the
attack success rates of BP and CP are 51% and 34%.

C. Attack Budget

Until now, we have used five poison samples with an $∞
perturbation budget of ε = 0.1. Here, we discuss the impact
of the number of poison samples and the perturbation amount
on the attack success rate. Since we observed the same trend

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) CP (b) BP (c) BP-3x
Fig. 11: Attack transferability to unseen angles in linear transfer learning.

(a) CP (b) BP (c) BP-3x
Fig. 12: Attack transferability to unseen angles in end-to-end transfer learning.

TABLE I: Evaluation of BP (after 800 iterations), when different poison budget is used. The first row shows the accuracy that
the victim’s fine-tuned model classifies poison samples into the poison class label. The second row shows the baseline test
accuracy of the model on the standard test set from CIFAR-10. The last row shows the attack success rate.

Poisons
3 5 7 10

Poisons Acc. (%) 82.33 84.45 86.57 88.98
Clean Test Acc. (%) 91.92 91.76 91.67 91.60
Attack Success Rate (%) 28.00 42.50 49.50 57.75

(a) Different number of poisons used (ε = 0.1).

Perturbation Budget ε
0.01 0.03 0.05 0.1 0.2 0.3

Poisons Acc. (%) 96.05 82.25 82.87 84.45 85.4 86.1
Clean Test Acc. (%) 92.01 91.69 91.75 91.76 91.80 91.82
Attack Success Rate (%) 4.50 33.00 40.43 42.50 39.75 43.25

(b) Different levels of perturbation ε used (# poisons = 5).

for single-target and multi-target mode, we only report the
numbers for single-target mode. We limit each attack to 800
iterations to meet time and resource constraints.

Table Ia shows the attack performance of BP, when different
numbers of poison samples are injected into the victim’s fine-
tuning dataset. In general, using more poison samples results in
a higher attack success rate, which can be due to two reasons;
First, BP achieves a lower “bullseye” loss (Eq. 2) when more
poison samples are used. In fact, we confirmed that this is
not the case. While in some scenarios, the loss value slightly
decreases, generally, across different target samples, the loss
does not decrease by simply adding more poison samples. So,
if the attack fails to find poison samples shaping a convex
polytope around some particular target, increasing the number
of poison samples will not help us to find a “better” polytope.

Second, having more poison samples in the fine-tuning
dataset will cause the classifier to learn the malicious charac-
teristics of the poison samples with a higher probability. This
indeed contributes to a higher attack success rate. During our
analysis, we noticed that the main reason for the attack failure
for a particular target is the following; In the fine-tuning dataset
of the victim, there exist samples from the target’s original
class that are close “enough” to the target so that the victim’s
model classifies the target into its true class. In most cases, a
few of the poison samples are even classified into the target’s

original class, which indeed downgrades the malicious effect
of poison samples. Therefore, by adding more poison samples
to the fine-tuning dataset, the chance that poison samples in
the adjacency of the target outnumber samples from the true
class is higher. Note that we do not consider a white-box threat
model in this work, thus the convex polytope created for the
substitute networks will not necessarily transfer to the victim’s
feature space, which means the condition of the mathematical
guarantee discussed in Section IV will not always hold.

We also evaluate CP when the number of poison samples is
ten. As Table II shows, BP demonstrates a 6.5% higher attack
success rate than CP. Running BP for 800 iterations takes only
seven minutes on average, while CP takes 603 minutes, which
is 86 times slower. This happens because CP poorly scales as
the number of poison samples increases. In each iteration of
solving Eq. 1, CP needs to find the optimal set of coefficients
for each poison. If we increase the number of poison samples
from five to ten, at each iteration of the attack, ten optimization
problems need to be solved to find the best coefficients (instead
of five). This is not the case for BP, as increasing the number
of poison samples does not necessarily make solving Eq. 2
harder. The problem is still finding the solution of Eq. 2 using
backpropagation, with ten poison samples as the parameters,
instead of five. In fact, our evaluation shows that BP takes
roughly the same time as when we use five poison samples.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Evaluation of BP and CP (after 800 iterations),
when ten poison samples are used, and ε is set to 0.1.

BP CP

Poisons Acc. (%) 88.98 85.20
Clean Test Acc. (%) 91.60 91.43
Attack Success Rate (%) 57.75 51.25
Attack Execution Time (min.) 7 603

Table Ib shows the attack performance of BP, when five
poison samples are crafted, yet with different levels of
perturbation. In general, the “bullseye” loss does not change
for ε values greater than 0.05, and increasing ε further has a
negligible impact on the attack success rate. We argue this
happens for the same reason that an attack fails for a particular
target when there are some samples from the target class in
the victim’s fine-tuning dataset that are very close to the target
in the victim’s feature space. In such a scenario, increasing
the perturbation budget is not enough to move the target from
the proximity of its class into the attack zone. Due to resource
and time constraints, we evaluated CP in these settings on a
smaller set of targets, and we have observed a trend similar to
what we discussed above.

D. Defenses

Concurrent to this work, a recent study has been pub-
lished [29], which studies defenses against clean-label poi-
soning attacks, i.e., Feature Collision [35] and Convex Poly-
tope [50]. In their evaluation, Deep k-NN and l2-norm centroid
defenses generally outperformed other types of defenses, such
as adversarial training. In this work, we evaluate both BP
and CP against these two defenses. Deep k-NN Defense:
For each sample in the training set, this defense flags the
sample as anomalous and discards it from the training set if
the point’s label is not the mode amongst the labels of its
k nearest neighbors. Euclidean distance is used to measure
the distance between data points in feature space. l2-norm
Outlier Defense: For each class c, the l2-norm centroid defense
removes a fraction µ of points from class c that are farthest in
feature space from their centroid.

It should be noted that both defenses are vulnerable to
data-poisoning attacks. In the Deep k-NN defense, a naïve
adversary might expand the set of poison samples such that
the extra poison samples are close “enough” to the old poison
samples, so that more poison samples might survive the k
nearest neighbor filtration process. In l2-norm centroid defense,
the position of the centroid can be adjusted towards the poison
samples (e.g., by adding more poison samples), especially
when the per-class data size is small, which is the case in
transfer learning. While clean-label poisoning attacks can be
more powerful by considering neighborhood conformity tests
when crafting the poison samples, in this work, we assume the
adversary does not know that such defenses will be employed
by the victim. In particular, we evaluate both BP and CP
against these two defenses. In our evaluation, we ran BP and
CP against linear transfer learning for 50 different targets,
which results in 50 different sets of poison samples. We report

here the aggregated statistics averaged over these sets of poison
samples and eight victim models. We also evaluated the attacks
when the number of poison samples is increased from five
to ten. To meet resource and time constraints, the attacks are
limited to 800 iterations.

Table III shows the performance of the Deep k-NN defense
against BP and CP for various choices of k. Regardless of
how many poison samples are used, the Deep k-NN defense
becomes more effective against both attacks as k increases,
while eliminating roughly the same number of samples from
the training set (i.e., 26 and 31 for when five and ten poison
samples are crafted, respectively). BP generally demonstrates
much higher resilience compared to CP. For small values of
k, the Deep k-NN defense discards fewer poison samples of
BP compared to CP. When using five poison samples, setting
k = 1 is enough to reduce the attack success rate of CP from
37.25% to 6.75%, while BP still achieves an attack success
rate of 20.50%, which is 4.75x higher. To completely diminish
BP, k needs to be greater than eight, however, when ten poison
samples are crafted, the attack success rate decreases only
to 31.25%. It is worth noting that CP achieves 1.25% attack
success rate in such a configuration.

Table IV presents the performance of the l2-norm centroid
defense against BP and CP for various choices of µ. When five
poison samples are used, BP demonstrates a superior resilience
against the defense compared to CP for µ < 0.1. For larger
values of µ, both attacks are completely thwarted. However, the
larger µ is, the more samples are discarded from the training set,
which can degrade the model performance on the fine-tuning
dataset, and, henceforth, the new task. For example, when
µ = 0.1, the l2-norm centroid defense eliminates five samples
from each class of the dataset. This represents 10% of the
fine-tuning dataset. Compared to the Deep k-NN defense, the
l2-norm centroid defense tends to eliminate more samples from
the dataset to achieve the same level of resilience. In particular,
to completely mitigate the attacks, the l2-norm centroid defense
removes 50 samples, while Deep k-NN eliminates 26 samples.
When ten poison samples are used, the l2-norm centroid defense
becomes less effective for small values of µ. To completely
mitigate the attacks, µ needs to be greater than 0.18. In this
setting, the l2-norm centroid defense removes 90 samples in
total, which is 18% of the fine-tuning dataset. For smaller
values of µ, BP is more resilient than CP. For example, when
µ = 0.12 (i.e., 60 samples to be removed from the victim’s
dataset), the attack success rate of CP reduces to 20%, while
BP demonstrates a 32.50% attack success rate.

In general, BP demonstrates higher attack robustness against
Deep k-NN and l2-norm centroid defenses compared to CP.
Both defenses completely mitigate the attacks for high values
of k and µ. Increasing the number of poison samples makes the
l2-norm centroid defense ineffective, as it needs to aggressively
prune the dataset, which will result in lower performance on
the victim’s task. This gives BP a major advantage, as unlike
CP, BP is able to incorporate more poison samples into the
attack process, with virtually no cost in attack-execution time
(Table II). On the other hand, the Deep k-NN defense seems

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Evaluation of BP and CP (after 800 iterations) when the victim employs the Deep k-NN defense. Note that k = 0
means no defense is employed. Five and ten poison samples are used in the left and right table, respectively.

k # Deleted Poisons # Deleted Samples Adv. Success Rate (%)
BP CP BP CP BP CP

0 - - - - 42.5 37.25

1 3.18 4.28 36.46 37.02 20.50 6.75
2 2.42 3.86 21.91 23.07 24.75 8.00
3 3.81 4.66 27.86 27.87 11.75 1.50
4 3.48 4.60 25.83 26.69 14.75 2.50
6 4.22 4.85 25.39 25.91 8.25 1.25
8 4.77 4.94 25.69 25.80 1.25 0.00
10 4.97 4.95 26.36 26.33 0.00 0.25
12 4.98 4.96 26.58 26.54 0.00 0.00
14 4.98 4.96 26.21 26.21 0.00 0.00
16 4.98 4.96 26.95 26.92 0.00 0.00
18 4.98 4.96 26.36 26.37 0.00 0.00
22 4.98 4.96 26.62 26.59 0.00 0.00

(a) # Poisons = 5

k # Deleted Poisons # Deleted Samples Adv. Success Rate (%)
BP CP BP CP BP CP

0 - - - - 57.75 51.25

1 4.30 7.56 38.77 41.22 49.25 14.00
2 2.71 6.38 22.75 25.77 51.75 21.25
3 4.92 8.16 30.36 31.88 38.75 11.00
4 3.94 7.76 26.74 29.72 46.75 12.50
6 4.82 8.51 26.57 29.44 40.00 7.25
8 5.68 9.03 27.24 29.87 31.25 3.25
10 6.53 9.31 28.30 30.54 26.50 2.25
12 7.42 9.44 29.19 30.82 17.75 1.25
14 8.17 9.54 29.42 30.54 15.25 0.25
16 8.86 9.59 30.63 31.20 8.00 0.00
18 9.50 9.61 30.60 30.63 3.00 0.00
22 9.91 9.61 31.18 30.85 0.25 0.00

(b) # Poisons = 10

TABLE IV: Evaluation of BP and CP when the victim employs the l2-norm centroid defense.

µ
Deleted Poisons # Deleted Samples Adv. Success Rate (%)

BP CP BP CP BP CP

0.00 - - - - 42.5 37.25

0.02 1.00 1.00 10.00 10.00 35.00 30.25
0.04 2.00 2.00 20.00 20.00 30.50 19.00
0.06 3.00 3.00 30.00 30.00 17.25 7.75
0.08 3.99 3.99 40.00 40.00 4.75 1.75
0.10 4.96 4.93 50.00 50.00 0.25 0.75
0.12 4.99 4.98 60.00 60.00 0.00 0.00
0.14 4.99 4.98 70.00 70.00 0.00 0.00
0.16 5.00 4.98 80.00 80.00 0.00 0.00
0.18 5.00 4.99 90.00 90.00 0.00 0.00
0.20 5.00 4.99 100.00 100.00 0.50 0.00

(a) # Poisons = 5

µ
Deleted Poisons # Deleted Samples Adv. Success Rate (%)

BP CP BP CP BP CP

0.00 - - - - 57.75 51.25

0.02 1.00 1.00 10.00 10.00 55.00 47.25
0.04 2.00 2.00 20.00 20.00 53.25 45.50
0.06 3.00 3.00 30.00 30.00 49.50 40.25
0.08 4.00 4.00 40.00 40.00 43.50 34.00
0.10 5.00 5.00 50.00 50.00 37.50 21.50
0.12 6.00 6.00 60.00 60.00 32.50 17.00
0.14 7.00 7.00 70.00 70.00 22.25 8.25
0.16 8.00 8.00 80.00 80.00 11.75 4.75
0.18 8.99 9.00 90.00 90.00 3.00 0.75
0.20 9.93 9.56 100.00 100.00 0.25 0.00

(b) # Poisons = 10

(a) BP vs. Deep k-NN (b) Precision and Recall of the Deep k-NN defense.

(c) BP vs. l2-norm centroid (d) Precision and Recall of the l2-norm centroid defense.

Fig. 13: Evaluation of BP against Deep k-NN and l2-norm centroid defenses, when 5, 10, or 25 poison samples are used.

Fig. 14: Evaluation of BP against the Deep k-NN defense, when the target is classless.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

to be quite effective, even when more poison samples are used.
Increasing the number of poison samples from five to ten makes
this defense remove five more samples on average. We should
note that both attacks are completely mitigated after eliminating
6% of the victim’s dataset, of which 4% are clean samples.
The precision of poison detection is still low (∼ 33%). To
further see the effect of the number of poison samples on the
precision and recall of poison detection, we evaluated BP, when
crafting 25 poison samples. Figure 13 shows the performance
of Deep k-NN and l2-norm centroid defenses against BP when
the number of poison samples increases from five to ten and
then to 25. Figure 13c demonstrates that the l2-norm centroid
defense is not a plausible choice. When 25 poison samples are
used, removing 40% of the dataset reduces the success rate of
BP from 75% to 70%. This happens because as more clean
samples are removed from the dataset, the poison samples will
play a more important role in the training process.

As Figure 13b shows, the poison recall rate of the Deep
k-NN defense reaches 100% as k becomes about two times the
number of poison samples. This is not surprising, as it is almost
impossible for the poison label to be identified as the plurality
among samples in the neighborhood of the target in such a
case. On the other hand, this defense is likely to fail if the
number of poison samples is large enough to overwhelm the
conformity test for each poison sample. This will happen with
high probability when the number of poison samples is larger
than the number of data points in the target’s true class. In this
case, the majority (or plurality) of points in the neighborhood of
each poison sample will likely have the same label as the poison
itself. In fact, we observed that when samples in the target’s
class are fewer than the number of poisons in the fine-tuning
set, the poison samples pass the test undetected in most cases,
hence, the attack remains active. Furthermore, if the target is
classless, i.e., does not belong to any of the classes in the
training set, the defense becomes less effective, as the poison
samples surrounding the target are no longer part of a cluster
related to the target’s class. To evaluate this claim, we selected
the first ten images of the 102 Category Flower dataset [25]
as the targets, with “ship” being the misclassification class. As
Figure 14 shows, setting k to 50 reduces the attack success
rate to 66% for a classless target, whereas for a target from
CIFAR-10 the attack is fully mitigated (Figure 13a). Complete
mitigation of the attack requires k > 150, which results in
discarding more than 70 samples from the fine-tuning set, of
which 45 are clean.

E. Comparison On Standardized Benchmarks

A very recent paper [34] introduced standardized bench-
marks for backdoor and poisoning attacks. In particular, the
benchmarks include the following attacks.

• Clean-label poisoning attacks against transfer learning:
FC [35], CP [50], and BP (our attack).

• Clean-label and hidden-trigger backdoor attacks:
CLBD [44], and HTBD [32].

• A from-scratch attack: Witches’ Brew (WiB). Unlike
transfer learning, this attack assumes that the victim trains
a new, randomly initialized model on the poisoned dataset.

Our attack was included in this benchmark evaluation, as we
had made a pre-print version of our work available on arXiv. In
the following, we summarize and expand on these third-party
results.

Standardized Setup of Benchmarks. For the benchmarks,
poisoning attacks are always restricted to generate poison
samples that remain within the l∞-ball of radius 8

255 centered
at the corresponding base images. On the other hand, backdoor
attacks can use any 5× 5 patch. Target and base images are
chosen from the testing and training sets, respectively, according
to a seeded, reproducible random assignment. This allows the
benchmarks to use the same choices for each attack and remove
a source of variation from the results. Each experiment uses
100 independent trials. In general, two different training modes
are considered: (i) linear transfer learning, and (ii) from-scratch
training, where the victim’s network is trained from random
initialization on the poisoned dataset.

Unlike our experiments in Section VI, the parameters of
only one model are given to the attacker. In linear transfer
learning, the attacks are evaluated in white-box and black-box
scenarios. For white-box tests, the same frozen feature extractor
that is given to the attacker is used for evaluation. In black-
box settings, the attacks are evaluated against unseen feature
extractor networks. Benchmarks can be divided into two sets
of CIFAR-10 benchmarks and TinyImageNet benchmarks.

In CIFAR-10 benchmarks, for linear transfer learning, models
are pre-trained on CIFAR-100, and the fine-tuning is done
on a subset of CIFAR-10, which has the first 250 images
from each class, allowing for 25 poison samples. The attacker
has access to a ResNet-18 [12] network, and the victim uses
either (1) the same ResNet-18 network (white-box scenario) or
(2) VGG11 [37] and MobileNetV2 [33] networks (black-box
scenario). We extend the benchmarks here by considering a
gray-box scenario, where the attacks are evaluated against a
ResNet-18 network with unseen parameters. Furthermore, for
the black-box setting, we evaluate the attacks against ResNet-
34 and ResNet-50 networks [12] as well. For these extra
evaluations, we have used the poison samples that are shared by
Schwarzschild et al. [34] in their GitHub repository,7 and here
we report the detailed numbers. When training from scratch,
benchmarks use one of ResNet-18, VGG11, and MobileNetV2
networks, and report the average attack success rate. For this
mode, benchmarks use 500 poison samples.

In TinyImageNet benchmarks, for linear transfer learning,
models are pre-trained on the first 100 classes of the Tiny-
ImageNet dataset [18] and fine-tuned on the second half of
the dataset, allowing for 250 poison samples. The attacker has
access to a VGG16 network, and black-box tests are done on
ResNet-34 and MobileNetV2 networks. For the from-scratch
setting, the benchmarks are evaluated against a VGG16 model
that is trained on the entire dataset with 250 poison samples.

7Accessed Feb. 15 2021.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Success rates (%) of six attacks that are evaluated in the benchmark study [34]. The poison samples are not
shared for some experiments, thus, we reported the exact numbers from the study. For example, in the black-box scenario of
TinyImageNet benchmarks, the original paper reported the attack success rate, averaged over when ResNet-34 or MobileNetV2
networks are used. Therefore, we were not able to present individual attack success rates for these two settings.

Linear Transfer Learning Training From Scratch

CIFAR-10 TinyImageNet CIFAR-10 TinyImageNet

White-box Gray-box Black-box White-box Black-box
Attack ResNet18 ResNet18 ResNet34 ResNet50 VGG11 MobileNetV2 VGG16 ResNet34+MobileNetV2

2
VGG16+ResNet34+MobileNetV2

3 VGG16

FC 22 6 4 4 7 7 49 2 1.33 4
CP 33 7 5 4 8 7 14 1 0.67 0
BP 85 10 8 6 9 7 100 10.5 2.33 44
WiB - - - - - - - - 26 32
CLBD 5 5 4 4 7 6 3 1 1 0
HTBD 10 6 6 3 14 6 3 0.5 2.67 0

Results. Table V shows the success rates of the benchmarks. In
linear transfer learning, our attack outperformed other attacks
by a significant margin, especially in white-box settings. For
example, in the TinyImageNet benchmark, BP achieved an
attack success rate of 100%, while HTBD, CLBD, CP, and
FC demonstrated success rates of 3%, 3%, 14%, and 49%,
respectively. In the gray-box setting, BP showed only a modest
improvement over other attacks. For the black-box settings
in CIFAR-10 benchmarks, BP showed minimal improvement
– on average 1-2% – in comparison to other attacks. In the
black-box scenario of TinyImageNet benchmarks, BP achieved
an attack success rate of 10.5%, while other attacks were
below 2%. In general, BP has shown a superior performance
with respect to other contenders in the linear transfer learning
mode.8 It is worth noting that backdoor attacks assume stronger
threat models compared to poisoning attacks, as they need to
manipulate both the training data and the target sample.

Before discussing the results in from-scratch training settings,
we emphasize that BP is designed to attack transfer learning
scenarios. Similar to FC and CP, BP does not consider from-
scratch training scenarios. We expect the performance of BP to
drop in such a scenario, as the feature space is constantly
being altered during training. On the other hand, CLBD,
and WiB attacks are specifically designed to target such
scenarios. On CIFAR-10 benchmarks, all attacks succeeded
less than 3% of the time. The only exception is WiB, which
achieves a success rate of 26%. However, in TinyImageNet
benchmarks, interestingly, BP demonstrated a success rate of
44%, surpassing the runner-up attack (WiB) by 12%. This
shows that BP has the capability to produce poison samples
that even survive from-scratch training scenarios for the higher
dimensional TinyImageNet dataset.

VII. DISCUSSION

In Section VI-D, we have evaluated Bullseye Polytope
against defenses presented in a (concurrent) paper [29]. We
found that the Deep k-NN defense mitigates our attack
completely if clean data points from the target’s original class
outnumber the poison samples. However, such a defense still
suffers from a poor precision rate, i.e., it removes a considerable

8WiB is not evaluated in the transfer learning mode, as it is not considered
in the original work [8].

number of clean samples, which, in turn, might have negative
effects on the model performance. We believe future defenses
need to be proposed with higher precision rates.

In our experiments, we have noticed that Bullseye Polytope
adds noticeable amounts of noise to the poison samples. In
fact, a recent study of clean-label poisoning attacks [34]
acknowledges this limitation; poisoning attacks, which claim
to be “clean label,” often produce easily visible image artifacts
and distortions. This study advocates using a perturbation
budget ε of 0.03. In Section VI-C, we observed that by using
ε=0.03, our attack produces much fewer distortions, while
still achieving an attack success rate of 33.0% (see Figure 16
in the Appendix for the visual effect of ε on poison examples).
In general, work in adversarial ML (in the image domain)
suffers from the lack of a clear metric to determine what
level of noise is imperceptible by the human eye. Clean-label
poisoning definitely benefits from additional research on this
issue to produce less perceptible perturbations.

VIII. CONCLUSIONS

In this work, we present a scalable and transferable clean-
label poisoning attack, Bullseye Polytope, for transfer learning.
Bullseye Polytope searches for poison samples that create, in
the feature space, a convex polytope around the target image,
ensuring that a linear classifier that trains on the poisoned
dataset will classify the target into the poison class. By driving
the polytope center close to the target, Bullseye Polytope
outperforms Convex Polytope—a state-of-the-art attack against
transfer learning— with success rate improvement of 7.44%
and 26.75% for linear transfer learning and end-to-end transfer
learning, respectively. At the same time, Bullseye Polytope
achieves 10-36x faster poison sample generation, which is
crucial for enabling future research toward the development
of reliable defenses. Our evaluation of two neighborhood
conformity defenses shows that Bullseye Polytope is more
robust than Convex Polytope against less aggressive defense
configurations. As the number of poison samples increases,
the l2-norm centroid defense becomes ineffective. The Deep
k-NN defense also becomes vulnerable when poison samples
outnumber the samples from the target’s true class. In general,
both defenses demonstrated low detection precision, which
indicates further research needs to be done to improve the
precision of such defenses.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable
comments and input to improve our paper.

This material is based on research sponsored by DARPA
under agreements FA8750-19-C-0003 and HR0011-18-C-0060,
and by a gift from Intel Corp. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. This
research has also been sponsored by the Amazon Machine
Learning Research Awards program and a GPU grant from
Nvidia Corp. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA, the U.S. Government,
or the other sponsors.

REFERENCES

[1] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in International Conference on Machine Learning. PMLR, 2018, pp.
274–283.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[3] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

[4] C. Burkard and B. Lagesse, “Analysis of causative attacks against
svms learning from data streams,” in Proceedings of the 3rd ACM
on International Workshop on Security And Privacy Analytics. ACM,
2017, pp. 31–36.

[5] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” arXiv preprint arXiv:1811.03728,
2018.

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[7] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,”
in Advances in Neural Information Processing Systems, 2017, pp. 4467–
4475.

[8] J. Geiping, L. Fowl, W. R. Huang, W. Czaja, G. Taylor, M. Moeller,
and T. Goldstein, “Witches’ brew: Industrial scale data poisoning via
gradient matching,” arXiv preprint arXiv:2009.02276, 2020.

[9] T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-
backward splitting with a fasta implementation,” arXiv preprint
arXiv:1411.3406, 2014.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[11] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[13] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[15] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” in Advances in neural information
processing systems, 2018, pp. 8571–8580.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[18] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, p. 7, 2015.

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[20] S. Mei and X. Zhu, “Using machine teaching to identify optimal training-
set attacks on machine learners,” in Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard, “Robust-
ness via curvature regularization, and vice versa,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 9078–9086.

[22] K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf, “Kernel
mean embedding of distributions: A review and beyond,” Foundations
and Trends in Machine Learning, vol. 10, no. 1-2, pp. 1–144, 2017.

[23] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 1996, vol. 118.

[24] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to
subvert your spam filter.” LEET, vol. 8, pp. 1–9, 2008.

[25] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE, 2008, pp. 722–729.

[26] M. Ozuysal, V. Lepetit, and P. Fua, “Pose estimation for category specific
multiview object localization,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2009, pp. 778–785.

[27] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning,” arXiv preprint
arXiv:1803.04765, 2018.

[28] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in bmvc, vol. 1, no. 3, 2015, p. 6.

[29] N. Peri, N. Gupta, W. R. Huang, L. Fowl, C. Zhu, S. Feizi, T. Goldstein,
and J. P. Dickerson, “Deep k-nn defense against clean-label data poisoning
attacks,” in European Conference on Computer Vision. Springer, 2020,
pp. 55–70.

[30] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi,
S. De, R. Stanforth, and P. Kohli, “Adversarial robustness through local
linearization,” in Advances in Neural Information Processing Systems,
2019, pp. 13 847–13 856.

[31] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems, 2008,
pp. 1177–1184.

[32] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 11 957–11 965.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[34] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and
T. Goldstein, “Just how toxic is data poisoning? a unified benchmark for
backdoor and data poisoning attacks,” arXiv preprint arXiv:2006.12557,
2020.

[35] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks on
neural networks,” in Advances in Neural Information Processing Systems,
2018, pp. 6103–6113.

[36] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!”
in Advances in Neural Information Processing Systems, 2019, pp. 3358–
3369.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[38] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A hilbert space
embedding for distributions,” in International Conference on Algorithmic
Learning Theory. Springer, 2007, pp. 13–31.

[39] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for
data poisoning attacks,” in Advances in neural information processing
systems, 2017, pp. 3517–3529.

[40] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras,
“When does machine learning {FAIL}? generalized transferability for

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

evasion and poisoning attacks,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1299–1316.

[41] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 1891–1898.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[44] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,”
2018.

[45] R. Wang, C. Han, Y. Wu, and T. Guo, “Fingerprint classification based
on depth neural network,” arXiv preprint arXiv:1409.5188, 2014.

[46] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on support
vector machines.” in ECAI, 2012, pp. 870–875.

[47] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 501–509.

[48] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[49] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in neural information
processing systems, 2017, pp. 3391–3401.

[50] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7614–7623.

APPENDIX A
POISON VISUALIZATION

Figure 18 depicts poison samples generated by Convex Polytope
and Bullseye Polytope for one particular target. The first row shows
the original images that are selected for crafting the poison samples.
Figure!19 depicts poison samples generated by Convex Polytope and
Bullseye Polytope in multi-target mode, when multiple images of the
target object (from different angles) are considered for crafting poison
samples. Note that we use the Multi-View Car Dataset [26] to select
the target images.

APPENDIX B
COEFFICIENTS OPTIMIZATION STEP IN CONVEX POLYTOPE

As we discussed in Section IV, Convex Polytope performs three
steps in each iteration of the attack. We observed that step one
takes a significant amount of time compared to the other two steps.
Algorithm 1 shows the details of step one, which searches for the
(most) suitable coefficients for the current poison samples at the time.

APPENDIX C
BULLSEYE POLYTOPE VS. ENSEMBLE FEATURE COLLISION

To evaluate Convex Polytope, Zhu et al. [50] developed an ensemble
version of Feature Collision [35] to craft multiple poison samples
instead of one. They further used this ensemble version as a benchmark.
The corresponding loss function is defined as:

LFC =
m∑

i=1

k∑

j=1

∥∥∥φ(i)(x(j)
p)− φ(i)(xt)

∥∥∥
2

‖φ(i)(xt)‖2
. (3)

They argue that unlike Feature Collision, Convex Polytope’s loss
function (Eq. 1) allows the poison samples to lie further away from
the target. Experiments showed that Convex Polytope outperforms
Feature Collision, especially in black-box settings. It should be noted
that, contrary to what is stated by Zhu et al. [50], the Ensemble

Algorithm 1 Convex Polytope - Coefficients Updating

1: Input: A ← {φ(x(j)
p)}kj=1

2: α← 1
‖ATA‖

3: for i = 1 to m do
4: while not converged do
5: ĉ(i) ← c(i) − αAT (Ac(i) − φ(i)(xt))
6: if loss(ĉ(i)) ≥ loss(c(i)) then
7: α← 1

α
8: else
9: c(i) ← ĉ(i)

10: project c(i) onto the probability simplex.
11: end if
12: end while
13: end for

Feature Collision attack objective described by Eq. 3 is not a special
case of Eq. 1 (when the coefficients are set to 1

k), rather, it optimizes
completely decoupled objectives for different poison samples. While
centering the target between poison samples allows for more flexibility
in poison locations, Eq. 3 pushes all poison samples close to the target,
which has the same drawbacks of collision attacks, namely, perceptible
patterns showing up in poison images and limited transferability. By
exploiting this approach of centering, we show that Bullseye Polytope
improves both attack transferability and scalability.

APPENDIX D
DETAILED RESULTS FOR SINGLE-TARGET MODE

A. End-to-End Transfer Learning
Figure 20 shows the attack success rates of CP, BP, BP-3x and

BP-5x, against each individual victim model when the victim employs
end-to-end transfer learning. Among them, the last row presents the
black-box setting. We note that none of CP, BP, and BP-3x shows
attack transferability for GoogLeNet. Zhu et al. [50] have made a
similar observation. They argued that since GoogLeNet has a more
different architecture than the substitute models, it is more difficult
for the “attack zone” to survive end-to-end transfer learning.

B. Different Pairs of <original class, poison class>
To assess the effect of original and poison classes on the attack

performance, we evaluate BP-3x for all 90 pairs of <original class,
poison class>; each with 5 different target images (indexed from
4,851 to 4,855 in the original class), resulting in a total of 450 attack
instances. We focus on linear transfer learning and limit each attack
to 800 iterations to meet time and resource constraints. Figure 15
shows the attack performance against individual victim networks in
this setting as well as the original setting of <frog, ship>. Table VI
shows the average attack performance for individual class pairs. In
particular, we have found the attack much less successful when our
targeted misclassification is one of airplane or deer classes.

APPENDIX E
IMPLEMENTATION DETAILS

The authors of Convex Polytope released the source code
of CP along with the substitute networks. All models are
trained with the same architecture and hyperparameters defined
in https://github.com/kuangliu/, except for dropout. We
used their implementation directly for comparison. For all experiments,
we used PyTorch-v1.3.1 over Cuda 10.1. We ran all the
attacks using NVIDIA Titan RTX graphics cards. For solving Eq.
1 (Convex Polytope) and Eq. 3 (Bullseye Polytope), we used similar
settings and parameters to what is practiced by Zhu et al. [50].

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 15: Attack success rates of BP-3x for all 90 pairs of
<original class, poison class> in linear transfer learning as
well as the original setting <frog, ship> (for 50 target images
indexed from 4,851 to 4,900).

Fig. 16: Poison samples crafted by Bullseye Polytope attacks
in linear transfer learning using different values of ε.

Processing the Multi-View Car Dataset. The resolutions of the
Multi-View Car dataset are 376×250. To resize the images of this
dataset to 32×32 (the resolution of the CIFAR-10 images), we have
used the opencv-python library. While resizing the images, we
achieved the best performance of the models on the Multi-View Car
dataset using the cv2.INTER_AREA interpolation. It should be noted
that the Multi-View Car dataset provides the exact location of the
cars in the images.

APPENDIX F
DEFENSES AGAINST EVASION AND BACKDOOR ATTACKS

Most adversarial defenses are proposed for mitigating evasion
attacks, where a targeted input is perturbed by imperceptible amounts
during inference to enable misclassification. Such perturbations are
calculated using the gradients of the loss function on the victim
network, or a set of surrogate networks if the victim network is
unknown [10], [2], [43]. Many defenses against evasion attacks focus
on obfuscating the gradients [1]. They achieve this in several ways, e.g.,
introducing randomness during test time, or using non-differentiable
layers. Athalye et al. [1] demonstrate that such defenses can be
easily defeated by introducing techniques to circumvent the absence
of gradient information, like replacing non-differentiable layers with
approximation differentiable layers. Robust defenses to evasion attacks
must avoid relying on obfuscated gradients and provide a “smooth”
loss surface in the data manifold. Variants of adversarial training [19],

(a) Zero overlap

(b) 50% overlap

Fig. 17: Average variation in baseline test accuracy of models
in linear transfer learning, when there is zero or 50% overlap
between training sets of the victim and substitute networks.

[36], [47] and linearity or curvature regularizers [21], [30] are proposed
to achieve this property. These defenses provide modest accuracy
against strong multi-iteration PGD attacks [19]. Papernot et al. [27]
proposed the Deep k-NN classifier, which combines the k-nearest
neighbors algorithm with representations of the data learned by each
layer of the neural network, as a way to detect outlier examples in
feature space, with the hope that adversarial examples are the outliers.

Several defenses are proposed against backdoor attacks, primarily
focusing on neighborhood conformity tests to sanitize the training data.
Steinhardt et al. [39] exploited variants of l2-norm centroid defense,
where a data point is anomalous if it falls outside of a parameterized
radius in feature space. Chen et al. [5] employed feature clustering
to detect and remove the poison samples, with the assumption that
backdoor triggers will cause poison samples to cluster in feature
space.

APPENDIX G
DEEP SETS

One of the contributions of the "Deep Sets" paper is a characteri-
zation of all functions that take a set as input, which says that any
such function f can be written as another function ρ of certain mean
embedding φ of the elements of the sets. We are instantiating this
theorem in the following way: (1) The set input is the set of poison
samples {x(j)

p }kj=1. (2) f is a prediction function:

f({x(j)
p }kj=1) = Predict(Train(XC + {x(j)

p }kj=1), xt)

where Predict(h, x) applies a classifier h to data point x. XC

denotes the clean data. This is a set-function due to the permutation-
invariant training procedure (e.g., Shuffle + SGD) that is typically
adopted. By the theorem, this function has an alternative representation
ρ(1

k

∑k
j=1 φ(x

(j)
p)) that depends only on a certain mean embedding

φ of the poison samples. For this reason, it motivates us to set the
{c(i)} in Eq. 1 to 1

k , which results in Eq. 2. We acknowledge that
this is not a formal theorem statement because the feature map φ that
we used might not be the same as the feature map that is required in
applying Deep Sets theory, but given the flexibility of neural networks,
we believe if we end-to-end optimize over φ too, it is a reasonable
approximation.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 18: Poison samples crafted by Convex Polytope and Bullseye Polytope attacks. The first row shows the original images
selected for crafting the poison samples.

Fig. 19: Poison samples crafted by Convex Polytope and Bullseye Polytope attacks in multi-target mode. The first row shows
the original images selected for crafting the poison samples.

TABLE VI: Evaluation of BP-3x against linear transfer learning for individual class pairs. Attacks are limited to 800 iterations.
Each individual pair is tested using five different target images. Having considered eight victim networks, in total, we evaluate
each pair against the victim’s network 40 times. Each cell shows the number of times that the attack succeeded for each pair.

Poison Class
airplane automobile bird cat deer dog frog horse ship truck Total (of 360)

Original Class

airplane - 14 13 17 9 18 17 20 16 24 148
automobile 7 - 17 19 12 15 20 16 25 24 155

bird 6 13 - 24 7 14 20 22 20 22 148
cat 6 9 11 - 10 18 15 13 14 22 118

deer 6 17 15 24 - 15 17 24 17 23 158
dog 8 15 13 31 7 - 17 16 15 22 144
frog 5 17 16 20 10 15 - 15 35 23 156

horse 10 11 14 22 12 17 23 - 19 26 154
ship 5 20 17 24 9 19 0 18 - 23 135

truck 6 16 13 23 12 18 20 23 23 - 154
Total (of 360) 59 142 129 204 88 149 149 167 184 209

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) DPN92 (b) SENet18

(c) ResNet50 (d) ResNeXt29_2x64d

(e) GoogLeNet (f) MobileNetV2

(g) ResNet18 (h) DenseNet121

Fig. 20: End-to-end transfer learning: Success rates of CP, BP, BP-3x, and BP-5x, against each individual victim model. Notice
GoogLeNet, MobileNetV2, ResNet18 and DenseNet121 are the black-box setting.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

(a) DPN92 (b) SENet18

(c) ResNet50 (d) ResNeXt29_2x64d

(e) GoogLeNet (f) MobileNetV2

(g) ResNet18 (h) DenseNet121

Fig. 21: Linear transfer learning when we have 50% overlap between the training sets of substitute and victim’s networks:
Success rates of CP, BP, and BP-3x, against each individual victim model.

���

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 11,2023 at 21:01:44 UTC from IEEE Xplore. Restrictions apply.

