
Shimware: Toward Practical Security Retrofitting for
Monolithic Firmware Images

Eric Gustafson
edg@cs.ucsb.edu
UC Santa Barbara
Santa Barbara, CA

US

Paul Grosen
pcg@berkeley.edu

UC Berkeley
Berkeley, CA, US

Nilo Redini
nredini@cs.ucsb.edu
UC Santa Barbara
Santa Barbara, CA

US

Saagar Jha
saagar@saagarjha.com
UC Santa Barbara
Santa Barbara, CA

US

Ruoyu Wang
fishw@asu.edu
Arizona State
University

Phoenix, AZ, US

Andrea
Continella

a.continella@utwente.nl
University of Twente

Twente, NL

Kevin Fu
k.fu@northeastern.edu

Northeastern
University

Boston, MA, US

Sara Rampazzi
srampazzi@ufl.edu
University of Florida
Gainesville, FL, US

Christopher
Kruegel

chris@cs.ucsb.edu
UC Santa Barbara
Santa Barbara, CA

US

Giovanni Vigna
vigna@cs.ucsb.edu
UC Santa Barbara
Santa Barbara, CA

USA

ABSTRACT

In today’s era of the Internet of Things, we are surrounded by
security- and safety-critical, network-connected devices. In paral-
lel with the rise in attacks on such devices, we have also seen an
increase in devices that are abandoned, reached the end of their
support periods, or will not otherwise receive future security up-
dates. While this issue exists for a wide array of devices, those that
use monolithic firmware, where the code and data are opaquely
intermixed, have traditionally been difficult to examine and protect.

In this paper, we explore the challenges of retrofitting monolithic
firmware images with new security measures. First, we outline the
steps any analyst must take to retrofit firmware, and show that
previous work is missing crucial aspects of the process, which are
required for a practical solution. We then automate three of these
aspects—locating attacker-controlled input, a safe retrofit injection
location, and self-checks preventing modifications—through the
use of novel automated program analysis techniques. We assemble
these analyses into a system, Shimware, that can simplify and
facilitate the process of creating a retrofitted firmware image, once
the vulnerability is identified.

To evaluate Shimware, we employ both a synthetic evaluation
and actual retrofitting of three case study devices: a networked
bench power supply, a Bluetooth-enabled cardiac implant monitor,
and a high-end programmable logic controller (PLC). Not only could
our system identify the correct sources of input, injection locations,
and self-checks, but it injected payloads to correct serious safety
and security-critical vulnerabilities in these devices.

CCS CONCEPTS

• Security and privacy→ Embedded systems security.

This work is licensed under a Creative Commons Attribution International
4.0 License.

RAID ’23, October 16–18, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0765-0/23/10.
https://doi.org/10.1145/3607199.3607217

ACM Reference Format:

Eric Gustafson, Paul Grosen, Nilo Redini, Saagar Jha, Ruoyu Wang, Andrea
Continella, Kevin Fu, Sara Rampazzi, Christopher Kruegel, and Giovanni
Vigna. 2023. Shimware: Toward Practical Security Retrofitting for Mono-
lithic Firmware Images. In The 26th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID ’23), October 16–18, 2023, Hong Kong,
China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3607199.
3607217

1 INTRODUCTION

Over the last twenty years, advances in wireless networking tech-
nology and in the design of embedded systems have led to a shift in
the way technology integrates with our daily lives. This movement,
known as the Internet of Things (IoT), represents the elimination
of the barrier between networked, interactive devices and more
mundane physical objects and appliances.

In the last six years, this phenomenon has become tangible to
consumers, with the mass-market availability of connected devices
for homes and businesses, including thermostats, lighting, physical
security, and a variety of sensors. Moreover, these embedded devices
also form the backbone of critical infrastructure and drive a wide
range of military systems and applications; their security has direct
implications for operations both in cyberspace and the real world.

Unfortunately, even when bugs are found and reported, this does
not guarantee that a fix will be available. A worrying trend in IoT
devices is devices abandoned by vendors [32, 43], or otherwise
excluded from support [1], which do not receive security patches.
Since embedded systems based on monolithic firmware cannot
be simply updated by updating the operating system or libraries,
vulnerabilities in these systems have a much longer patch latency
due to the extra work involved in creating and testing fixes. For
example, the Urgent/11 [33] buffer overflow vulnerabilities affect
such a wide variety of real-time operating systems and libraries [11]
that it is unclear whether and how a patch will be available for
many of these systems. Unfortunately, the increasingly safety- and
security-critical nature of many of these devices means that users
must patch or replace the device. In some cases, replacing the device
may not be physically possible or financially practical, and users
must take matters into their own hands.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3607199.3607217
https://doi.org/10.1145/3607199.3607217
https://doi.org/10.1145/3607199.3607217

RAID ’23, October 16–18, 2023, Hong Kong, China E. Gustafson et al.

Since the firmware’s source code is generally not available, patch-
ing the compiled binary firmware could be the only viable option.
Recently, organizations such as the US’s Department of Defense
have recognized the severity of the problem through the creation of
grant programs [14, 35] seeking binary patching technologies. How-
ever, in an interesting twist, such solutions are hindered by the secu-
rity community’s own attempts to increase hardware and firmware
security. Chip vendors and firmware authors have integrated nu-
merous counter-measures designed to prevent unprivileged access
to devices, even with invasive physical access; these include fea-
tures such as read-protected flash memory on chips and built-in
encryption [8, 19, 46]. These were designed to stop malicious at-
tackers, but unfortunately they also reduce the scope of third-party
patching capabilities. Even when the firmware can be successfully
obtained, numerous challenges still exist that complicate current
approaches. Current solutions tackling binary rewriting work pri-
marily on ELF files [27, 49, 51]. These approaches leverage the
metadata present in ELF headers to re-arrange code, fixing code
offsets and pointers. However, such metadata is often not available
for firmware. Many devices that rely on smaller or lower-power
CPUs run monolithic (or blob) firmware, in which the code and
data, including libraries, are opaquely intermixed into a single file.
To patch it, analyses would need to be able to safely re-arrange
code, which requires a complete and accurate control-flow graph—
otherwise, unsound approaches would harm the functionality of
the device. Thus, in the case of monolithic firmware, we are left
with only Detours-style patching [25], where code is inserted into
an otherwise-unused region, and the instructions of the program
are altered to use it. Worse yet, without metadata, and without an
operating system, there is no standard source of input data that a
patch can process to make security-related decisions. Finding the
ideal location to insert this additional code is also difficult, with
no guarantees of available persistent storage, and no simple way
of determining content that is safe to overwrite—not to mention
space issues due to the limited size of firmware images. Finally, to
make these systems robust, firmware typically checks its content
to ensure that it is not intentionally or accidentally modified; such
checks must be overcome before any kind of binary patching can
happen.

Recent work has recognized the importance of updating mono-
lithic firmware with patches [23, 26, 34]. Unfortunately, none of
these solutions is complete. HERA [34] and RapidPatch [23] assume
the presence of specific run-time environments that are used for
patching (a built-in hardware debugging feature on ARM Cortex-M
processors and an eBPF-based runtime environment, respectively).
Moreover, both systems assume that the firmware includes symbols
(so it is easy to find the right place for a patch) and do not worry
about the space needed to add code. DisPatch [26] goes one step
further and automatically identifies the right patch locations, but
only for Robotic Aerial Vehicle (RAV) firmware. It also does not
address the questions around the space required for a patch nor the
problem of (self-)check routines.

In this work, we take the first steps to enable practical and general
end-to-end security retrofitting for monolithic firmware binaries.
We first identify the concrete pre-requisites and challenges an an-
alyst needs to consider to perform retrofitting on a given device.
Then, we propose novel automated reverse-engineering techniques

able to guide the analyst through the process to the maximum
extent possible. While the immense hardware and software diver-
sity in monolithic firmware-based devices does not allow for a full
automation of the retrofitting process, our techniques automate
tedious, time-consuming steps, which let the analyst focus on the
task of actually mitigating the vulnerability. Specifically, our tech-
niques perform three fundamental steps that are needed to retrofit
firmware: (1) identifying attacker-controlled sources of input, (2)
identifying memory locations suitable for inserting a patch, and (3)
identifying verification mechanisms that prevent the deployment
of a patch.

We combine the aforementioned components into a system,
Shimware, that is able to perform all of these tasks on a monolithic
firmware image and insert a patch payload to mitigate a given
vulnerability. Our system is based on the popular open-source
angr [45] binary analysis framework, which allows for minimizing
effort while the handling of the diverse architectures and binary
formats found in firmware. This system enables a technical analyst
to quickly retrofit firmware to secure critical embedded industrial,
medical, or military systems, when replacement is impossible.

We first evaluate the capabilities of our system to identify the
firmware’s sources of input on a dataset of both synthetic and real-
world firmware images, and show that the system can locate the
IO-related code of a program with a low false-positive rate. Then,
we showcase the effectiveness of our system by retrofitting fixes
for severe security- and safety-critical vulnerabilities in three real-
world devices: a high-end Programmable Logic Controller (PLC)
found in factory and military equipment, a Bluetooth-enabled car-
diac implant monitoring device, and a network-enabled laboratory
power supply. These devices contain vulnerabilities that are not
the result of an implementation error, but a significant defect in the
design of the device itself.

In summary, our contributions are as follows:

• We examine and enumerate the challenges inherent in the
security retrofitting of real-world embedded devices, and
highlight why current approaches are incompatible with
monolithic firmware images.

• We propose novel analyses that can automatically analyze
a firmware image and provide an analyst with the informa-
tion needed to locate sources of attacker-controlled input,
safely insert a patch payload, and ensure that self-checks
preventing such modifications are bypassed.

• We implement these techniques in a system, Shimware, and
show its generality and effectiveness both through synthetic
evaluation, and through the mitigation of severe logic vul-
nerabilities in three real-world, safety-critical devices.

Source code for the analyses in this paper can be found at: https:
//github.com/ucsb-seclab/shimware

2 BACKGROUND

In this section, we clarify aspects related to firmware retrofitting and
describe the challenges that are faced when creating and deploying
a patch for a monolithic firmware sample.

https://github.com/ucsb-seclab/shimware
https://github.com/ucsb-seclab/shimware

Shimware: Toward Practical Security Retrofi�ing for Monolithic Firmware Images RAID '23, October 16�18, 2023, Hong Kong, China

Figure 1: Shimware overview. Our static-symbolic analyses automatically identify attacker controlled sources of input (IOFinder), memory regions where to insert a patch payload
(LocationFinder), and self-checks that prevent �rmware modi�cations (SelfCheckFinder). The Shimmer component then assembles a �nal, modi�ed, �rmware image.

Monolithic Firmware. In contrast to more familiar programs
that run on general-purpose computers, we refer to the purpose-
built, device-speci�c software running on an embedded system as
�rmware. In particular, many small, low-power, or highly-integrated
devices usemonolithic(also calledbare metalor blob) �rmware,
which is characterized by an opaque mass of intermixed code and
data, with no standardized metadata whatsoever describing its
content.

Memory-mapped IO (MMIO). On modern architectures (e.g.,
modern ARM microcontrollers), when the �rmware of a device
wishes to access the various internal peripherals of its system-on-a-
chip (SoC), it uses memory-mapped IO (MMIO). In this scheme, each
peripheral is given a special region in the memory address space;
normal load and store instructions targeting this region address the
peripheral itself, instead of normal memory. Within each periph-
eral's region, multiple memory locations (confusingly calledMMIO
Registers) serve di�erent purposes, such as checking the peripheral's
status, adjusting its con�guration, or sending and receiving data.
While these broad classes represent useful archetypes for MMIO
registers, there is no standard governing the layout or semantics
of these MMIO registers: they are known to vary widely, even be-
tween CPU models in the same product line [22]. Understanding
these registers requires consulting the chip vendor's datasheet, if
available.

2.1 Challenges & Goals
In our threat model, we assume a remote attacker who is able to
exploit an arbitrary vulnerability due to a programming mistake.
This can be a bu�er over�ow bug or an error in the program's logic.
We assume that the root cause of the vulnerability can be mitigated
by introducing or replacing some code (that is, by introducing a
patch). The attacker does not have physical access and can only
attack the device remotely.

In the following, we walk through the process that an analyst
uses to create a patch for an embedded system, and discuss the

challenges inherent in each step and our solutions to these prob-
lems. At �rst glance, the patching process would seem to entail
simply taking the �rmware code, altering some bytes in it to �x the
vulnerability, and running the new version. However, the reality of
embedded systems�and even the best-practices advocated by the
security community�can hinder third-party security retro�tting.
Fortunately, some of these steps can be automated byShimware's
analyses, shown in Figure 1.

Obtaining the Firmware Code. For desktop programs, this step
is trivial; the analyst already has the program, as they are able to
run it. In an embedded system, such as one based on monolithic
�rmware, this is not so simple. Unfortunately, vendors making their
�rmware available is incredibly rare, necessitating the extraction of
�rmware: either from the device itself, or from a mobile or desktop
application designed to update it. Embedded systems routinely
implement hardware counter-measures (e.g., [9, 46, 48]) to make
this challenging for the analyst; bypassing these is an important
prerequisite, but is beyond the scope of this work.

Creating a Patch. A security patch should, by de�nition, have an
e�ect related to the processing of input from an attacker-controlled
source. With no standard sources of input, but numerous hardware
peripherals that can generate input data, the analyst currently has
the tedious task of manually reverse-engineering the �rmware and
hardware to �nd the location in the �rmware where data from
the outside world is accessed. Although we know that the location
and function of MMIO peripherals and registers will vary, we can
assume these locations to be �xed at compile-time, and they can be
found in the program as constant pointers to a peripheral or speci�c
register. However, there are numerous places where hardware is
accessed in ways that do not constitute input; serial ports and
buses are generally more useful for security retro�tting than timers,
clocks, and power controls. Therefore, we proposeIOFinder, an
analysis that locates the locations where externally-controlled data
is accessed by the �rmware.

Inserting a Patch. Once it has been developed, a patch must be
inserted into the �rmware image. On a system whose �rmware

RAID '23, October 16�18, 2023, Hong Kong, China E. Gustafson et al.

contains a normal �lesystem, this could be as simple as replacing
an ELF �le. As we target monolithic �rmware images, we are left
with the more di�cult challenge of �nding a place in the �rmware
to safely add code, without a�ecting the original functionality. Un-
fortunately, we cannot simply insert code next to the source of
attacker-controlled data and shift the remainder of the binary, due
to the known-hard problem of locating and adjusting all pointers,
which would become incorrect due to the shift. Therefore, the most
e�ective option is to insert the additional code in an unused re-
gion of the �rmware sample, and substitute an instruction near the
source of data for a branch to this region [25]. Deciding which re-
gions are safe to use, however, is its own challenge. As a result, our
approach, which we callLocationFinder, �nds either known-unused
space on the device's �ash memory, or known-expendable code
regions.

Deploying a Patch. Most �rmware designs include some sort of
veri�cation mechanism to verify its integrity, either when the sys-
tem boots, or when it is upgraded. Which checks we must deal with
also depends on our �rmware injection vector. We typically have
the choice of using either the �rmware's own update mechanism
to deploy our retro�t or using a hardware injection mechanism
such as JTAG or direct �ash memory access. If we �nd an unpro-
tected JTAG port on a device and the �rmware's digital signatures
are only checked during an over-the-air update, we can bypass
this entirely by �ashing our own �rmware via JTAG. Therefore,
in order to successfully deploy a patch, we must mitigate any self-
check that a�ects either our chosen �rmware installation vector
or the �rmware's boot process. We thus propose an analysis,Self-
CheckFinder, able to identify many forms of self-checks present
in �rmware by looking for operations utilizing the content of the
�rmware itself.

In summary, the state of modern �rmware protections and hard-
ware countermeasures makes it di�cult for an analyst or a tool
to patch and deploy a monolithic �rmware image. We discuss the
con�ict between security best-practices and security retro�tting
in Section 5. In this work, we aim to aid the analyst in retro�tting
�rmware, where possible, by automating the tasks of �nding sources
of attacker-controlled data, safe code injection locations, and code
self-checks.

3 METHODOLOGY
In this section, we propose our automated program analysis ap-
proach to simplify the process of security retro�tting monolithic
embedded �rmware. We identify three time-consuming, previously-
manual tasks needed for �rmware retro�tting, and propose analyses
to automate them: locating the �rmware's IO routines (in binaries
without symbols), �nding space for a payload, and mitigating any
built-in self-checks on the �rmware. The outputs of these analyses
can be combined in a �nal assembly phase to allow an analyst to
successfully inject a retro�t payload into a �rmware image.

Assumptions. As we have mentioned in previous sections, �rmware
retro�tting of real devices is by no means a fully-automated process,
regardless of method; we make a few assumptions about the sce-
nario our system is used in. First, we assume the analyst is able to
extract, and replace, the complete �rmware images, including any
bootloader stages that perform selfchecks; physically extracting

or injecting �rmware is out of scope forShimware. Second, we
assume the analyst knows how the vulnerability being patched is
triggered, such as via a reproducing input. The analyst must know
the architecture and CPU model of the device being patched, either
from a datasheet or physical inspection. We assume that the analyst
can express the patch merely in terms of inspecting device input;
while Shimware's patches are limited only by available space, we
discuss how this approach may in�uence the writing of patches in
Section 5.

Work�ow example. To outline the process of using the tool, and
introduce its components (shown in Figure 1), we will discuss how
an analyst would use our system to remediate a security vulnera-
bility in a hypothetical industrial control system, such as the PLC
discussed in Section 4. While our system is primarily targeted at
facilitating technical analysts in retro�tting �rmware, a su�ciently-
advanced end user could also leverage the system if needed. In this
hypothetical scenario, our analyst works in the public sector, and
aims to �x a security vulnerability in an irreplaceable PLC-driven
machine, which is being actively exploited over the network.

First, the analyst must gain access to the device, gather some
basic facts about it, and obtain its �rmware image. Our analyst
identi�es an unprotected JTAG port on the device, from which they
are able to obtain the �rmware, and identify the ARM CPU's model
number.

Next, the analyst must identify the cause of the vulnerability.
In the event of an actively-exploited �aw, this may be readily ap-
parent, but this must be translated into a �rmware modi�cation.
The analyst notes that a specially-crafted packet is required to trig-
ger the vulnerability, and writes, in C, the payload to detect and
stop it. However, the analyst now needs to �nd the point in the
�rmware at which new packets are read from the device's network
controller. Note that this scenario matches well with prior work on
(hot-)patching [23, 26, 34], which assumes that the �rmware code
and patch are provided.

Using the chip's model number and �rmware image, the analyst
runs theShimwareanalyses. This returns the location of a CRC
check which needs to be replaced (from SelfCheckFinder), an empty
location in the �rmware to put the payload (from LocationFinder),
and a set of locations where IO is performed in the �rmware (from
IOFinder), with one labeled as belonging to the onboard Ethernet
controller. The analyst provides these details to the Shimmer, along
with the payload's source code, and a modi�ed �rmware image is
produced.

Finally, the analyst uses the previously-discovered JTAG port
to deploy the �rmware to the device. Naturally, the analyst now
needs to ensure that their retro�t did not break any functionality.
The analyst uses the PLC's own diagnostic self-tests, as well as
diagnostic data for the entire machine, to ensure that it still meets
its design speci�cations with the retro�t in place.

While this process may not be fully-automated, it avoids the
need for time-consuming, error-prone, manual reverse-engineering
of the �rmware. We demonstrate that this process is reasonable by
applyingShimwareto real-world devices in Section 4.

All of these analyses are implemented on top of theangr program
analysis framework. We discuss implementation details related to
our usage ofangr in Appendix A.

Shimware: Toward Practical Security Retrofi�ing for Monolithic Firmware Images RAID '23, October 16�18, 2023, Hong Kong, China

3.1 IOFinder
The �rst step in usingShimwareto defend a device from attack is
to �gure out where the malicious input is possibly getting into the
�rmware. Since we deal with monolithic �rmware without function
names or library information, and cannot rely on the presence of a
standard library that provides IO functionality, we must reverse-
engineer the binary to �nd where the attacker's input comes from.

As we outline in Section 2, there are two signi�cant complica-
tions with locating IO. First, in most modern architectures, par-
ticularly ARM, we cannot tell statically which instructions in the
binary perform IO operations, as normal load and store instructions
are used to access peripherals. Second, the location, layout, and
semantics of each hardware peripheral varies widely with the CPU
on which the �rmware is designed to run. Even when these ac-
cesses are located, �rmware may perform numerous IO operations
that are of no interest to the analyst, such as setting and clearing
con�guration �ags, or checking status registers.

That said, we are able to leverage a few key insights to make this
task tractable through automation. First, and most importantly, the
location of MMIO-based peripherals is �xed by the hardware and
known at compile-time by the �rmware's compiler, meaning that
the constants representing these peripherals will be observable in
the program. However, these pointers can stored in global memory,
or used as function arguments to the IO-related functions to select
which peripheral to use, leaving us with some indirection to resolve
as well. Finally, while the semantics of each peripheral will vary
between chip models, we can use metadata shipped with debugging
tools to help label these for the analyst, and making their decision
of which data to intercept much easier.

We combine these insights into our IOFinder, which uses a hybrid
static-symbolic approach to locate interesting IO functions. This
analysis performs the following steps.

Compute the Fully-initialized State. A common pattern in �rm-
ware is to store global pointers, structs, or objects representing the
con�gured IO devices in global RAM instead of hard-coding them
into the program. These are often initialized at the beginning of
the �rmware's boot, far from where they are actually used. As a
result, to know which functions in the program perform MMIO
operations, we need to compute the state of the program after these
initializations occur. To simulate this, we created a static analysis
that locates and performs any assignment of a constant pointer
into global memory, and creates a state consisting of the union of
all such initializations. More details can be found in Appendix A.

Find IO Pointers. Leveraging the fully-initialized state, we scan the
binary for references from the code to the architecturally-de�ned
IO region. We also scan global memory locations previously found
to be initialized to an IO pointer. Since any IO activity must include
one of these pointers, the result of this step is the set of all functions
that contain such an access.

Usage Pattern Analysis. Since all of these pointers are usually
not declared or accessed near where the actual IO operation occurs
(e.g., they are passed into another function as an argument), we
utilize symbolic execution to determine how these pointers are
used and locate speci�c IO operations of interest. We chose every
function that de�nes a pointer to an IO memory area, or uses

a global memory location that is initialized to an IO pointer, as
entry points for symbolic execution. Since many IO operations are
inconsequential to the analyst, instead of immediately logging all
IO operations encountered, we apply dynamic taint tracking to
understand how data is used. During the symbolic execution, we
use the following rules:

� When data is read from an MMIO peripheral, we taint the
resulting data.

� When data is written to an MMIO peripheral, we examine
the expression relating to the data to be written. If data
being written was previously also read from MMIO, this is
determined to be aread-modify-writepattern for setting and
clearing �ags, and is discarded.

� When data is written to an MMIO peripheral, if the data is
constant, we ignore it, as this indicates that the data is not a
result of a meaningful behavior from the rest of the program
(e.g., �ags and con�guration).

� When data is written to an MMIO peripheral, and is not
from IO or a constant, it must have come from a function
argument or global memory, and is logged as a source of
output.

� When data is written to non-MMIO memory, we check if the
destination is related to a function argument (e.g., a pointer
to a bu�er) or global memory. If we are writing to such a
location, and the data came from MMIO, this is logged as
it represents a location in which data from MMIO is made
available to the rest of the program.

� When the starting function returns and data from MMIO is
returned by value, this also logged as it represents IO data
being made available to the outside program.

� When data read from MMIO is itself used as a pointer, this is
logged as being a potential source of Direct Memory Access
(DMA), as embedded devices typically handle pointers to the
bu�ers they are operating on.

This produces a set of CPU instructions that perform some kind
of input or output accessible to the surrounding program, along
with the exact MMIO address that was targeted.

External Peripheral Information. The analyst must now decide
which peripheral is relevant to their retro�tting scenario, so that its
data can be used to develop a retro�t payload. Inevitably, �rmware
can access data from peripherals that are uninteresting to the an-
alyst, in the same manner as those that represent external input.
While these are not false positives in the traditional sense, we can
use some information about the microcontroller's hardware to help
the analyst quickly locate peripherals related to their retro�tting
scenario by labeling the names and registers of peripherals accessed
during the symbolic execution step. For example, on the ARM ar-
chitecture, SystemView Debugger �les (SVD) are available in an
online repository [36] for many popular embedded ARM CPUs,
which can be queried by IOFinder to label the results with names
and descriptions.

Listing 2 shows a set of IO-related functions from the
atmel_6lowpan_udp_rx�rmware binary, taken from the dataset
used in [12]. This binary implements a 802.15.4 mesh network
node, with a radio module controlled over the Atmel SAMR21's
SPI bus. During the �rmware's boot, the functiontrx_spi_init()

RAID '23, October 16�18, 2023, Hong Kong, China E. Gustafson et al.

1 // SPI bus connects to the 802.15.4 radio
2 void trx_spi_init () {
3 ...
4 // master is a global , 0 x42001800 is the SPI control ler
5 // Both are propagated into spi_init
6 spi_init (& master , (Sercom *const)0x42001800 , &config) ;
7 ...
8 }
9 status_code __fastcal l spi_init (spi_module *const module , Sercom *

const hw , ...) {
10 // The address 0 x42001800 is stored into &master
11 module ->hw = hw;
12 ...
13 }
14 uint8_t __fastcal l trx_reg_read (uint8_t addr) {
15 spi_master = master .hw;
16 data = spi_master ->SPI .DATA. reg & 0x1FF; // variable data is

tainted
17 ...
18 return data ; // MMIO_READ detected via return value
19 }

Figure 2: Example code from the atmel_6lowpan_udp_rx�rmware from [12]. Without
resolving indirection statically, we cannot see the pointer to the SPI bus being used in
trx_reg_read() . Names of functions and variables provided only for clarity and not known
during analysis.

is called, which sets up the SPI bus selected at compile-time to
control the radio and stores a pointer to it in a global struct. Much
later, when data is received, the �rmware's interrupt handler calls
trx_reg_read() , to obtain data from the radio. If we were to ex-
aminespi_trx_reg_read() without its names, and without any
other context, we would see a function that adds an o�set to a
value in memory, and dereferences it, which may or may not be
an IO operation, depending on what this global memory value
(&master) is. When we compute the fully-initialized state, however,
we notice&master->hwstores a pointer to the SPI bus controller
(0x42001800), and this is added to our fully-initialized state. When
we run our IOFinder using this state, we notice thatspi_master-
->SPI.DATA.regis a pointer to the IO region and taint the variable
data. When the value ofdata is returned, the analysis records this
as a MMIO read operation, since the data from the SPI bus is being
made available to the rest of the program. Since we know that this
sample was built for an Atmel ATSAMR21G18A, we can use the
available SVD �les for this chip to automatically label this access as
coming from theSERCOM4->I2CM_DATAregister, the data register
of one of the chip's combined SPI/I2C/USART interfaces.

3.2 LocationFinder
To retro�t a monolithic �rmware image, we need to �nd a location
in the binary where we can insert the payload. However, as dis-
cussed in Section 2.1, this is not simple. While �nding a safe region
to insert our payload can be shown to be undecidable � proving
that a memory region is not used by a program requires solving the
halting problem � we can make some assumptions to �nd regions
in the program that are highly unlikely to be used.

First, we consider monolithic �rmware images, which come from
non-volatile storage in embedded systems. One characteristic of
this storage is that it is not easily written to; in order to perform a
write operation, a program typically needs to manipulate an MMIO-
based peripheral, erase an entire page of the �ash, and replace it
with a new one. As a result, this means that unlike highly volatile

data residing in RAM, our �rmware image can be assumed to be
relatively static.

Second, we may not always have su�cient free space to insert
our payload; �rmware binaries typically need to �t into relatively
small storage spaces, and are usually compiled with sized-focused
optimizations. Without any guarantees on available insertion space,
we are left to remove something from the binary itself to make room.
This too can be shown to be undecidable; furthermore, existing work
on this area [37,42] relies on having complete, accurate control-�ow
graph information, which is not possible in this setting.

To address these issues, we implement the LocationFinder lever-
aging a series of heuristics to �nd available regions in the binary.

EmptyRegionFinder. This analysis locates regions of the �rmware
that are unused. We locate contiguous regions of repeating values
(typically 0 or 0xFF), and track the largest one found in the binary.
We ignore regions that are statically referenced in the binary, such
as when pointers referring to the region are used in the program.
While we cannot guarantee that a pointer to a nearby location is
not used to access a seemingly-empty region, such as in a loop,
we note that �ash memory, such as found on the devices used in
this work, is written page-at-a-time, and is not an e�cient storage
media for data that needs to be modi�ed often.

SafeFunctionDetector. We locate functions that are safe to remove
from the binary. To sidestep the undecidability of this problem, we
use a very conservative de�nition of the functions we wish to
remove. In some embedded systems, particularly those with safety-
critical roles, functions that test hardware's correct behavior are
occasionally present. An interesting property of such functions is
that these functions appear meaningless from a purely software-
focused perspective. For example, a function that tests memory and
registers might perform actions such as writing a pattern, reading
it back, and making sure the values before and after are equivalent.
We note that in the absence of severe hardware failure, removing
such functions does not, by de�nition, alter the behavior of the
program.

Therefore, we use targeted symbolic execution to identify such
functions. We symbolically execute every function in the binary,
after statically pruning functions that cannot meet this de�nition.
If a function branches based on its input, calls a function, writes
to non-stack variables, or returns a value based on its input, we
cannot guarantee it is safe to remove. In other words, if every path
constraint in the function simpli�es totrue , and the function is void
or returns a constant, we can eliminate it. This narrow de�nition
makes this analysis fast by constraining the amount of execution
needed to make a determination.

The LocationFinder uses both of these analyses, and picks the
largest available region to inject the analyst's payload. The analyst
then uses available testing corpora, such as test programs, internal
self-checks, and companion apps, to verify that these results are
correct.

3.3 SelfCheckFinder
To deploy a retro�tted �rmware image, we have to locate any
places where the �rmware checks its own integrity so that they
can be replaced. De�ning what a self-check is, however, must be
done very carefully. Cryptographic functions are a logical tool for

Shimware: Toward Practical Security Retrofi�ing for Monolithic Firmware Images RAID '23, October 16�18, 2023, Hong Kong, China

implementing self-checks, and previous work [21, 29] proposes
various static and dynamic approaches to �nding cryptographic
functions. There are plenty of self-checks (e.g., the simple addition-
based checksum) that would not be detected by these schemes,
but we would still need to locate them here. Moreover, not all
cryptographic functions are self-checks; we only are interested in
those which actually involve the content of the �rmware. Finally,
modern SoCs include hardware support for CRCs and cryptography,
meaning that a self-check's actual math operations may not appear
in the code at all.

To �nd self-checks, we make two key observations: First, similar
to the IOFinder, our �self-check� must utilize a pointer to the begin-
ning of the region it wishes to check. Theoretically, this is the base
address of the binary, but we note that monolithic �rmware images
that are internally composed of a bootloader and an application
may have a scheme in which one region checks another. Therefore,
we de�ne aself-referenceto be a pointer to the �rmware, which is
page-aligned (on embedded ARM CPUs, aligned to 0x400). Flash
memory on embedded CPUs typically only allow writing an entire
page at a time, and hence veri�cation of the contents occurs along
page boundaries as well.

Second, we know that, with such a pointer, there is some kind of
loop that uses the pointer to access the binary, in order to compute
the self-check. As a result, there is likely a single instruction in this
loop that reads from a large number of locations within the binary.

With these two ideas in mind, the SelfCheckFinder proceeds as
follows.

Compute the Fully-initialized State. Using the same technique
described in Section 3.1, we compute a fully-initialized state, but
this time considering only pointers that are self-references.

Identify Self-references. We prune the list of all functions in the
binary to contain only those that use a self-reference, or use global
memory known to contain a self-reference.

Behavioral Analysis. We employ symbolic execution on the re-
maining functions, and look for places where the same instruction
reads from many locations in the �rmware. Precisely, we consider
a function a self-check if it accesses at least N locations, where N is
also the number of loop iterations allowed during the execution. In
short, if for every new iteration, we get an additional access to the
�rmware, this loop may implement a self-check. We exclude from
this set any function whose loop also writes to N locations; these
include common primitives for string processing such asmemcpy
or memmove.

The analysis produces a list of self-checks, which should be re-
placed in order for the �rmware to boot when modi�ed. The analyst
will determine that this result is correct by actually performing a
retro�tting; the �rmware will not boot if the self-checks are not
removed.

3.4 Shimmer
The �nal step of Shimwareis to assemble all of the information
collected in the previous steps, and the analyst's manually-created
payload (the patch), into a modi�ed image that can be deployed
to the device. While the content of the analyst's payload is out-
side the scope of this work, Shimmer allows for payloads to be
written in C, after which they are compiled to match the target

device's sub-architecture, and size-optimized into a binary blob.
The Shimmer module implements a model of retro�tting in which
the analyst's payload is triggered right after input is read from the
potentially attacker-controlled source (found the the IOFinder). As
in Detours [25], the instruction at the trigger location is moved to
the start of the patch payload, and replaced with a simple jump
instruction pointing at that payload. The only manual task left to
the analyst is to choose which source of input to monitor, from
the list found in the IOFinder analysis. The Shimmer will replace
each detected self-check with a portable checksum routine, and
select the largest detected empty region as the payload's injection
location. The system supports the application of multiple patches,
with the only limitation being a one patch per trigger instruction
limit, and the amount of available space within the binary.

4 EVALUATION
To assess the capabilities of our tool, we �rst perform an eval-
uation of our IOFinder and LocationFinder on a dataset of sam-
ples collected from related work. Then, to evaluate the full sy-
sem end-to-end, we present three case studies where we show
how Shimwaresuccessfully led to security retro�tting of three
real-world, safety-critical devices. We understand that it would be
desirable to expand the evaluation to more than three real-world
targets. However, we do want to note the di�culty of extracting
�rmware from such devices as well as �nding and patching relevant
vulnerabilities. Unfortunately, this di�culty extends to evaluating
the SafeFunctionFinder and SelfCheckFinder subcomponents at
any kind of scale. Both require a set of devices for which we have
the complete �rmware, and a functioning device to properly evalu-
ate, as knowing whether these analyses succeeded requires us to
observe the functioning properly; development board samples used
in related work do not contain these features for our tools to �nd1.
Instead, we evaluate these approaches using the case studies later in
this section. The size of our dataset is consistent with prior work on
�rmware patching: HERA [34] used two vulnerable medical devices
and one (existing) vulnerability in the FreeRTOS operating system;
RapidPatch [23] was evaluated on bugs in FreeRTOS, ZephyrOS
and two libraries (running on �ve common embedded devices); and
DisPatch [26] was applied to two RAV �rmware images (3DR IRIS+
and MantisQ).

4.1 IOFinder Evaluation
First, we explore the performance of the IOFinder analysis, on
�rmware samples obtained from previous work.

We can use development boards and open-source �rmware sam-
ples, for which source code and symbols are available, to serve
as ground truth for the IOFinder analysis. To build our dataset,
we obtained 17 samples from related work [12, 20]. We used all
available samples that were built as �bare-metal;� we discuss chal-
lenges with mbedOS, Arduino, and other library-OS frameworks
in Section 5. These samples represent �ve microcontroller models,
from three vendors, with widely-varying peripheral and software
driver implementations, and a diverse set of applications, including
a PLC, CNC mill, and mesh network nodes. Using these samples,

1Note that we did run LocationFinder and SelfCheckFinder on these samples, and they
correctly produced no output.

RAID '23, October 16�18, 2023, Hong Kong, China E. Gustafson et al.

and the hardware for which they were built, we enumerated the set
of peripherals that actively communicate with the outside world,
as these are the peripherals an analyst would potentially consider
as a source of data for a security retro�t. This process was manual,
to account for dead code, and to consider only those peripherals
that actually transmit and receive data externally. This speci�cally
includes peripherals such as serial ports, buses, and sensors, and ex-
cludes timers, clocks, power control, and other common peripherals
that do not constitute communication.

Table 1 shows our results; the MCU column indicates which mi-
crocontroller model the �rmware was designed for, and the �Useful
Peripherals� column lists the peripherals determined to be useful
for retro�tting. The �Tot. No. Functions� column shows the number
of functions in the binary, as identi�ed byangr's static analyses,
while �No. Candidate Functions� refers to how many of those were
selected for further investigation by our static heuristics. During
the dynamic phase of our analysis, the symbolic execution gener-
ated many load and store operations from the IO region (�Tot. No.
IO Ops� column), of which a much smaller number (�No. Filtered IO
Ops.�) survived our heuristics and are considered potentially useful
to the analyst. Finally, the �No. Useful IO Ops.� column shows how
many of those operations �agged by the analysis were related to
the set of useful peripherals.

With regards to our static analysis phase, the results show that
we are able to e�ectively focus our analysis on the part of the pro-
gram containing IO, while our computation of the fully-initialized
state allows us to draw proper correlations between IO initialization
functions and later uses.

During the dynamic phase, the results show that in many cases
we are able to signi�cantly reduce the amount of IO the analyst
would need to consider. However, we note that the di�erence be-
tween the useful set of peripheral accesses and the set of �ltered
IO operations reported to the analyst does not constitute false posi-
tives in the conventional sense. All of the reported IO operations
are indeed valid IO operations, and are useful for various reverse-
engineering tasks. Even peripherals that are not important for the
task of shimming, such as clocks and timers, can have their data
stored and made available to the rest of the program, and would be
reported as such. IOFinder automatically applies external labeling
information from thecmsis-svd [36] database, which labels each
peripheral register for all supported CPUs, allowing an analyst
to quickly locate any peripheral of interest in the output. Actual
false positives could theoretically result when the underlying static
analyses are unable to determine the correct calling convention of
functions (e.g.,angr determines a function returns a value to the
caller, when it does not), although we did not notice any such cases
in the output of this experiment. The analysis does, however, have
a few false negatives (�No. Missed IO Ops.� column). These cases
all stem from an inability to determine a correlation between an
IO-related initialization function and an actual IO function, due to
the use of nested structs and C++ objects to store the IO con�gu-
ration. To test this, we implemented a mode for IOFinder where
the analyst can manually designate IO-related structs, and we were
then able to locate all of the missing peripherals. Future advances
in binary type recovery related to structs will help us determine
this information automatically.

4.2 LocationFinder Evaluation
As mentioned previously, we require real �rmware to assess the abil-
ity of LocationFinder to identify �empty� space that can be used to
accommodate the code for the patch. Hence, we cannot use ELF �les;
they do not contain empty space, since this space is created when
the device is �ashed. Fortunately, we were recently able to obtain
the dataset of monolithic �rmware from the FirmXRay paper [53].
We randomly selected 50 samples and ran the LocationFinder to
get a better understanding of its behavior. It detected an average of
375 bytes of available patching space. This actually excludes two
outliers with a massive 65K and 75K of empty space, which would
have otherwise signi�cantly increased the average. 375 bytes is
more than enough to accommodate most patches (including the
ones we created for our case studies). We found space in all 50
samples, although the smallest region consisted of 28 bytes in 3 of
the samples. While we cannot completely verify the usability of
space without the hardware or ground-truth data, manual analysis
con�rmed that the LocationFinder is able to �nd meaningful space
in real-world �rmware.

4.3 Case Study: Power Supply
We usedShimwareto retro�t an RD DPS5015 [7] lab power supply
unit (Figure 3).

Figure 3: RD DPS5015 power supply, opened [7]

This unit allows an engineer in a scienti�c or industrial setting to
adjust the voltage and current available on the device's front panel
connectors, to power and test devices during development, or for lab
experiments. However, like many modern lab power supplies, it also
has communications capabilities, to allow for remote automation,
over RS485, Bluetooth, or WiFi, depending on the con�guration.
The unit contains an STMicro STM32F100 ARM Cortex-M3-based
CPU, and accesses all remote communications mechanisms over a
serial port.

Unfortunately, the legitimate functionality of this communica-
tion mechanism can allow anyone with network or radio proximity
to the device to remove all safety limits, and adjust the voltage or
current to any value, causing damage or destruction of the device-
under-test, and potentially of the unit itself [18]. While simply
disabling network connectivity is one way to make this device safe,
we would instead like to add the functionality that the voltage

Shimware: Toward Practical Security Retrofi�ing for Monolithic Firmware Images RAID '23, October 16�18, 2023, Hong Kong, China

Table 1: IOFinder Evaluation Results. For each of the 17 samples in our dataset, we report the MCU model, the useful peripherals, and the results of our analysis in terms of reported IO
functions and operations. Our �ltered IO operations contain all the useful ones.

Sample MCU Useful Tot. No. No. Candidate Tot. No. No. Filtered No. Useful No. Missed Actual Useful
[Dataset] Model Peripherals Functions. Functions IO Ops. IO Ops. IO Ops. IO Ops. Peripherals

atmel_6lowpan_udp_tx [12] ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2„ ETH(SPI),I2C
atmel_6lowpan_udp_rx [12] ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2„ ETH(SPI),I2C
p2im_cnc [20] STM32F429 UART 331 121 110 32 3 0 UART
p2im_drone [20] STM32F103 UART,I2C 230 71 39 38 18 0 UART,I2C
p2im_robot [20] STM32F103 I2C,UART 205 41 59 22 15 0 I2C,UART
p2im_soldering_iron [20] STM32F103 DMA(ADC),I2C(IMU),I2C(OLED) 371 99 107 40 19 4„ DMA(ADC),I2C(IMU)
samr21_http [12] ATSAMR21G18A UART,ETH(SPI) 324 68 61 26 8 0 UART,ETH(SPI)
samr21_uart_polling [12] ATSAMR21G18A UART 44 35 28 16 3 0 UART
samr21_fatfs_usd [12] ATSAMR21G18A SPI(SDIO),UART 207 189 51 25 13 0 SPI(SDIO),UART
st-plc [12] STM32F401 UART(Wi�),SPI,ADC 981 278 142 49 11 0 UART(Wi�),SPI,ADC
stm32_tcp_echo_client [12] STM32F469 ETH,I2C 477 63 86 25 19 0 ETH,I2C
stm32_tcp_echo_server [12] STM32F469 ETH,I2C 478 62 80 26 19 0 ETH,I2C
stm32_udp_echo_client [12] STM32F469 ETH,I2C 468 58 86 25 19 0 ETH,I2C
stm32_udp_echo_server [12] STM32F469 ETH,I2C 463 58 80 25 19 0 ETH,I2C
nxp_uart_polling [12] MK64F12 UART 108 33 36 11 4 0 UART
stm32_fatfs_usd [12] STM32F469 I2C,SDIO 276 42 81 33 26 0 I2C,SDIO
nxp_fatfs_usd [12] MK64F12 SDHC,UART 240 59 64 17 6 0 SDHC,UART

„ : We managed to cover these false negatives by providing our system with additional knowledge about the employed data structures (Section 4.1).

limits speci�ed by the operator on the physical device represent a
maximum of what the remote automation can set.

We obtained the popular OpenDPS �rmware used with this de-
vice [4] by installing it onto our unit, and then dumping it via
the device's exposed SWD debugging port. This yielded a mono-
lithic �rmware image, in which angr's CFG recovery detected 420
functions. The IOFinder analysis detected functions containing IO
references, out of which 109 actually performed interesting IO when
executed. Among these was a clearly-labeled access to the USART1
data register (USART1->DR), which would serve as a source of in-
put data. LocationFinder discovered a region of 872 bytes between
what appears to be the bootloader and the primary application of
the �rmware. The SelfCheckFinder located and replaced exactly
one self-check: the use of CRC16 to validate the �rmware image.

We were successfully able to retro�t our voltage-limiting inside
the �rmware, and deployed it over the SWD debugging port. To
test the correct functionality of the device, we used the device's
front panel to adjust the voltage and current settings, and manually
triggered each of the device's con�guration menu items. We also
tried the remote communication features, and veri�ed that the only
di�erence was that we were unable to set the maximum voltage
higher than the one set on the front panel.

4.4 Case Study: PLC
We employedShimwareto retro�t an Allen-Bradley ControlLogix
1756 PLC [44]. This high-end, but end-of-life, product is suitable
for large automation tasks, including factories and military applica-
tions. The system comes in the form of a chassis with at least one
CPU card, and numerous IO devices depending on the application.
Our con�guration contains the L64 CPU card, an analog output card,
and an Ethernet card. The CPU contains a custom ARM7TDMI-S
derivative CPU, with numerous custom ASIC components control-
ling network and communications features, presenting a unique
challenge for our approach. While we do not know the MMIO lay-
out of the main CPU, we know we are looking for input from the
chassis backplane, a proprietary high-speed bus, which is therefore
likely to be using some form of DMA.

Unfortunately, as with many PLCs, this unit su�ers from a similar
issue as the power supply mentioned above: anyone on the same

network can control it completely by default. While the device
can be con�gured to not accept any network tra�c (e.g., via the
front keyswitch) this dramatically diminishes the usefulness of the
device in a modern automation setting. This device is also well
past its end of support, and will no longer receive updates from the
manufacturer. To this end, we wish to add built-in safeguards to not
allow an attacker to adjust the parameters of a running ladder-logic
program outside of safe parameters.

We obtained the 2MB �rmware image through the manufac-
turer's website. CFG recovery yielded 8,937 functions in the binary.
Of these, 593 had IO pointers. When executed, IOFinder detected
340 unique IO operations. Since the CPU is custom, we had to per-
form the additional step of reverse-engineering the CPU's MMIO
layout, but were helped by our analyses in doing so, as we could
focus our e�orts on those portions of the code detected by IOFinder.
Since the amount of detected IO locations is numerous, and we
estimate that this result is legitimate, we focused on those locations
which performed DMA-based operations. This only consisted of 31
IO-related instructions, representing �ve unique MMIO registers.
All of these appeared to be related to a peripheral at 0x40000000,
which turned out to be the DMA controller for the backplane.

SelfCheckFinder detected two self-checks, a checksum and CRC,
calculated on the whole �rmware image; the Shimmer replaced
these both with a checksum, allowing the �rmware to boot.

The LocationFinder's results for this device were unusual, there
were very few empty regions, all of a small size. This is because
this �rmware explicitly checked many of its empty regions to en-
sure that they were indeed empty, therefore generating memory
accesses that led our analysis to discard such regions. However, Lo-
cationFinder was able to locate a very large (5.7k) function, which
it could prove was safe to remove, giving us ample room for a pay-
load. This function appears to implement a test of the system's ALU
and registers, such as performing math, and storing and recalling
the results. From a mathematical perspective, this extremely large
function, which seems to consist of large, unrolled, loops, entirely
simpli�es away when executed symbolically. The function also
returns no value, instead calling an assert-fail function if an error
occurs. In our testing, simply removing this function was su�cient,
and produced no noticeable change in the program's behavior.

	Abstract
	1 Introduction
	2 Background
	2.1 Challenges & Goals

	3 Methodology
	3.1 IOFinder
	3.2 LocationFinder
	3.3 SelfCheckFinder
	3.4 Shimmer

	4 Evaluation
	4.1 IOFinder Evaluation
	4.2 LocationFinder Evaluation
	4.3 Case Study: Power Supply
	4.4 Case Study: PLC
	4.5 Case Study: Pacemaker Monitor

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix

