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3.1 Chernoff Bounds

3.1.1 Markov and Chebyshev Inequality

For a Random Variable X, we denote E[X] = µ and Var(X) = σ2.

Lemma 3.1 (Markov Inequality) Let X be a non-negative random variable, and a > 0, then

Pr(X > a) ≤ µ

a

Lemma 3.2 (Chebyshev Inequality) Let X be a non-negative random variable for which Var(X) exists,
then for all k > 0

Pr(|X − µ| > kσ) ≤ 1

k2

A more general form being,

r ≥ 0Pr(|x− µ| > r) ≤ Var(X)

r2

Proof: Note that Y = (X − µ)2 is a non-negative random variable, we can then apply the Markov
Inequality to Y .

Note that Chebyshev does not always give a good bound. We give an example. Let

Xi =

{
1 with probability 1

2

0 with probability 1
2

Let X =
∑n
i=1Xi, then from previous lecture we know E[X] = n

2 and Var(X) = n
4 , with σ =

√
n
2 .

Note for n = 1000, X = Bin(1000, 12 ) by the Chebyshev Inequality we have,

Pr(X ≥ 750) =
1

2
Pr(|X − 500| ≥ 250) ≤ 1

2

250

2502
= 0.002

We can calcultate this probability directly,

Pr(X ≥ 70) =
1000∑
i=750

(
1000

i

)
2−1000 ≈ 60× 10−58

Note that the Chebyshev Inequality is significantly off.
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3.1.2 Chernoff “argument” for Bin(n, 1
2
)

Note that if X = Bin(n, 12 ), using Chernoff Bounds we can obtain bounds,

Pr(X ≥ µ+ t

√
n

2
) ≤ e−t

2/2(∗)

Pr(X ≤ µ− t
√
n

2
) ≤ e−t

2/2

We first argue (*) to show the inuition behind the general Chernoff Bound.
Proof: We first want to transform X = X1 + · · ·+Xn such that it has mean 0. Let

Yi = −1 + 2Xi =

{
1 with probability 1

2

−1 with probability 1
2

Note then that E[Y ] = 0. Since Var(Yi) = 1, this implies Var(Y ) = n.
Note that Y1 + · · ·Yk can be interpreted as a unbiased random walk on the integers starting at 0.

The original bound we wanted was X ≥ n
2 +t

√
n
2 , which is equivalent to Y ≥ −n+2(n2 +2(n2 +t

√
n
2 ) = t

√
n.

When we are far away from 0, adding 1 can be approximated by instead multiplying by (1 + λ) for some
tiny λ. If λ is small enough then (1 + λ)(1 + λ) = 1 + 2λ+ λ2 ≈ 1 + 2λ.

Let Zi = (1 + λ)Yi where we will choose λ later. Note

Zi =

{
1 + λ with probability 1

2
1

1+λ with probability 1
2

Note then that Z = Z1 · Z2 · · ·Zn = (1 + λ)Y1 ...(1 + λ)Yn = (1 + λ)Y .
What we have done is transformed the random walk model, where if the random walk was at u, then in

the new model the random walk would be at (1 + λ)u. Since Z is now a non-negative random variable, we
can now utilize the Markov Inequality. Since Yi are pairwise independent, so are the Zi. It follows,

Pr(X ≥ n

2
+ t

√
n

2
) = Pr(Y ≥ t

√
n)

= Pr(Z ≥ (1 + λ)t
√
n

For example, by a smart choice of lambda and Taylor Series approximation, 1 + λ ≈ e
1√
n .

Pr(Z ≥ (1 + λ)100
√
n) = Pr(Z ≥ e100)

Note that e100 is a big number, thus Markov Inequality would give a good bound. To make things
rigorous,

E[Zi] =
1

2
(1 + λ) +

1

2
(

1

1 + λ

=
1

2
(
λ2 + 2λ+ 2

1 + λ
)

= 1 +
λ2

2 + 2λ

≤ 1 +
λ2

2
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It follows that E[Z] ≤ (1 + λ2

2 )n. Note then that for λ = 1√
n

,

Pr(Z ≥ (1 + λ)t
√
n) ≤ E[Z]

(1 + λ)t
√
n

=
(1 + λ2

2 )n

(1 + λ)t
√
n

=
(1 + t2

2n )n

(1 + t√
n

)t
√
n

≤e
t2

2

et2
= e

−t2

2 .

where we are cheating on the denominator of ≤ inequality.

3.1.3 Chernoff Inequality

Now that we have given an intuition on the proof we can move to the rigorous proof.
Let Xi, · · · , Xn be Independent Bernoulli R.V.s where 0 ≤ Xi ≤ 1 Let X =

∑n
i=1Xi and µ = E[X] For

all 0 < ε ≤ 1

Pr(X ≥ µ(1 + ε)) ≤ e−µ·(ε
2/3)

Pr(X ≤ µ(1− ε)) ≤ e−µ·(ε
2/2)

We want to know :

Pr(X ≥ µ(1 + ε))

Note as X is non-negative, we can choose an arbitrary t, then we exponentiate both sides and raise both
sides to the power t for some arbitrary t,

Pr(eX ≥ eµ(1+ε))
Pr(etX ≥ etµ(1+ε))

We know the applying Markov’s inequality:

Pr(etX ≥ etµ(1+ε)) ≤ E[etX ]

etµ(1+ε)
(A)

Because the Xi = Bernoulli(pi) and 1 + x ≤ ex then

E[etXi ] = pie
t + (1− pi) = 1 + pi(e

t − 1) ≤ epi(e
t−1)

Then the moment generating function:

E[etX ] ≤
n∏
i=1

epi(e
t−1) = eµ(e

t−1) (B)

Let’s substitute B in A:
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Pr(etX ≥ etµ(1+ε)) ≤ (
eε−1

et(1+ε)
)µ = (eε−(1+ε) log(1+ε))µ (C)

In the last equality we plugged in t = ln(1 + ε)to minimize.
Taylor expansion for : log(1 + ε) = ε− ε2/2 + ε3/3 + · · · Then: (1 + ε) log(1 + ε) = ε− ε2/2 + ε2 + ε3/3−

ε3/2 + · · · ≥ ε+ ε2/2− ε3/6 = ε+ ε2/3 Using this in C:

(
eε

(1 + ε)1+ε
)µ ≤ eε

2/3µ
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