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3.1 Chernoff Bounds

3.1.1 Markov and Chebyshev Inequality
For a Random Variable X, we denote E[X] = p and Var(X) = o2.

Lemma 3.1 (Markov Inequality) Let X be a non-negative random variable, and a > 0, then

I

a

Pr(X >a) <

Lemma 3.2 (Chebyshev Inequality) Let X be a non-negative random variable for which Var(X) exists,
then for all k > 0

1
Pr(|X — p| > ko) < =
A more general form being,
Var(X
r>0Pr(|lz —pl >r) < %

Proof: Note that Y = (X — p)? is a non-negative random variable, we can then apply the Markov
Inequality to Y. ]
Note that Chebyshev does not always give a good bound. We give an example. Let

] 1 with probability
"] 0 with probability

[SITER NI

Let X = 3", Xj, then from previous lecture we know E[X] = % and Var(X) = ¥, with o = @
Note for n = 1000, X = Bin(1000, 1) by the Chebyshev Inequality we have,

250

1 1
Pr(X > =_-Pr(|X - > 250) < = = 0.002
r(X > 750) 5 r(] 500] > 250) < 5 2502 0.00
We can calcultate this probability directly,
1000
1
Pr(X >70)= ) < 0,00> 271000 ~ 60 x 10758

=750 N

Note that the Chebyshev Inequality is significantly off.
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3.1.2 Chernoff “argument” for Bin(n, 3)

Note that if X = Bin(n, %), using Chernoff Bounds we can obtain bounds,

Pr(X > 4 +t?) < e P12 ()
Pr(X <pu —t?) < et

We first argue (*) to show the inuition behind the general Chernoff Bound.
Proof: We first want to transform X = X; + --- + X, such that it has mean 0. Let

1 with probability %

—1 with probability 5

Note then that E[Y] = 0. Since Var(Y;) = 1, this implies Var(Y') = n.

Note that Y; + - - - Y), can be interpreted as a unbiased random walk on the integers starting at 0.

The original bound we wanted was X > & +t@, which is equivalent to Y > —n+2(% +2(%+t@) =ty/n.

When we are far away from 0, adding 1 can be approximated by instead multiplying by (1 + A) for some
tiny A. If X is small enough then (1 + A)(1+ ) =1+ 2\ + A2 =~ 1+ 2).

Let Z; = (1 + \)Y" where we will choose \ later. Note

7 — 1+ A with probability 1
14%\ with probability %

Note then that Z = Z; - Zy -+ Z, = (1 + A1 (1+ )Y = (1 + MY,

What we have done is transformed the random walk model, where if the random walk was at u, then in
the new model the random walk would be at (1 + A\)*. Since Z is now a non-negative random variable, we
can now utilize the Markov Inequality. Since Y; are pairwise independent, so are the Z;. It follows,

Pr(X > g + t?) = Pr(Y > ty/n)

=Pr(Z > (1+N"V"

1
For example, by a smart choice of lambda and Taylor Series approximation, 1 + A ~ evn.

Pr(Z > (14 X)) = Pr(Z > ')

Note that €'%° is a big number, thus Markov Inequality would give a good bound. To make things
rigorous,

1 1, 1
E[Z]==(1 Z(——
[2i] = 5( +A)+2(1+A
1(A2+2,\+2)
2 1+ A

)\2
+2+2>\

2

A
<14+ —
_+2
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It follows that E[Z] < (1 + )‘2—2)". Note then that for A = ﬁ,

r ty/n E[Z]
Pr(Z > (1+)V") < SN

(14 %)"

(1+A)tve

1+ L)
_t \ty/n
1+ Z)vr

ez —t2
—s =€ 2 .

where we are cheating on the denominator of < inequality. [ |

3.1.3 Chernoff Inequality

Now that we have given an intuition on the proof we can move to the rigorous proof.
Let X;,---, X, be Independent Bernoulli R.V.s where 0 < X; <1 Let X =Y " | X; and y = E[X] For
all0<e<1

Pr(X > p(l+¢)) < e (€?/3)
Pr(X < pu(l —e)) < e #(E/2)
We want to know :
Pr(X > (1 +¢))
Note as X is non-negative, we can choose an arbitrary t, then we exponentiate both sides and raise both

sides to the power ¢ for some arbitrary t,

Pr(eX > 6,u(1+e))

Pr(etX > et“(1+5))

We know the applying Markov’s inequality:

E[etX}
tX tp(l+e)
Pr(e'* >e ) < ) (A)
Because the X; = Bernoulli(p;) and 1+ z < e* then
E[e"™] = pie' + (1 —p;) = 1+pi(e' —1) < en( =D

Then the moment generating function:

E[etX] < Hem(et—l) — ehle'=1) (B)

i=1

Let’s substitute B in A:
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6571

Pr(etX > et#(1+€)) < (m)

B— (66*(1%) log(1+€))u (Q)

In the last equality we plugged in ¢ = In(1 + ¢)to minimize.

Taylor expansion for : log(1+¢) =e—¢e2/2+¢3/3+--- Then: (1+¢)log(l+¢) =ec—e?/2+e2+e3/3—
e3/2+ -+ >¢e+¢e2/2—e3/6 =+ ¢?/3 Using this in C:
e 2/3

o< ot h
((1 +€)1+5> =
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