CS 7535 Markov Chain Monte Carlo Methods	Fall 2017
Lecture 15: October 17	
Lecturer: Prof. Eric Vigoda	Scribes: Beishen Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Ising Model

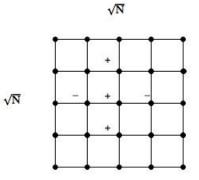


Figure 15.1: Ising model example

The studied instance is $\sqrt{n} * \sqrt{n}$ box of two-dimensional grid \mathbb{Z}^2 . For each site of the lattice, it only takes +1 or -1. So the configuration is $\sigma: V \to \{+1, -1\}$ and $\Omega = \{+1, -1\}^V$.

For $\sigma \in \Omega$, energy is calculated by using the Hamiltonian

$$H(\sigma) = -\sum_{(i,j)\in E} (\sigma_i, \sigma_j) = -(\#monoedges - \#antiedges)$$
(15.1)

Boltzmann or Gibbs Distribution is

$$\mu(\sigma) = \frac{e^{-\beta H(\sigma)}}{Z} \tag{15.2}$$

where $Z = \sum_{\sigma \in \Omega} e^{-\beta H(\sigma)}$ is a partition function and $\beta = \frac{1}{KT}$ is inverse temperature ($\beta > 0$). This is the ferromagentic Ising model, for antiferromagentic, it has $\beta < 0$.

So most likely configurations are all + or all or -. But there are a lot more configurations with half + and half -. In these cases, energy or entropy, which domains? It depends on β .

i) $\beta = 0$ (temperature is infinite): every configuration is equally likely so μ is dominated by balanced configurations (half + and half -), which has min energy and max entropy.

ii) $\beta = \infty$ (temperature is zero): all + and all - are the only two configurations with positive probability, which has max energy and min entropy.

iii) Then we discuss the case when $0 < \beta < \infty$

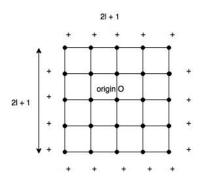


Figure 15.2: Boundary condition example

For $\sqrt{n} * \sqrt{n}$ box, ∂V are the vertices on the internal boundary of V. Boundary condition is assigned $\tau : \partial V \to \{+1, -1\}$. Then $\Omega_{\tau} = \{\sigma \in \Omega : \sigma(\partial V) = \tau(\partial V)\} =$ configurations on V which are consistent with τ on ∂V .

For $\sigma \in \Omega_{\tau}$

$$\mu_{\tau}(\sigma) = \frac{e^{-\beta H(\sigma)}}{Z_{\tau}} \tag{15.3}$$

where $Z_{\tau} = \sum_{\sigma \in \Omega_{\tau}} (e^{-\beta H(\sigma)})$

Let O = origin be the center of (2l+1) * (2l+1) box, $l = \Theta(\sqrt{n})$. Let

$$P_{\tau}^{l} = P_{r}(\mu_{\tau}(\sigma(O) = +)) = P_{r}(origin \ is \ + \ for \ boundary \ condition \ \tau)$$
(15.4)

 P_{τ}^{l} is maximized for $\tau = all+$, denote as P_{+}^{l} and is minimized for $\tau = all-$, denote as P_{-}^{l} . When l is finite, it's clearly that $P_{+}^{l} \neq P_{-}^{l}$, and actually $P_{+}^{l} > \frac{1}{2} > P_{-}^{l}$.

What about for $l \to \infty$?

Is $\lim_{l\to\infty} P^l_+ \stackrel{?}{=} \lim_{l\to\infty} P^l_-$

15.1.1 Phase Transition

 $\exists \beta_c,$

$$\begin{aligned} \forall \leq \beta_c, \ P^l_+ = P^l_-(disordered) \\ \forall > \beta_c, \ P^l_+ \neq P^l_-(long - range \ order) \end{aligned}$$

where,

$$\beta_c(q) = \frac{q-1}{q} log(1+\sqrt{q}) \tag{15.5}$$

when q = 2, it's Ising model

when q > 2, $\Omega = 1, 2, ..., Q^V$, it's Potts Model

what about when $\beta = \beta_c$? It actually depends on q as the figures 15.3 and 15.4.

For detail, please refer Onsager[1] (q = 2) and Beffara , Duminil-Copin '12[2] (q > 2)

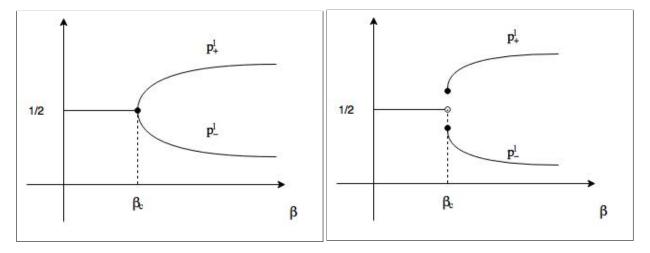


Figure 15.3: 2nd order phase transition for $\mathbf{q}\leqslant 4$

Figure 15.4: 1st order phase transition for q > 4

15.1.2 Glauber Dynamics/ Gibbs Sampler

The goal is to sample from distribution μ to get Markov chain.

Transitions are made as follows:

From $X_t \in \Omega$ (no boundary condition)

- 1. Choose $\nu \in V$ v.a.r.
- 2. For all $\omega \neq \nu$, set $X_{t+1}(\omega) = X_t(\omega)$.
- 3. Choose $X_{t+1}(\nu) = \mu(\sigma(\nu)|\sigma(\omega) = X_{t+1}(\omega)$ for all $\omega \neq \nu$)

In other words,

$$X_{t+1}(\nu) = \begin{cases} + & \frac{e^{\beta(p-n)}}{e^{\beta(p-n)} + e^{\beta(p-n)}} \\ - & 1 - \frac{e^{\beta(p-n)}}{e^{\beta(p-n)} + e^{\beta(p-n)}} \end{cases} = \begin{cases} + & \frac{1}{1 + e^{2\beta(n-p)}} \\ - & \frac{e^{2\beta(n-p)}}{1 + e^{2\beta(n-p)}} \end{cases}$$
(15.6)

where p is number of + neighbors and n is number of - neighbors.

$$\begin{split} \forall \beta < \beta_c \colon T_{mix} &= (nlogn) \\ \forall \beta > \beta_c \colon T_{mix} = e^{\Omega(\sqrt{n})} \\ \text{For } q \leqslant 3, \text{ when } \beta = \beta_c \colon T_{mix} = ploy(n) \\ \text{For } q \geqslant 5, \text{ when } \beta = \beta_c \colon T_{mix} = e^{\Omega(\sqrt{n})} \\ \text{How might we get around "torpid" mixing for } \beta > \beta_c ? \end{split}$$

There are two approaches: Simulated annealing and Metropolis-coupled Markov Chain Monte Carlo.

15.1.3 Simulated Annealing

Idea: physical annealing is the process that heat a material above recrystallization and then slowly cooling. To get the desired β , start from $\beta_0 = 0$ and the sequence of inverse temperatures is $\beta_0 < \beta_1 < ... < \beta_N = \beta$

For $i = 0 \rightarrow N$, repeat the following procedure:

- 1. Run Glauber dynamics for a large number of steps T at β_i .
- 2. Let X_T^i be the final step.
- 3. Let $X_o^{i+1} = X_T^i$ be the initial step for β_{i+1}

Naive cooling schedule: $\beta_{i+1} = \beta_i (1 + \frac{1}{n})$

15.1.4 Metropolis-coupled Markov Chain Monte Carlo

 MC^3 runs N chains simultaneously, which contains one cold chain (the one that samples) and several heated chains. For the *i*th chain, it runs at β_i temperature.

At step t, configuration is $(x_t^0, x_t^1, ..., x_t^N)$

i) With probability $\frac{1}{2}$:

all N+1 chains do Glauber move (or choose $i \in \{0, 1, ...N\}$ v.a.r, do a Glauber step for X_t^i , others stay the same)

- ii) With probability $\frac{1}{2}$:
 - 1. choose $i \in \{0, 1, ...N\}$.
 - 2. $X' = (x_t^0, ..., x_t^{i-1}, x_t^{i+1}, x_t^i, x_t^{i+2}, ..., x_t^N)$, which swap states i and i+1.
 - 3. Set $X_{t+1} = X'$ with probability $min\{1, \frac{\omega_{\beta i}(X_t(i+1))\omega_{\beta i+1}(X_t(i))}{\omega_{\beta i}(X_t(i))\omega_{\beta i+1}(X_t(i+1))}\}$

References

- [1] ONSAGER, LARS, "Crystal statistics. I. A two-dimensional model with an order-disorder transition" *Physical Review* **65.3-4** (1994), 117.
- [2] BEFFARA, VINCENT, AND HUGO DUMINIL-COPIN, "The self-dual point of the two-dimensional random-cluster model is critical for q 1" *Probability Theory and Related Fields* **153.3** (2012), 511-542.