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15.1 Ising Model

Figure 15.1: Ising model example

The studied instance is
√
n ∗
√
n box of two-dimensional grid Z2. For each site of the lattice, it only takes

+1 or -1. So the configuration is σ : V → {+1,−1} and Ω = {+1,−1}V .

For σ ∈ Ω, energy is calculated by using the Hamiltonian

H(σ) = −
∑

(i,j)∈E
(σi, σj) = −(#monoedges−#antiedges) (15.1)

Boltzmann or Gibbs Distribution is

µ(σ) =
e−βH(σ)

Z
(15.2)

where Z =
∑
σ∈Ω e

−βH(σ) is a partition function and β = 1
KT is inverse temperature (β > 0). This is the

ferromagentic Ising model, for antiferromagentic, it has β < 0.

So most likely configurations are all + or all or -. But there are a lot more configurations with half + and
half -. In these cases, energy or entropy, which domains? It depends on β.

i) β = 0 (temperature is infinite): every configuration is equally likely so µ is dominated by balanced
configurations (half + and half -), which has min energy and max entropy.

ii) β = ∞ (temperature is zero): all + and all - are the only two configurations with positive probability,
which has max energy and min entropy.

iii) Then we discuss the case when 0 < β <∞
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Figure 15.2: Boundary condition example

For
√
n ∗
√
n box, ∂V are the vertices on the internal boundary of V. Boundary condition is assigned

τ : ∂V → {+1,−1}. Then Ωτ = {σ ∈ Ω : σ(∂V ) = τ(∂V )}= configurations on V which are consistent with
τ on ∂V .

For σ ∈ Ωτ

µτ (σ) =
e−βH(σ)

Zτ
(15.3)

where Zτ =
∑
σ∈Ωτ

(e−βH(σ))

Let O = origin be the center of (2l + 1) ∗ (2l + 1) box, l = Θ(
√
n). Let

P lτ = Pr(µτ (σ(O) = +)) = Pr(origin is + for boundary condition τ) (15.4)

P lτ is maximized for τ = all+, denote as P l+ and is minimized for τ = all−, denote as P l−

When l is finite, it’s clearly that P l+ 6= P l−, and actually P l+ > 1
2 > P l−.

What about for l→∞?

Is liml→∞ P l+
?
= liml→∞ P l−

15.1.1 Phase Transition

∃βc,

∀ 6 βc, P
l
+ = P l−(disordered)

∀ > βc, P
l
+ 6= P l−(long − range order)

where,

βc(q) =
q − 1

q
log(1 +

√
q) (15.5)

when q = 2, it’s Ising model

when q > 2, Ω = 1, 2, , .., QV , it’s Potts Model

what about when β = βc ? It actually depends on q as the figures 15.3 and 15.4.

For detail, please refer Onsager[1] (q = 2) and Beffara , Duminil-Copin ’12[2] (q > 2)
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Figure 15.3: 2nd order phase transition for q 6 4 Figure 15.4: 1st order phase transition for q > 4

15.1.2 Glauber Dynamics/ Gibbs Sampler

The goal is to sample from distribution µ to get Markov chain.

Transitions are made as follows:

From Xt ∈ Ω (no boundary condition)

1. Choose ν ∈ V v.a.r.

2. For all ω 6= ν, set Xt+1(ω) = Xt(ω).

3. Choose Xt+1(ν) = µ(σ(ν)|σ(ω) = Xt+1(ω) for all ω 6= ν)

In other words,

Xt+1(ν) =

{
+ eβ(p−n)

eβ(p−n)+eβ(p−n)

− 1− eβ(p−n)

eβ(p−n)+eβ(p−n)

=

{
+ 1

1+e2β(n−p)

− e2β(n−p)

1+e2β(n−p)

(15.6)

where p is number of + neighbors and n is number of - neighbors.

∀β < βc: Tmix = (nlogn)

∀β > βc: Tmix = eΩ(
√
n)

For q 6 3, when β = βc: Tmix = ploy(n)

For q > 5, when β = βc: Tmix = eΩ(
√
n)

How might we get around ”torpid” mixing for β > βc ?

There are two approaches: Simulated annealing and Metropolis-coupled Markov Chain Monte Carlo.

15.1.3 Simulated Annealing

Idea: physical annealing is the process that heat a material above recrystallization and then slowly cooling.
To get the desired β, start from β0 = 0 and the sequence of inverse temperatures is β0 < β1 < ... < βN = β
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For i = 0 → N, repeat the following procedure:

1. Run Glauber dynamics for a large number of steps T at βi.

2. Let Xi
T be the final step.

3. Let Xi+1
o = Xi

T be the initial step for βi+1

Naive cooling schedule: βi+1 = βi(1 + 1
n )

15.1.4 Metropolis-coupled Markov Chain Monte Carlo

MC3 runs N chains simultaneously, which contains one cold chain (the one that samples) and several heated
chains. For the ith chain, it runs at βi temperature.

At step t, configuration is (x0
t , x

1
t , ..., x

N
t )

i) With probability 1
2 :

all N+1 chains do Glauber move (or choose i ∈ {0, 1, ...N} v.a.r, do a Glauber step for Xi
t , others stay

the same)

ii) With probability 1
2 :

1. choose i ∈ {0, 1, ...N}.

2. X
′

= (x0
t , ..., x

i−1
t , xi+1

t , xit, x
i+2
t , ..., xNt ), which swap states i and i+1.

3. Set Xt+1 = X
′

with probability min{1, ωβi(Xt(i+1))ωβi+1(Xt(i))
ωβi(Xt(i))ωβi+1(Xt(i+1))}
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