CS 7535 Markov Chain Monte Carlo Methods Fall 2017

Lecture 22: November 9
Lecturer: Santosh Vempala Scribe: Matthew Fahrbach

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the instructor.

22.1 Volume Computation

We study approximation algorithms for volume computation using Markov chain Monte Carlo methods.
Many of these techniques can be extended to estimating integrals of log-concave functions.

Definition 22.1 The volume of a set K C R"™ is defined as the multi-dimensional integral
Vol(K) = / de.
K

We first give the exact volume of a few highly-structured sets in high-dimensional geometry.

Example 22.2 For any xo, x1,..., T, € R", the volume of the simplex S = Conv({zo,x1,...,T,}) is

1
Vol(S) = ] det o 2 -
! 0 T1 o Ty

Example 22.3 The volume of the n-dimensional ball of radius r is

Vol(rB,) = — ™2
olrBa) = s

where I'(z) denotes the gamma function. More generally, the volume of an n-dimensional ellipsoid
E = {a: €B,:xTA < 1} = AI/QB,L,
for a positive definite matriz A, is

Vol(E) = +/det(A)Vol(B,,).

22.1.1 Hardness of Exact Computation

To motivate approximation algorithms for volume computation, we present a hardness result that reduces
computing the permanent of a matrix to computing volume.
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Definition 22.4 A rational polytope P is a set
P={xeR": Ax > b},

where A € Q™" js a rational matriz and b € Q™ is a rational vector.
Theorem 22.5 ([DF88]) It is #P-hard to compute the volume of a rational polytope.

For approximate volume computation algorithms, we consider the case where K is a convex body, as this
seems to be the most general case that avoids being #P-hard. Analogously, we consider integrating log-
concave functions since they naturally generalize the indicator function for a convex body.

To analyze such algorithms in greater generality, we give as input a membership oracle for the convex
body instead of a list of constraints defining the body (e.g. rational polytopes). The complexity of such
algorithms is then defined by the number of oracle calls and the number of arithmetic operations. Similarly,
for integrating log-concave functions we use a function-evaluation oracle.

Definition 22.6 A well-guaranteed membership oracle for a convex body K parameterized by a point g € K
and r, R € R>q such that
xg+rB, C K CRB,

takes an input x € R™ and returns the answer to the question x € K.

Definition 22.7 An approximation algorithm for computing the volume of a convex body K takes as input
a well-guaranteed membership oracle for K and an € > 0. It then outputs a value V € R such that

(1 —¢)Vol(K) <V < (1+¢)Vol(K).
The following integration problem generalizes approximating the volume of a convex body.

Definition 22.8 An approximation algorithm for integrating a log-concave function f(x) takes as input a
function-evaluation oracle and an € > 0. It then outputs a value F € R such that

(1—¢) fl@)de < F < (1+4¢) f(x)de.
R™ R"

22.2 Deterministic Approximation Algorithms

We begin by proposing some simple algorithmic approaches for approximating volume, all of which suffer
from the curse of dimensionality:

e For some high-dimensional grid, use the divide-and-conquer paradigm to count the number of cubes
fully contained in K. This fails because the number of cubes grows exponentially in the dimension.

e Find an enclosing cube, ball, or ellipsoid using binary search since we have an expression for this larger
volume. This fails because the ratio of the two volumes grows exponentially in the dimension.

e For polytopes P, decompose P into simplices and compute their individual volumes. This fails because
the number of simplices grows exponentially in the dimension.
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Next we present two hardness of approximation results for deterministic algorithms. We give a proof of the
second, simpler theorem.

Theorem 22.9 ([BF87, Elekes86]) For any deterministic algorithm that uses at most n® oracle calls and
computes on input K the values A, B € R such that

A< Vol(K) < B,

B 10n \"?
A ~ \alogn

Theorem 22.10 A deterministic 2" -approzimation algorithm requires 20~ oracle calls.

there exists a convex set K such that

Proof: Assume without loss of generality that K C B,,. Query the points 1, xo, ..., %, and consider
Conv ({x1,x2,...,xn}) C K.
We will show that m
Vol (Conv ({x1,x2,...,2m})) < 2—”\/01 (Bn) -

For each i € [m], draw the ball B whose diameter is the chord from the origin to ;. It follows that
; 1
Vol (B) < 37 Vol (Bn).

We then claim
m

Conv ({x1,x2,...,xm}) C U Bt
i=1
To prove this claim, assume there exists some y € Conv ({&1,x2,..., &y }) such that y € B; for all i € [m)].
Then all points x; and the origin lie on one side of a separating hyperplane whose normal vector is defined
by y. Thus, y ¢ Conv ({z1,@2,...,2,,}), a contradiction.

Therefore, using a union bound we have
Vol (Conv ({1, x2,...,xm})) < ZVO] (BY)
i=1

< gvol(Bn),

which proves the desired result. |

22.3 Randomized Approximation Algorithms

Given the hardness of deterministic approximations, we turn to randomized algorithms—in particular Markov
chain Monte Carlo. The first randomized approach one may try is to enclose K in a ball B,, and then sample
points uniformly at random from B,, to estimate the volume of K as

number of points in K
Vol(K) = Vol (B,,) .
ol(K) total number of points sampled ol(Bx)

This fails to be practical, however, because exponentially samples may be needed (e.g. when K is a cube).
Nonetheless, this sampling-based approach coupled with the notion of self-reducibility sets the stage for a
randomized polynomial-time approximation algorithm.
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Theorem 22.11 ([DFK91]) For any convex body K and for all €,6 > 0, there exists a randomized
polynomial-time algorithm that computes an e-relative error approzimation of Vol(K) with probability at
least 1 — ¢ in time poly(n,log(R/r),1/e,log(1/4)).

To understand this algorithm, let B, C K C RB, without loss of generality. Then let K; = 2/"B, N K
so that Ko = B,, and K,,, = K, for m large enough. Observe that the volume of K can be written as the
telescoping product

" Vol(K;)

Vol(K) = Vol (B, —_—

o) = ol () I T e

Therefore, we can reduce the problem of computing volume to estimating the ratio Vol(K;_1)/Vol(Kj;).
Suppose for now that we can sample a point & ~ K; uniformly at random, and let the random variable

v, — 1 fxe K,
" 10 otherwise.

Clearly we have
o VOl(Ki_l)

EY) = <ormy)

which we can estimate by sampling k£ points independently from K; uniformly at random and letting

1 k
W,-:E;Yivj.

Using the product formula above for Vol(K), we let the random variable
V = Vol(By,) ﬁ 1
- ! o Wi
so that E[V] = Vol(K). For such a sampling-based approximation to be efficient, we need to show that the

probability distribution of V' is concentrated around its mean.

We start with the following lemma, which we use to bound the variance of our estimator.

Lemma 22.12 For all i € [m], we have

Vol (V;) < 2Vol (Vi—1) .

Proof: By the definition of K;, we have
K, =2""B, N K
C 2l/n (2“—1)/”3” N K)
=2'Y"EK,
which completes the proof. ]

We use Chebyshev’s inequality to analyze the concentration of V. Observing that

Pr(V ~EIV]| 2 cE[V]) < Sk,
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it suffices to show that

Using the independence of the estimators W;, we have

Var(V) E [V2] - E[V]?
E[V]2 E[V]2

Therefore, it further suffices to show that

Var (W;) _ &2
2 S )
E [W;] 4m
as it implies that
Var(V) 14 Var (W;)
E[V]? 1;[1 < E [W;)?

2
The middle inequalities use the fact that 1+ < e® <1+ 2z, for 0 < z < 1. Letting E[Y;] = p be the ratio
of consecutive volumes, we have
Var(W;) k= 'Var(Y;)

EW:]> B[V

¢

)

<

= e

since p > 1/2 by Lemma 22.12. Thus, it suffices to sample k = O(m/e?) points per phase. Moreover, because
we have m = O(nlog R), the total sample complexity of the algorithm is

m? n2log? R
o()-o(=27)

22.3.1 Markov Chain Monte Carlo Algorithms

To use this approximation scheme, it remains to design an efficient algorithm for uniformly sampling from
a convex body K. Several classic Markov chain Monte Carlo algorithms, all of which require a membership
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oracle, have been studied extensively: grid walk, ball walk, and hit-and-run [Vem05]. Several new ideas for
sampling from polytopes include the Dikin walk, geodesic walks, and Riemannian Hamiltonian Monte Carlo.

Given some initial point &y € K, the BALLWALK(J) Markov chain tries to iteratively step to a random point
within distance ¢ of the current point. The state space is the entire set K, and this Markov chain is lazy to
guarantee that the stationary distribution is unique.

BALLWALK():

e Pick a uniform random point y from the ball of radius ¢ centered at the current point .

o If yisin K, go to y; else stay at .

A problem with BALLWALK(d) is that it requires a “warm start” close to the uniform distribution. Otherwise,
it can take exponentially long to escape from corners (e.g. a high-dimensional cube). Under the additional
assumption that K is isotropic, the KLS conjecture [LV16] implies that the mixing time of this Markov chain
is O(n%%) from a warm start.

The HITANDRUN Markov chain picks a random point along a random line through the current point, and
it does not need a step-size parameter like BALLWALK(J).

HITANDRUN:

e Pick a uniform random line ¢ through the current point.

e Go to a uniform random point on the chord ¢ N K.

Unlike the ball walk Markov chain, the mixing time of HITANDRUN is O(n2R2), regardless of the initial
distribution [LV06].
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