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Motivation

Mixing time analysis: Analyze mixing behavior of common MCMC algo-

rithms for sampling from Ising and Potts models with coupling heuristic.

Background

Ising model: A probability distribution on {−1, +1}V , where V is the set

of vertices of a graph G = (V, E). A configuration of the Ising model

assigns one of two spins, either -1 or 1, to every vertex.

Potts model: The generalization of the Ising model, allows vertices to

take on one of q colors instead of two spins.

β (beta): Parameter dictating strength of bonds between sites. In

ferromagnetic case β > 0, configurations with more monochromatic

edges, or edges with matching endpoint colors, are more likely to occur.

Markov Chain Monte Carlo (MCMC): A class of algorithms which use

Markov chains to randomly sample from high-dimensional distributions.

Heat bath Glauber dynamics: A simple Markov chain that makes local

moves, changing the state of one vertex at a time.

Swendsen-Wang dynamics: A more sophisticated Markov chain that

makes global moves by changing groups of vertices in each step.

Mixing time: Number of steps needed for a Markov chain to converge to

stationary distribution, expressed in terms of number of vertices n = |V |.
Coupling: Heuristic method for bounding mixing time that runs multiple

correlated chains.

Mean field model: Potts model on the complete graph, serves as a good

approximation of mixing behavior on high-dimensional lattices.
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Figure 1. A simple Markov chain with

states {A, B, C, D}.
Figure 2. Complete graph on 5 vertices

with 2 monochromatic edges.

Methodology

1. We conducted experimental trials of the heat bath dynamics and the

Swendsen-Wang dynamics for both the two-dimensional lattice and the

mean field to observe mixing behavior.

2. Forward coupling of q + 1 chains for heat bath: q chains with solid-color

starting states (one for each color), last chain starts with random colors.

3. Coupling from the past for heat bath to exactly sample from Ising: two

chains, one with all -1’s, and one with all +1’s.

4. Forward coupling of two chains for Swendsen-Wang: one chain of a

solid color, and another with a checkerboard pattern.

Results

Figure 3. Forward coupling vs.

CFTP of Glauber for Ising model

Exists a critical point βc where

mixing is fast for β ≤ βc, slow

for β > βc.

Slowdown near theoretical

βc ≈ .88 and βc = 1 for lattice

and mean field, respectively.

Run forward coupling and CFTP

to check consistency of mixing

heuristics.

Figure 4. Glauber mixing on mean

field at uniqueness with q = 2, 3, 4

Glauber on mean field mixes fast

at uniqueness threshold βu.

Θ(n3/2) for q = 2
Θ(n4/3) for q ≥ 3

We fit curves cn3/2 and cn4/3 to

show growth in mixing time.

Figure 5. Glauber mixing on lattice

at criticality with q = 2, 3, 4, 5

Glauber dynamics on lattice at

critical point βc mixes with time

at most...

poly(n) for q < 4
nO(log n) for q = 4
exp(n) for q ≥ 5

Growth curves for colors 2-5.

Figure 6. Glauber mixing on mean

field in regions around critical

points with q = 3

Glauber dynamics on mean field

has mixing time...

Θ(n log n) for β < βu

poly(n) at β = βu

exp(n) for β > βu

Run couplings around critical

points: one below βu, one at βu,

one above βu, and one at the

phase transition point βc.

Results cont.

Figure 7. Swendsen-Wang mixing on

lattice at criticality with q = 2, 3, 4, 5

Swendsen-Wang mixes on lattice at

critical point βc with time at most...

poly(n) for q = 2, 3
nO(log n) for q = 4
exp(n) for q = 5

Growth curves for 2-5, q = 2
appears to grow especially slowly.

Figure 8. Swendsen-Wang

slowdown at critical point for Ising

and q = 3 Potts

Mixing time of Swendsen-Wang

should be fast for β < βc and

β > βc, but slows down at bc.

We notice slowdown near

theoretical critical points

βc = .88 and βc = 1.005 for Ising
and q = 3 Potts, respectively.
q = 3 asymptotes early, possibly

due to limited graph size.

Evaluation

Mixing behavior of Glauber and Swendsen-Wang as β approaches

critical βc supports conjectured slowdown of the Potts model.

Growth in mixing time on the complete graph nicely fits proven

bounds for mixing time of Glauber dynamics.

Growth in mixing time on the lattice consistent with proven upper

bounds on mixing time; suggests possibility of separate, tighter bounds

for Glauber and Swendsen-Wang dynamics.
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