The basis-exchange walk

Giorgos Mousa

School of Informatics
University of Edinburgh

1 December 2021

1/27



Matroids

Definition

M = (E,I), where E = {1,...,n}, and T C 2F (independent sets) such
that:

> ) e,
» if leZ and J C [, then J € Z;
» if ,Je€Z and |l| <|J|, then 3j € J\ I such that /U {j} € .
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Matroids
Definition

M = (E,I), where E = {1,...,n}, and T C 2F (independent sets) such
that:

> ) eI,

» if leZ and J C [, then J € T,

» if [,J €7 and |l| < |J|, then 3j € J\ | such that /U {j} € Z.
The Hasse diagram of (Z, C) might look like this:

12 13 14 23 24 34
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Matroids
Definition

M = (E,I), where E = {1,...,n}, and T C 2F (independent sets) such
that:

> ) e,
» if leZ and J C [, then J € Z;
» if ,Je€Z and |l| <|J|, then 3j € J\ I such that /U {j} € .

The Hasse diagram of (Z, C) might look like this:

B = maximal independent sets (bases).
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Matroids

Examples

A non-example B = {12,34}
12 34
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Matroids

Examples

A non-example B = {12,34}
12 34

An example B = {12,13}
12 13
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Matroids

Examples
A non-example B = {12,34} An example B = {12,13}
12 34 12 13
1 4 1 3
0 0

What to notice:

» The third axiom implies that the induced subgraph of two consecutive
levels, Zx_1 and Z, is connected.

> We can first drop and then add an element to move through
independent sets of the same level.
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Matroids

Classes & operations

Some types of matroids:
» Linear/representable (Z = {lin. ind. vectors/columns of a matrix A})
» Graphic (Z = {forests of a graph G}, B = {spanning trees of G})
» Non-representable (almost all matroids [Nelson, 2016])
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Matroids

Classes & operations

Some types of matroids:
» Linear/representable (Z = {lin. ind. vectors/columns of a matrix A})
» Graphic (Z = {forests of a graph G}, B = {spanning trees of G})
» Non-representable (almost all matroids [Nelson, 2016])

Matroids are closed under
» Deletion
» Contraction

» Truncation
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Matroids

The basis-exchange walk

Suppose the walk is at a basis B € B.

Step 1. Remove an element i € B u.a.r.
Step 2. Add an element j € E u.a.r. such that B\{i} U {j} € B.
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Step 1. Remove an element i € B u.a.r.
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This basis-exchange walk over B is aperiodic and reversible with respect to
the uniform distribution, and so it converges to the uniform distribution.
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Matroids

The basis-exchange walk

Suppose the walk is at a basis B € B.

Step 1. Remove an element i € B u.a.r.
Step 2. Add an element j € E u.a.r. such that B\{i} U {j} € B.

This basis-exchange walk over B is aperiodic and reversible with respect to
the uniform distribution, and so it converges to the uniform distribution.

Is it fast mixing?
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Matroids

Basis-exchange graph

Conjecture [Mihail and Vazirani, 1989]

The basis-exchange graph has (cutset) expansion at least 1, i.e.

VS, |E(S,S°)| = min(|S],|5°)).
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Matroids

Basis-exchange graph
Conjecture [Mihail and Vazirani, 1989]
The basis-exchange graph has (cutset) expansion at least 1, i.e.

VS, |E(S,5°) = min(|S],]5€).

Theorem [Feder and Mihail, 1992]

True for balanced matroids, for which all minors satisfy

Vi#j, P(ieB|jeB)<P(ieB).

The last condition is called negative correlation and there exist matroids
that do not satisfy it.
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Mixing time
Exchange walks

Theorem [Anari et al., 2019]

Mihail and Vazirani conjecture is true for all matroids, and

1 1
tmix(PY,€) < r (Iog + log ) .
Tr,min €

Achieved by lower bounding the Poincaré constant (spectral gap),

1—)\2(P):)\(P):_|nf{5p(ff | F:Q =R, Var(f );«éo},

Var,(f
where
Ep(f. )= 2 3 7(IPCYFR) — F(y)),
YEQ
Vare(F) = 5 3 7 (0m()(F(x) — F())?
x,yEQ

7/21



Simplicial complexes

Definition

An abstract simplicial complex C = (E,S) consists of a ground set of
elements E, and a nonempty downwards closed collection of sets S
(faces):

> )ecS;
> ifSecS, TCS, thenT€S.
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Simplicial Complexes = Matroids - augmentation axiom.
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Simplicial complexes

Definition

An abstract simplicial complex C = (E,S) consists of a ground set of

elements E, and a nonempty downwards closed collection of sets S
(faces):

> )ecS;
> ifSecS, TCS, thenT€S.

Simplicial Complexes = Matroids - augmentation axiom.
Matroids = Simplicial Complexes for which the greedy algorithm works.

We can encode a variety of combinatorial structures and distributions
within the maximal faces of a simplicial complex.

Examples: bases of a matroid, independent sets of a graph,
configurations of a multi-spin system, etc.
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Simplicial complexes

Example

of a weighted simplicial complex C.




Simplicial complexes

Example

The Hasse diagram (S, Q).




Simplicial complexes

The distributions m,




Simpicial complexes

Exchange walks

Two operators:

» “Going-up”, PT; starting from a set S € C(k), we add an element
i € E\ 'S with probability oc my41(SU ).

» “Going-down", Pt; starting from a set S € C(k), we remove an
element i € S uniformly at random.
We can now define the exchange walks over C(k) as

P?:PZPlti—l»

P/ =PP ..

Our main goal is to study properties of the global walk at C(d), P)/. This
can be done by looking at properties of some “local” walks Gs.
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

123 124 134 245 356

1 1 1 1 1

(12 135 1465 23W  24k7 2540 ),34 1f35 136 045 T>56 |
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

23 24 34
A1 A1 o1
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

13 14 45
a1 _e1 1e
1 1 497 5071
%) 6
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

12 14 56
A1 el im

¥ 6
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

12 13 EEJ
o1 _al 1
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.
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Simplicial complexes

Local walks Gs - one for every face S, |S| < d — 2.

35
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Trickling down theorem

Theorem [Oppenheim, 2018]

Let C be a simplicial complex and suppose that for all v € C(1) we have
that A2(G,) <. Then, if Gy is connected,

y
< —.
A(Go) < 7
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Trickling down theorem

Theorem [Oppenheim, 2018]

Let C be a simplicial complex and suppose that for all v € C(1) we have
that A2(G,) <. Then, if Gy is connected,

~

< —.

A2(Gp) < 7 S

Proof.
Eg, (f ) = Z m(v)&q, (fv, fv)
veC(1)
> (1-9) Z m1(v)Varg, , (f) (because \2(G,) < 7)
veC(1)

= (1 =) [Varg, (f) = Vary, (Gyf)]-
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Trickling down theorem

Proof

We have that

Ec, (F,F) > (1 —7) [Vars, (f) — Vary, (Gyf)].
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Proof

We have that

Ec, (F,F) > (1 —7) [Vars, (f) — Vary, (Gyf)].

Now choose f = v, where Gyva = Aava. Then,

Egy (va, v2) > (1 —7) [Varg, (v2) — Varg, (Aaw2)],
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Trickling down theorem

Proof

We have that

Ec, (F,F) > (1 —7) [Vars, (f) — Vary, (Gyf)].

Now choose f = v, where Gyva = Aava. Then,

Egy (va, v2) > (1 —7) [Varg, (v2) — Varg, (Aaw2)],

which simplifies into

(1= Ao)Vars, (v2) > (1 = 7)(1 — A3)Vars, (v2).
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Trickling down theorem
Proof

We have that
Eg, (f,f) > (1 — ) [Varg, (f) — Varg, (Gyf)].
Now choose f = v, where Gyva = Aava. Then,
Egy (va, v2) > (1 —7) [Varg, (v2) — Varg, (Aaw2)],
which simplifies into
(1 — Xo)Varg, (v2) > (1 —7)(1 — A3)Varg, (v).
Thus, (1 —X2) > (1 —7)(1 — A3). In particular, if \2(Gp) < 1,

g
< -
A2(Gy) < 1~ L]
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Local-to-global theorem

Theorem [Alev and Lau, 2020]

Let C be a simplicial complex that is a (o,

.., @g_p)-local-spectral
expander. Then, for any 2 < k < d,

MPY) = MPPq) >

x~|h4

1:1 (1—a).
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Local-to-global theorem

Theorem [Alev and Lau, 2020]

Let C be a simplicial complex that is a («o, ..., @g_2)-local-spectral
expander. Then, for any 2 < k < d,

MPY) = MPPq) >

1:1 (1—a).

x~|h4

Proof (by induction).

Base case (k = 2): From the local-spectral assumption, and because

APY) = A(PY) = 5M(Gy) > 5(1— o).
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Local-to-global theorem

Proof

For the inductive step we will need this inequality:

k
k
= m Z 7Tk_1(5)5@5 (fs,fs)
SeC(k—1)
k
> ﬁ(l — ak_l) Z 7Tk_1(5)\/arﬂ-syl (fs)
- SeC(k—1)
(M2(Gs) < ak_1)
k
= m(l — Oékf]_)gpl/ (f, f) .
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Local-to-global theorem

Proof
Inductive step. Suppose the theorem holds for level k — 1. Then, starting

by the previous inequality,

k—1
Epp (£ ) 2 ——(1— aua)Epy |, (£.)
k—3

k—1 1
> 7(1_0%—2) H (1_O‘i)varﬂ'k71 (f)
k k—1 1%

H 1 —aj)Varg,_, (f),

which implies that

k—2
NP = AP > L 1A —a). O
i=0
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An application to matroids

Spectral gap of the basis-exchange walk

For a matroid, every walk Gs is connected (augmentation property).
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An application to matroids

Spectral gap of the basis-exchange walk
For a matroid, every walk Gs is connected (augmentation property).
If S € C(r — 2), then Ggs is the transition matrix of a complete k-partite

graph (matroid partition property).
For the uniform distribution over the bases, \2(Gs) < 0.
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If S € C(r — 2), then Ggs is the transition matrix of a complete k-partite
graph (matroid partition property).

For the uniform distribution over the bases, \2(Gs) < 0.

Applying the trickling down theorem, the matroid complex is a
(0, ...,0)-local-spectral expander.
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An application to matroids

Spectral gap of the basis-exchange walk

For a matroid, every walk Gs is connected (augmentation property).

If S € C(r — 2), then Ggs is the transition matrix of a complete k-partite
graph (matroid partition property).

For the uniform distribution over the bases, \2(Gs) < 0.

Applying the trickling down theorem, the matroid complex is a
(0, ...,0)-local-spectral expander.

Finally, by the local-to-global theorem,
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An application to matroids
Mixing time of the basis-exchange walk

The spectral gap gives the following bound for the mixing time (for P
PSD),

1 /1 1 1
mix(P.€) < —= (S log —— +log = ).
tmix (P ) A(P) (2 ngm,n+°gze>
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An application to matroids

Mixing time of the basis-exchange walk
The spectral gap gives the following bound for the mixing time (for P

PSD),

1

1 1 1
mix P7 Si *I I ~ |-
tmix(P: €) A(P) (2 °g g 2e>

Applying this to the basis exchange walk for the uniform distribution,
where A(PY) > % and —1— < (") < n’, we get the mixing time bound of

r r,min

[Anari et al., 2019]:

tmix(PY) := tmix(P),1/4) = O (r2 log n) .
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An application to matroids
Mixing time of the basis-exchange walk

The spectral gap gives the following bound for the mixing time (for P
PSD),

1 1 1 1
mix P7 < =l I Py
i P20) < 35 (510 7+ )

Applying this to the basis exchange walk for the uniform distribution,
where A(PY) > % and —1— < (") < n’, we get the mixing time bound of

r r,min

[Anari et al., 2019]:
tmix(PY) := tmix(P),1/4) = O (r2 log n) .

In followup work [Cryan et al., 2019, Anari et al., 2021], by using the
modified log-Sobolev constant, this bound was improved to

tmix(P) = O(rlogr).
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Conclusion

The basis-exchange walk is fast mixing!
P> we can produce approximately random samples of bases;
P> we can approximately count the number of bases;

P> we have concentration of measure results over the basis-exchange
graph.

Similar techniques (with simplicial complexes) have recently produced
more great results:

> Very efficient approximate sampling of random spanning trees;

» Optimal mixing of exchange walks (Glauber Dynamics) for a variety
of models.
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