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Matroids
Definition
M = (E , I), where E = {1, . . . , n}, and I ⊆ 2E (independent sets) such
that:
▶ ∅ ∈ I;
▶ if I ∈ I and J ⊆ I, then J ∈ I;
▶ if I, J ∈ I and |I| < |J |, then ∃j ∈ J \ I such that I ∪ {j} ∈ I.

The Hasse diagram of (I, ⊆) might look like this:

12 13 14 23 24 34

1 2 3 4

∅

I2 = B

I1

I0

B = maximal independent sets (bases).
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Matroids
Examples

A non-example B = {12, 34}

12 34

1 2 3 4

∅

An example B = {12, 13}

12 13

1 2 3

∅

What to notice:
▶ The third axiom implies that the induced subgraph of two consecutive

levels, Ik−1 and Ik , is connected.
▶ We can first drop and then add an element to move through

independent sets of the same level.
3 / 27



Matroids
Examples

A non-example B = {12, 34}

12 34

1 2 3 4

∅

An example B = {12, 13}

12 13

1 2 3

∅

What to notice:
▶ The third axiom implies that the induced subgraph of two consecutive

levels, Ik−1 and Ik , is connected.
▶ We can first drop and then add an element to move through

independent sets of the same level.
3 / 27



Matroids
Examples

A non-example B = {12, 34}

12 34

1 2 3 4

∅

An example B = {12, 13}

12 13

1 2 3

∅

What to notice:
▶ The third axiom implies that the induced subgraph of two consecutive

levels, Ik−1 and Ik , is connected.
▶ We can first drop and then add an element to move through

independent sets of the same level.
3 / 27



Matroids
Classes & operations

Some types of matroids:
▶ Linear/representable (I = {lin. ind. vectors/columns of a matrix A})
▶ Graphic (I = {forests of a graph G}, B = {spanning trees of G})
▶ Non-representable (almost all matroids [Nelson, 2016])

Matroids are closed under
▶ Deletion
▶ Contraction
▶ Truncation
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Matroids
The basis-exchange walk

Suppose the walk is at a basis B ∈ B.

Step 1. Remove an element i ∈ B u.a.r.
Step 2. Add an element j ∈ E u.a.r. such that B\{i} ∪ {j} ∈ B.

This basis-exchange walk over B is aperiodic and reversible with respect to
the uniform distribution, and so it converges to the uniform distribution.

Is it fast mixing?
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Matroids
Basis-exchange graph

Conjecture [Mihail and Vazirani, 1989]
The basis-exchange graph has (cutset) expansion at least 1, i.e.

∀S, |E (S, Sc)| ≥ min(|S|, |Sc |).

Theorem [Feder and Mihail, 1992]
True for balanced matroids, for which all minors satisfy

∀i ̸= j , P(i ∈ B | j ∈ B) ≤ P(i ∈ B).

The last condition is called negative correlation and there exist matroids
that do not satisfy it.
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Mixing time
Exchange walks

Theorem [Anari et al., 2019]
Mihail and Vazirani conjecture is true for all matroids, and

tmix (P∨
r , ϵ) ≤ r

(
log 1

πr ,min
+ log 1

ϵ

)
.

Achieved by lower bounding the Poincaré constant (spectral gap),

1 − λ2(P) = λ(P) := inf
{EP(f , f )

Varπ(f )
∣∣ f : Ω → R, Varπ(f ) ̸= 0

}
,

where

EP(f , f ) = 1
2
∑

x ,y∈Ω
π(x)P(x , y)(f (x) − f (y))2,

Varπ(f ) = 1
2
∑

x ,y∈Ω
π(x)π(y)(f (x) − f (y))2.
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Simplicial complexes
Definition

An abstract simplicial complex C = (E , S) consists of a ground set of
elements E , and a nonempty downwards closed collection of sets S
(faces):
▶ ∅ ∈ S;
▶ if S ∈ S, T ⊆ S, then T ∈ S.

Simplicial Complexes = Matroids - augmentation axiom.
Matroids = Simplicial Complexes for which the greedy algorithm works.

We can encode a variety of combinatorial structures and distributions
within the maximal faces of a simplicial complex.
Examples: bases of a matroid, independent sets of a graph,

configurations of a multi-spin system, etc.
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Simplicial complexes
Example

A visualization of a weighted simplicial complex C.
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Simplicial complexes
Example

The Hasse diagram (S, ⊆).

C(3)

C(2)

C(1)

C(0)
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Simplicial complexes
Example

The distributions πk , 0 ≤ k ≤ d .

π3 ∝

π2 ∝

π1 ∝

π0 ∝
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Simpicial complexes
Exchange walks

Two operators:
▶ “Going-up”, P↑

k ; starting from a set S ∈ C(k), we add an element
i ∈ E \ S with probability ∝ πk+1(S ∪ i).

▶ “Going-down”, P↓
k ; starting from a set S ∈ C(k), we remove an

element i ∈ S uniformly at random.
We can now define the exchange walks over C(k) as

P∧
k = P↑

k P↓
k+1,

P∨
k = P↓

k P↑
k−1.

Our main goal is to study properties of the global walk at C(d), P∨
d . This

can be done by looking at properties of some “local” walks GS .

12 / 27



Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

12 13 14 23 24 25

1 2 3 4

123 124 134 245 356

5 6

34 35 36 45 56

G∅

2 3

4

56

1

2

1

1

1

1

11

2
1

22

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

2 3 4 23 24 25

∅ 2 3 4

24 34 245 356

5 6

34 35 36 45 56

G1

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30

23

∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

1 13 14 3 4 5

1 ∅ 3 4

13 14 134 45 356

5 6

34 35 36 45 56

G2

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

12 1 14 2 24 25

1 2 ∅ 4

12 124 14 245 56

5 6

4 5 6 45 56

G3

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

12 13 1 23 2 25

1 2 3 ∅

123 12 13 25 356

5 6

3 35 36 5 56

G4

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

12 13 14 23 24 2

1 2 3 4

123 124 134 24 36

∅ 6

34 3 36 4 6

G5

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Simplicial complexes
Local walks GS - one for every face S, |S| ≤ d − 2.

12 13 14 23 24 25

1 2 3 4

123 124 134 245 35

5 ∅

34 35 3 45 5

G6

2 3

4

56

1

1 1 1 1 1

2 2 2 1 2 1 1 1 1 1 1

6 6 6 6 4 2

30
∅
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Trickling down theorem

Theorem [Oppenheim, 2018]
Let C be a simplicial complex and suppose that for all v ∈ C(1) we have
that λ2(Gv ) ≤ γ. Then, if G∅ is connected,

λ2(G∅) ≤ γ

1 − γ
.

Proof.

EG∅ (f , f ) =
∑

v∈C(1)
π1(v)EGv (fv , fv )

≥ (1 − γ)
∑

v∈C(1)
π1(v)Varπv,1 (fv ) (because λ2(Gv ) ≤ γ)

= (1 − γ) [Varπ1 (f ) − Varπ1 (G∅f )] .
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Trickling down theorem
Proof

We have that

EG∅ (f , f ) ≥ (1 − γ) [Varπ1 (f ) − Varπ1 (G∅f )] .

Now choose f = v2, where G∅v2 = λ2v2. Then,

EG∅ (v2, v2) ≥ (1 − γ) [Varπ1 (v2) − Varπ1 (λ2v2)] ,

which simplifies into

(1 − λ2)Varπ1 (v2) ≥ (1 − γ)(1 − λ2
2)Varπ1 (v2) .

Thus, (1 − λ2) ≥ (1 − γ)(1 − λ2
2). In particular, if λ2(G∅) < 1,

λ2(G∅) ≤ γ

1 − γ
.
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Local-to-global theorem

Theorem [Alev and Lau, 2020]
Let C be a simplicial complex that is a (α0, ..., αd−2)-local-spectral
expander. Then, for any 2 ≤ k ≤ d ,

λ(P∨
k ) = λ(P∧

k−1) ≥ 1
k

k−2∏
i=0

(1 − αi) .

Proof (by induction).
Base case (k = 2): From the local-spectral assumption, and because
P∧

1 = I+G∅
2 ,

λ(P∨
2 ) = λ(P∧

1 ) = 1
2λ(G∅) ≥ 1

2(1 − α0).
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Local-to-global theorem
Proof

For the inductive step we will need this inequality:

EP∧
k

(f , f ) = k
k + 1EP̃∧

k
(f , f )

= k
k + 1

∑
S∈C(k−1)

πk−1(S)EGS (fS , fS)

≥ k
k + 1(1 − αk−1)

∑
S∈C(k−1)

πk−1(S)VarπS,1 (fS)

(λ2(GS) ≤ αk−1)

= k
k + 1(1 − αk−1)EP∨

k
(f , f ) .
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Local-to-global theorem
Proof

Inductive step. Suppose the theorem holds for level k − 1. Then, starting
by the previous inequality,

EP∧
k−1

(f , f ) ≥ k − 1
k (1 − αk−2)EP∨

k−1
(f , f )

≥ k − 1
k (1 − αk−2) 1

k − 1

k−3∏
i=0

(1 − αi) Varπk−1 (f )

= 1
k

k−2∏
i=0

(1 − αi) Varπk−1 (f ) ,

which implies that

λ(P∨
k ) = λ(P∧

k−1) ≥ 1
k

k−2∏
i=0

(1 − αi) .
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An application to matroids
Spectral gap of the basis-exchange walk

For a matroid, every walk GS is connected (augmentation property).

If S ∈ C(r − 2), then GS is the transition matrix of a complete k-partite
graph (matroid partition property).
For the uniform distribution over the bases, λ2(GS) ≤ 0.

Applying the trickling down theorem, the matroid complex is a
(0, ..., 0)-local-spectral expander.

Finally, by the local-to-global theorem,

λ(P∨
r ) ≥ 1

r

r−2∏
i=0

(1 − 0) = 1
r .
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An application to matroids
Mixing time of the basis-exchange walk
The spectral gap gives the following bound for the mixing time (for P
PSD),

tmix (P, ϵ) ≤ 1
λ(P)

(1
2 log 1

πmin
+ log 1

2ϵ

)
.

Applying this to the basis exchange walk for the uniform distribution,
where λ(P∨

r ) ≥ 1
r and 1

πr,min
≤
(n

r
)

≤ nr , we get the mixing time bound of
[Anari et al., 2019]:

tmix (P∨
r ) := tmix (P∨

r , 1/4) = O
(
r2 log n

)
.

In followup work [Cryan et al., 2019, Anari et al., 2021], by using the
modified log-Sobolev constant, this bound was improved to

tmix (P∨
r ) = O (r log r) .
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Conclusion

The basis-exchange walk is fast mixing!
▶ we can produce approximately random samples of bases;
▶ we can approximately count the number of bases;
▶ we have concentration of measure results over the basis-exchange

graph.

Similar techniques (with simplicial complexes) have recently produced
more great results:
▶ Very efficient approximate sampling of random spanning trees;
▶ Optimal mixing of exchange walks (Glauber Dynamics) for a variety

of models.
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