The basis-exchange walk

Giorgos Mousa
School of Informatics
University of Edinburgh

1 December 2021

Matroids

Definition

$\mathcal{M}=(E, \mathcal{I})$, where $E=\{1, \ldots, n\}$, and $\mathcal{I} \subseteq 2^{E}$ (independent sets) such that:

- $\emptyset \in \mathcal{I}$;
- if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$;
- if $I, J \in \mathcal{I}$ and $|I|<|J|$, then $\exists j \in J \backslash I$ such that $I \cup\{j\} \in \mathcal{I}$.

The Hasse diagram of (\mathcal{I}, \subseteq) might look like this:

Matroids

Definition

$\mathcal{M}=(E, \mathcal{I})$, where $E=\{1, \ldots, n\}$, and $\mathcal{I} \subseteq 2^{E}$ (independent sets) such that:

- $\emptyset \in \mathcal{I}$;
- if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$;
- if $I, J \in \mathcal{I}$ and $|I|<|J|$, then $\exists j \in J \backslash I$ such that $I \cup\{j\} \in \mathcal{I}$.

The Hasse diagram of (\mathcal{I}, \subseteq) might look like this:

Matroids

Definition

$\mathcal{M}=(E, \mathcal{I})$, where $E=\{1, \ldots, n\}$, and $\mathcal{I} \subseteq 2^{E}$ (independent sets) such that:

- $\emptyset \in \mathcal{I}$;
- if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$;
- if $I, J \in \mathcal{I}$ and $|I|<|J|$, then $\exists j \in J \backslash I$ such that $I \cup\{j\} \in \mathcal{I}$.

The Hasse diagram of (\mathcal{I}, \subseteq) might look like this:

$\mathcal{B}=$ maximal independent sets (bases).

Matroids

Examples

A non-example $\mathcal{B}=\{12,34\}$

An example $\mathcal{B}=\{12,13\}$

What to notice:

- The thind axiom implies that the induced subgraph of two consecutive levels, \mathcal{I}_{k-1} and \mathcal{I}_{k} is connected.
\rightarrow We can first drop and then add an element to move through independent sets of the same level.

Matroids

Examples

A non-example $\mathcal{B}=\{12,34\}$

An example $\mathcal{B}=\{12,13\}$

What to notice:

- The third axiom implies that the induced subgraph of two consecutive levels, I_{k-1} and I_{k}, is connected
\rightarrow We can first drop and then add an element to move through independent sets of the same level.

Matroids

Examples

A non-example $\mathcal{B}=\{12,34\}$

An example $\mathcal{B}=\{12,13\}$

What to notice:

- The third axiom implies that the induced subgraph of two consecutive levels, \mathcal{I}_{k-1} and \mathcal{I}_{k}, is connected.
- We can first drop and then add an element to move through independent sets of the same level.

Matroids

Classes \& operations

Some types of matroids:

- Linear/representable $(\mathcal{I}=\{$ lin. ind. vectors/columns of a matrix $A\})$
- Graphic $(\mathcal{I}=\{$ forests of a graph $G\}, \mathcal{B}=\{$ spanning trees of $G\})$
- Non-representable (almost all matroids [Nelson, 2016])

Matroids are closed under

- Deletion
- Contraction
- Truncation

Matroids

Classes \& operations

Some types of matroids:

- Linear/representable $(\mathcal{I}=\{$ lin. ind. vectors/columns of a matrix $A\})$
- Graphic $(\mathcal{I}=\{$ forests of a graph $G\}, \mathcal{B}=\{$ spanning trees of $G\})$
- Non-representable (almost all matroids [Nelson, 2016])

Matroids are closed under

- Deletion
- Contraction
- Truncation

Matroids

The basis-exchange walk

Suppose the walk is at a basis $B \in \mathcal{B}$.
Step 1. Remove an element $i \in B$ u.a.r.
Step 2. Add an element $j \in E$ u.a.r. such that $B \backslash\{i\} \cup\{j\} \in \mathcal{B}$.
This basis-exchange walk over \mathcal{B} is aperiodic and reversible with respect to the uniform distribution, and so it converges to the uniform distribution.

Matroids

The basis-exchange walk

Suppose the walk is at a basis $B \in \mathcal{B}$.
Step 1. Remove an element $i \in B$ u.a.r.
Step 2. Add an element $j \in E$ u.a.r. such that $B \backslash\{i\} \cup\{j\} \in \mathcal{B}$.
This basis-exchange walk over \mathcal{B} is aperiodic and reversible with respect to the uniform distribution, and so it converges to the uniform distribution.

Is it fast mixing?

Matroids

The basis-exchange walk

Suppose the walk is at a basis $B \in \mathcal{B}$.
Step 1. Remove an element $i \in B$ u.a.r.
Step 2. Add an element $j \in E$ u.a.r. such that $B \backslash\{i\} \cup\{j\} \in \mathcal{B}$.

This basis-exchange walk over \mathcal{B} is aperiodic and reversible with respect to the uniform distribution, and so it converges to the uniform distribution.

Is it fast mixing?

Matroids

Basis-exchange graph

Conjecture [Mihail and Vazirani, 1989]
The basis-exchange graph has (cutset) expansion at least 1, i.e.

$$
\forall S, \quad\left|E\left(S, S^{c}\right)\right| \geq \min \left(|S|,\left|S^{c}\right|\right) .
$$

Theorem [Feder and Mihail, 1992]
 True for balanced matroids, for which al minors satisfy

The last condition is called negative correlation and there exist matroids, that do not satisfy it.

Matroids

Basis-exchange graph

Conjecture [Mihail and Vazirani, 1989]

The basis-exchange graph has (cutset) expansion at least 1, i.e.

$$
\forall S, \quad\left|E\left(S, S^{c}\right)\right| \geq \min \left(|S|,\left|S^{c}\right|\right)
$$

Theorem [Feder and Mihail, 1992]

True for balanced matroids, for which all minors satisfy

$$
\forall i \neq j, \quad P(i \in B \mid j \in B) \leq P(i \in B)
$$

The last condition is called negative correlation and there exist matroids that do not satisfy it.

Mixing time

Exchange walks

Theorem [Anari et al., 2019]

Mihail and Vazirani conjecture is true for all matroids, and

$$
t_{\text {mix }}\left(P_{r}^{\vee}, \epsilon\right) \leq r\left(\log \frac{1}{\pi_{r, \min }}+\log \frac{1}{\epsilon}\right) .
$$

Achieved by lower bounding the Poincaré constant (spectral gap),

$$
1-\lambda_{2}(P)=\lambda(P):=\inf \left\{\left.\frac{\mathcal{E}_{P}(f, f)}{\operatorname{Var}_{\pi}(f)} \right\rvert\, f: \Omega \rightarrow \mathbb{R}, \operatorname{Var}_{\pi}(f) \neq 0\right\}
$$

where

$$
\begin{aligned}
\mathcal{E}_{P}(f, f) & =\frac{1}{2} \sum_{x, y \in \Omega} \pi(x) P(x, y)(f(x)-f(y))^{2} \\
\operatorname{Var}_{\pi}(f) & =\frac{1}{2} \sum_{x, y \in \Omega} \pi(x) \pi(y)(f(x)-f(y))^{2}
\end{aligned}
$$

Simplicial complexes

Definition

An abstract simplicial complex $\mathcal{C}=(E, \mathcal{S})$ consists of a ground set of elements E, and a nonempty downwards closed collection of sets \mathcal{S} (faces):

- $\emptyset \in \mathcal{S}$;
- if $S \in \mathcal{S}, T \subseteq S$, then $T \in \mathcal{S}$.

Simplicial Complexes $=$ Matroids - augmentation axiom.
Matroids $=$ Simplicial Complexes for which the greedy algorithm works.

We can encode a variety of combinatorial structures and distributions within the maximal faces of a simplicial complex.
Examples: bases of a matroid, independent sets of a graph,
configurations of a multi-spin system, etc.

Simplicial complexes

Definition

An abstract simplicial complex $\mathcal{C}=(E, \mathcal{S})$ consists of a ground set of elements E, and a nonempty downwards closed collection of sets \mathcal{S} (faces):

- $\emptyset \in \mathcal{S}$;
- if $S \in \mathcal{S}, T \subseteq S$, then $T \in \mathcal{S}$.

Simplicial Complexes $=$ Matroids - augmentation axiom.
Matroids $=$ Simplicial Complexes for which the greedy algorithm works.

We can encode a variety of combinatorial structures and distributions
within the maximal faces of a simplicial complex.
Examples: bases of a matroid, independent sets of a graph,
configurations of a multi-spin system, etc.

Simplicial complexes

Definition

An abstract simplicial complex $\mathcal{C}=(E, \mathcal{S})$ consists of a ground set of elements E, and a nonempty downwards closed collection of sets \mathcal{S} (faces):

- $\emptyset \in \mathcal{S}$;
- if $S \in \mathcal{S}, T \subseteq S$, then $T \in \mathcal{S}$.

Simplicial Complexes $=$ Matroids - augmentation axiom.
Matroids $=$ Simplicial Complexes for which the greedy algorithm works.

We can encode a variety of combinatorial structures and distributions within the maximal faces of a simplicial complex.
Examples: bases of a matroid, independent sets of a graph, configurations of a multi-spin system, etc.

Simplicial complexes

Example

A visualization of a weighted simplicial complex \mathcal{C}.

Simplicial complexes

Example

The Hasse diagram (\mathcal{S}, \subseteq).

Simplicial complexes

Example

The distributions $\pi_{k}, 0 \leq k \leq d$.

Simpicial complexes

Exchange walks

Two operators:

- "Going-up", P_{k}^{\uparrow}; starting from a set $S \in \mathcal{C}(k)$, we add an element $i \in E \backslash S$ with probability $\propto \pi_{k+1}(S \cup i)$.
- "Going-down", P_{k}^{\downarrow}; starting from a set $S \in \mathcal{C}(k)$, we remove an element $i \in S$ uniformly at random.
We can now define the exchange walks over $\mathcal{C}(k)$ as

$$
\begin{aligned}
& P_{k}^{\wedge}=P_{k}^{\uparrow} P_{k+1}^{\downarrow}, \\
& P_{k}^{\vee}=P_{k}^{\downarrow} P_{k-1}^{\uparrow} .
\end{aligned}
$$

Our main goal is to study properties of the global walk at $\mathcal{C}(d), P_{d}^{\vee}$. This can be done by looking at properties of some "local" walks G_{S}.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Simplicial complexes

Local walks G_{S} - one for every face $S,|S| \leq d-2$.

Trickling down theorem

Theorem [Oppenheim, 2018]
Let \mathcal{C} be a simplicial complex and suppose that for all $v \in \mathcal{C}(1)$ we have that $\lambda_{2}\left(G_{v}\right) \leq \gamma$. Then, if G_{\emptyset} is connected,

$$
\lambda_{2}\left(G_{\emptyset}\right) \leq \frac{\gamma}{1-\gamma}
$$

Proof.

Trickling down theorem

Theorem [Oppenheim, 2018]

Let \mathcal{C} be a simplicial complex and suppose that for all $v \in \mathcal{C}(1)$ we have that $\lambda_{2}\left(G_{v}\right) \leq \gamma$. Then, if G_{\emptyset} is connected,

$$
\lambda_{2}\left(G_{\emptyset}\right) \leq \frac{\gamma}{1-\gamma}
$$

Proof.

$$
\begin{aligned}
\mathcal{E}_{G_{\emptyset}}(f, f) & =\sum_{v \in \mathcal{C}(1)} \pi_{1}(v) \mathcal{E}_{G_{v}}\left(f_{v}, f_{v}\right) \\
& \left.\geq(1-\gamma) \sum_{v \in \mathcal{C}(1)} \pi_{1}(v) \operatorname{Var}_{\pi_{v, 1}}\left(f_{v}\right) \quad \text { (because } \lambda_{2}\left(G_{v}\right) \leq \gamma\right) \\
& =(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}(f)-\operatorname{Var}_{\pi_{1}}\left(G_{\emptyset} f\right)\right] .
\end{aligned}
$$

Trickling down theorem

Proof
We have that

$$
\mathcal{E}_{G_{\emptyset}}(f, f) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}(f)-\operatorname{Var}_{\pi_{1}}\left(G_{\emptyset} f\right)\right] .
$$

Now choose $f=v_{2}$, where $G_{\eta} v_{2}=\lambda_{2} v_{2}$. Then,

$$
\mathcal{E}_{G_{\emptyset}}\left(v_{2}, v_{2}\right) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}\left(v_{2}\right)-\operatorname{Var}_{\pi_{1}}\left(\lambda_{2} v_{2}\right)\right],
$$

which simplifies into

Thus, $\left(1-\lambda_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right)$. In particular, if $\lambda_{2}\left(G_{\emptyset}\right)<1$,

Trickling down theorem

Proof

We have that

$$
\mathcal{E}_{G_{\emptyset}}(f, f) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}(f)-\operatorname{Var}_{\pi_{1}}\left(G_{\emptyset} f\right)\right] .
$$

Now choose $f=v_{2}$, where $G_{\emptyset} v_{2}=\lambda_{2} v_{2}$. Then,

$$
\mathcal{E}_{G_{\emptyset}}\left(v_{2}, v_{2}\right) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}\left(v_{2}\right)-\operatorname{Var}_{\pi_{1}}\left(\lambda_{2} v_{2}\right)\right],
$$

which simplifies into

$$
\left(1-\lambda_{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right)
$$

Thus, $\left(1-\lambda_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right)$. In particular, if $\lambda_{2}\left(G_{\emptyset}\right)<1$,

Trickling down theorem

Proof

We have that

$$
\mathcal{E}_{G_{\emptyset}}(f, f) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}(f)-\operatorname{Var}_{\pi_{1}}\left(G_{\emptyset} f\right)\right] .
$$

Now choose $f=v_{2}$, where $G_{\emptyset} v_{2}=\lambda_{2} v_{2}$. Then,

$$
\mathcal{E}_{G_{\emptyset}}\left(v_{2}, v_{2}\right) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}\left(v_{2}\right)-\operatorname{Var}_{\pi_{1}}\left(\lambda_{2} v_{2}\right)\right]
$$

which simplifies into

$$
\left(1-\lambda_{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right)
$$

Thus, $\left(1-\lambda_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right)$. In particular, if $\lambda_{2}\left(G_{\emptyset}\right)<1$,

Trickling down theorem

Proof

We have that

$$
\mathcal{E}_{G_{\emptyset}}(f, f) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}(f)-\operatorname{Var}_{\pi_{1}}\left(G_{\emptyset} f\right)\right] .
$$

Now choose $f=v_{2}$, where $G_{\emptyset} v_{2}=\lambda_{2} v_{2}$. Then,

$$
\mathcal{E}_{G_{\emptyset}}\left(v_{2}, v_{2}\right) \geq(1-\gamma)\left[\operatorname{Var}_{\pi_{1}}\left(v_{2}\right)-\operatorname{Var}_{\pi_{1}}\left(\lambda_{2} v_{2}\right)\right]
$$

which simplifies into

$$
\left(1-\lambda_{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right) \operatorname{Var}_{\pi_{1}}\left(v_{2}\right)
$$

Thus, $\left(1-\lambda_{2}\right) \geq(1-\gamma)\left(1-\lambda_{2}^{2}\right)$. In particular, if $\lambda_{2}\left(G_{\emptyset}\right)<1$,

$$
\lambda_{2}\left(G_{\emptyset}\right) \leq \frac{\gamma}{1-\gamma} . \square
$$

Local-to-global theorem

Theorem [Alev and Lau, 2020]
Let \mathcal{C} be a simplicial complex that is a $\left(\alpha_{0}, \ldots, \alpha_{d-2}\right)$-local-spectral expander. Then, for any $2 \leq k \leq d$,

$$
\lambda\left(P_{k}^{\vee}\right)=\lambda\left(P_{k-1}^{\wedge}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2}\left(1-\alpha_{i}\right)
$$

Proof (by induction)
Base case $(k=2)$: From the local-spectral assumption, and because

Local-to-global theorem

Theorem [Alev and Lau, 2020]

Let \mathcal{C} be a simplicial complex that is a $\left(\alpha_{0}, \ldots, \alpha_{d-2}\right)$-local-spectral expander. Then, for any $2 \leq k \leq d$,

$$
\lambda\left(P_{k}^{\vee}\right)=\lambda\left(P_{k-1}^{\wedge}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2}\left(1-\alpha_{i}\right)
$$

Proof (by induction).
Base case $(k=2)$: From the local-spectral assumption, and because $P_{1}=\frac{I+G_{\emptyset}}{2}$,

$$
\lambda\left(P_{2}^{\vee}\right)=\lambda\left(P_{1}^{\wedge}\right)=\frac{1}{2} \lambda\left(G_{\emptyset}\right) \geq \frac{1}{2}\left(1-\alpha_{0}\right)
$$

Local-to-global theorem

Proof

For the inductive step we will need this inequality:

$$
\begin{aligned}
\mathcal{E}_{P_{k}}(f, f) & =\frac{k}{k+1} \mathcal{E}_{\widetilde{P}_{k}}(f, f) \\
& =\frac{k}{k+1} \sum_{S \in \mathcal{C}(k-1)} \pi_{k-1}(S) \mathcal{E}_{G_{S}}\left(f_{S}, f_{S}\right) \\
& \geq \frac{k}{k+1}\left(1-\alpha_{k-1}\right) \sum_{S \in \mathcal{C}(k-1)} \pi_{k-1}(S) \operatorname{Var}_{\pi_{S, 1}}\left(f_{S}\right) \\
& =\frac{k}{k+1}\left(1-\alpha_{k-1}\right) \mathcal{E}_{P_{k}^{\vee}}(f, f) .
\end{aligned}
$$

Local-to-global theorem

Proof

Inductive step. Suppose the theorem holds for level $k-1$. Then, starting by the previous inequality,

$$
\begin{aligned}
\mathcal{E}_{P_{k-1}}(f, f) & \geq \frac{k-1}{k}\left(1-\alpha_{k-2}\right) \mathcal{E}_{P_{k-1}^{\vee}}(f, f) \\
& \geq \frac{k-1}{k}\left(1-\alpha_{k-2}\right) \frac{1}{k-1} \prod_{i=0}^{k-3}\left(1-\alpha_{i}\right) \operatorname{Var}_{\pi_{k-1}}(f) \\
& =\frac{1}{k} \prod_{i=0}^{k-2}\left(1-\alpha_{i}\right) \operatorname{Var}_{\pi_{k-1}}(f)
\end{aligned}
$$

which implies that

$$
\lambda\left(P_{k}^{\vee}\right)=\lambda\left(P_{k-1}^{\wedge}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2}\left(1-\alpha_{i}\right)
$$

An application to matroids

Spectral gap of the basis-exchange walk

For a matroid, every walk G_{S} is connected (augmentation property).
If $S \in C(r-2)$, then G_{S} is the transition matrix of a complete k-partite
graph (matroid partition property).
For the uniform distribution over the bases, $\lambda_{2}\left(G_{S}\right) \leq 0$.

Applying the trickling down theorem, the matroid complex is a
($0, \ldots, 0$)-local-spectral expander.

Finally, by the local-to-global theorem,

An application to matroids

Spectral gap of the basis-exchange walk
For a matroid, every walk G_{S} is connected (augmentation property).
If $S \in C(r-2)$, then G_{S} is the transition matrix of a complete k-partite graph (matroid partition property).
For the uniform distribution over the bases, $\lambda_{2}\left(G_{S}\right) \leq 0$.
Applying the trickling down theorem, the matroid complex is a
$(0, \ldots, 0)$-local-spectral expander.
Finally, by the local-to-global theorem,

An application to matroids

Spectral gap of the basis-exchange walk
For a matroid, every walk G_{S} is connected (augmentation property).
If $S \in C(r-2)$, then G_{S} is the transition matrix of a complete k-partite graph (matroid partition property).
For the uniform distribution over the bases, $\lambda_{2}\left(G_{S}\right) \leq 0$.

Applying the trickling down theorem, the matroid complex is a ($0, \ldots, 0$)-local-spectral expander.

Finally, by the local-to-global theorem,

An application to matroids

Spectral gap of the basis-exchange walk
For a matroid, every walk G_{S} is connected (augmentation property).
If $S \in C(r-2)$, then G_{S} is the transition matrix of a complete k-partite graph (matroid partition property).
For the uniform distribution over the bases, $\lambda_{2}\left(G_{S}\right) \leq 0$.
Applying the trickling down theorem, the matroid complex is a $(0, \ldots, 0)$-local-spectral expander.

Finally, by the local-to-global theorem,

$$
\lambda\left(P_{r}^{\vee}\right) \geq \frac{1}{r} \prod_{i=0}^{r-2}(1-0)=\frac{1}{r}
$$

An application to matroids

Mixing time of the basis-exchange walk
The spectral gap gives the following bound for the mixing time (for P PSD),

$$
t_{m i x}(P, \epsilon) \leq \frac{1}{\lambda(P)}\left(\frac{1}{2} \log \frac{1}{\pi_{\min }}+\log \frac{1}{2 \epsilon}\right)
$$

Applying this to the basis exchange walk for the uniform distribution, where $\lambda\left(P_{r}^{\vee}\right) \geq \frac{1}{r}$ and $\frac{1}{\pi_{2}} \leq\binom{ n}{r} \leq n^{r}$, we get the mixing time bound of [Anari et al., 2019]:

$$
t_{\text {mix }}\left(P_{r}^{\vee}\right):=t_{\text {mix }}\left(P_{r}^{\vee}, 1 / 4\right)=O\left(r^{2} \log n\right) .
$$

In followup work [Cryan et al., 2019, Anari et al., 2021], by using the modified \log-Sobolev constant, this bound was improved to

$$
t_{\text {mix }}\left(P_{r}^{\vee}\right)=O(r \log r) .
$$

An application to matroids

Mixing time of the basis-exchange walk
The spectral gap gives the following bound for the mixing time (for P PSD),

$$
t_{\text {mix }}(P, \epsilon) \leq \frac{1}{\lambda(P)}\left(\frac{1}{2} \log \frac{1}{\pi_{\text {min }}}+\log \frac{1}{2 \epsilon}\right)
$$

Applying this to the basis exchange walk for the uniform distribution, where $\lambda\left(P_{r}^{\vee}\right) \geq \frac{1}{r}$ and $\frac{1}{\pi_{r, \text { min }}} \leq\binom{ n}{r} \leq n^{r}$, we get the mixing time bound of [Anari et al., 2019]:

$$
t_{m i x}\left(P_{r}^{\vee}\right):=t_{m i x}\left(P_{r}^{\vee}, 1 / 4\right)=O\left(r^{2} \log n\right) .
$$

In followup work [Cryan et al., 2019, Anari et al., 2021], by using the modified log-Sobolev constant, this bound was improved to

An application to matroids

Mixing time of the basis-exchange walk
The spectral gap gives the following bound for the mixing time (for P PSD),

$$
t_{\text {mix }}(P, \epsilon) \leq \frac{1}{\lambda(P)}\left(\frac{1}{2} \log \frac{1}{\pi_{\min }}+\log \frac{1}{2 \epsilon}\right)
$$

Applying this to the basis exchange walk for the uniform distribution, where $\lambda\left(P_{r}^{\vee}\right) \geq \frac{1}{r}$ and $\frac{1}{\pi_{r, \text { min }}} \leq\binom{ n}{r} \leq n^{r}$, we get the mixing time bound of [Anari et al., 2019]:

$$
t_{\text {mix }}\left(P_{r}^{\vee}\right):=t_{m i x}\left(P_{r}^{\vee}, 1 / 4\right)=O\left(r^{2} \log n\right)
$$

In followup work [Cryan et al., 2019, Anari et al., 2021], by using the modified log-Sobolev constant, this bound was improved to

$$
t_{\text {mix }}\left(P_{r}^{\vee}\right)=O(r \log r)
$$

Conclusion

The basis-exchange walk is fast mixing!

- we can produce approximately random samples of bases;
- we can approximately count the number of bases;
- we have concentration of measure results over the basis-exchange graph.

Similar techniques (with simplicial complexes) have recently produced more great results:

- Very efficient approximate sampling of random spanning trees;
- Optimal mixing of exchange walks (Glauber Dynamics) for a variety of models.

