
University of Chicago Autumn 2003

CS37101-1 Markov Chain Monte Carlo Methods

Lecture 7:

Estimating the permanent

Eric Vigoda

We refer the reader to Jerrum’s book [Jer03] for the analysis of a Markov chain for generating
a random matching of an arbitrary graph. Here we’ll look at how to extend the argument
to sample perfect matchings in dense graphs [JS89] and arbitrary bipartite graphs [JSV04].

Dense graphs

We’ll need some definitions and notations first:

Definition 7.1 A graph G = (V,E) is said to be dense if for every v ∈ V , degree(v) > n/2,
where n = |V |.

Definition 7.2 Let G be a graph and let MG be the set of all perfect matchings of G.
Similarly, for two distinct vertices u, v, let NG(u, v) be the set of all perfect matchings of the
graph G\{u, v}. We refer to matchings in NG(u, v) as near-perfect matchings, or matchings
with holes u and v. Whenever G is clearly understood from the context, we shall use simply
M and N (u, v).

Jerrum’s book presents the analysis of a Markov chain for sampling matchings (not neces-
sarily perfect). The Markov chain for sampling perfect matchings in dense graphs is only a
slight modification of the original chain. The state space Ω is the set of perfect and near-
perfect matchings, i.e., Ω =M∪∪u,v∈VN (u, v). The near-perfect matchings are needed to
navigate between perfect matchings.

• For Xt ∈ Ω,

1. Choose e = (u, v) uniformly at random from E.

2. If u, v are both unmatched, let X ′ = Xt ∪ e.
If e ∈ Xt, then let X ′ = Xt \ e.
If u is unmatched and (v, w) ∈ Xt, let X ′ = Xt ∪ e \ (v, w).

7-1

Lecture 7: 7-2

3. If X ′ ∈ Ω, with probability 1/2 set Xt+1 = X ′, else Xt+1 = Xt.

The chain is symmetric, thus it’s stationary distribution π is uniform over Ω. For this
Markov chain to efficiently (in polynomial time) sample perfect matchings, we have to have
a polynomial bound on the ratio of perfect matchings to near-perfect matchings.

Lemma 7.3 For a dense graph, |Ω||M| ≤ n2. Thus, π(M) ≥ 1/n2.

Proof: We shall prove that |M| ≥ |N (u, v)| for every u, v. We do this by defining an
injective map fu,v : N (u, v)→M.

Case 1: If u and v are adjacent, then fu,v(M) = M ∪ {(u, v)} for M ∈ N (u, v). Clearly, this
map is injective.

Case 2: If u and v are not adjacent, then for M ∈ N (u, v) we claim there exists e =
{w, x} ∈ M such that w ∈ N(u) and x ∈ N(v). (The set N(u) denotes the neighbors of
vertex u.) This will then give an augmenting path of length three to transform M into a
perfect matching. To prove this claim, let S(v) = {w | {w, x} ∈ M,x ∈ N(v)}. Since v is
unmatched, every vertex in S(v) is matched and therefore |S(v)| = |N(v)| > n/2. Since we
also know |N(u)| > n/2, we have S(v) ∩ N(u) 6= ∅. Let z ∈ S(v) ∩ Γ(u) and {w, z} ∈ M .
Finally, let fu,v(M) = M ∪ {v, w} ∪ {z, u} \ {w, z}. Again, fu,v is injective.

Theorem 7.4 For dense graphs, τ(ε) ≤ poly(n, log 1/ε).

Proof:(sketch): Our aim is to use the canonical paths and associated encoding ηt which
were we used for the chain on all matchings. We will take it for granted that the reader
remembers the paths and encoding that were used earlier. However, there are two problems
we must address. By taking a brief look at the various cases, we will see that there are two
scenarios where the proof from last class uses matchings with 4 holes. This is the issue we
must resolve since 4-hole matchings are not contained in Ω.

Consider a pair of perfect matchings I, F . The canonical path used previously as well as the
associated encoding are legitimate in the sense that both always contain at most two holes.

Suppose I ∈ N (u, v) and F ∈M. Looking at I⊕F , we have an augmenting path from u to
v and a set of alternating cycles. We define the canonical path γIF to unwind, i.e., augment,
the path, and then unwind the cycles in some canonical order. Notice that after we unwind
the path, we are at a perfect matching. It is easy to verify that this path never has more
than two holes (the holes arise in the midst of unwinding an alternating cycle).

However, the associated encoding will have 4 holes. After we unwind the path, the encoding
will have holes at u and v. During the unwinding of any cycle, we will get a further two
holes in the encoding. Despite this fact, we keep the same encoding as before, but we now

Lecture 7: 7-3

have that ηt : cp(t) → Ω′, where Ω′ is the set of matchings with at most 4 holes and cp(t)
is the set of canonical paths that traverse t. The encoding is simply an ingredient in the
proof, used to bound |cp(t)|. Therefore, there is no inherent reason why the encoding must
be contained in Ω. It will suffice to simply prove that |Ω′| ≤ n2|Ω|.

Finally, consider a pair of near-perfect matchings I, F . The canonical path will visit 4-hole
matchings. To avoid this, we construct different canonical paths. We first choose a random
M ∈M and the new canonical path is the concatenation of γIM and γMF .

Now we want to bound the congestion. We first analyze the congestion created by paths
between I ∈ Ω and F ∈ M. For every t = M → M ′, we can define an injective map
ηt : cp(t) → Ω′. Thus, we can bound |cp(t)| ≤ |Ω′| ≤ n2|Ω|. (The second inequality follows
from Lemma 7.3.) In order to account for the congestion added by flows between pairs of
near-perfect matchings we use the fact that |N = ∪u,vN (u, v)| ≤ n2|M|. Fix a near-perfect
matching I and a perfect matching M . For each near-perfect matching F , we use γIM with
probability 1/|M|. Summing over F , the expected extra load on γIM is |N |/|M| ≤ n2.
Therefore, paths between pairs of near-perfect matchings increase the congestion by a factor
of n2.

If π is uniform on Ω, we can bound the congestion through t = M →M ′:

ρ =
1

π(M)P (M,M ′)

∑
(I,F)∈cp(t)

π(I)π(F)|γIF |

≤ |Ω|m
∑

(I,F)∈cp(t)

n

|Ω|2

= mn
|cp(t)|
|Ω|

≤ mn
|Ω′|
|Ω|

≤ mn3

For dense graphs we can generate a random perfect matching in polynomial time, by running
the chain for the mixing time. If the final state is a perfect matching (with probability at
least 1/n2), then it’s a random perfect matching. Otherwise, we run the chain again.

General Bipartite Graphs

Consider a bipartite graph G = (V1, V2, E). We’ll present the algorithm of Jerrum, Sinclair
and Vigoda [JSV04] for generating a random perfect of an arbitrary bipartite graph (and
thus approximate the permanent of any non-negative matrix).

Once we remove the min-degree condition, the ratio of perfect matchings to near-perfect
matchings can be exponentially small. To ensure perfect matchings are likely in the station-
ary distribution we introduce suitable weights on matchings and modify the Markov chain.

Lecture 7: 7-4

The weight of a matching is a function of the location of its holes (if any). Let

w∗(M) =

{
1 for M ∈M
w∗(u, v) = |M|

|N (u,v)| for M ∈ N (u, v)

We then modify the Markov chain introduced for dense graphs so that the stationary dis-
tribution is proportional to the weights. To do this we simply add what is known as a
Metropolis filter. More precisely we simply modify the last step of the Markov chain to only
move to the proposed new matching with an appropriate probability:

3. If X ′ ∈ Ω, with probability 1/2 min{1, w
∗(X′)

w∗(Xt)
} set Xt+1 = X ′, else Xt+1 = Xt.

It is straightforward to verify that, for M ∈ Ω, π(M) = w(M)/Z where Z =
∑

M ′∈Ωw(M ′).

There is an obvious concern with our proposed weights. In order to compute the weights,
we need to be able to compute the number of perfect matchings and near-perfect matchings
– this was our original task. We will tackle this problem later. Let us first show that if we
can obtain the weights, then we can generate a random perfect matching efficiently.

To motivate the above weights, let’s look at the effect on the stationary distribution. We
have

π(N (u, v)) =
1

Z

∑
M∈N (u,v)

w∗(M) ==
1

Z

∑
M∈N (u,v)

|M|
|N (u, v)|

= |M|/Z.

Similarly,
π(M) = |M|/Z.

Therefore, each hole pattern is equally likely, i.e., for all u ∈ V1, v ∈ V2,

π(M) = π(N (u, v)).

Hence,

π(M) =
1

n2 + 1
.

Thus, in the stationary distribution we output a random perfect matching with probability
1/(n2 +1). Equally important, with these ideal weights, or even a reasonable approximation,
our Markov chain is rapidly mixing.

Lemma 7.5 For the Markov chain with weights w satisfying, for all u, v where the associated
quantities are defined,

w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v),

we have
τ(ε) ≤ poly(n, log 1/ε).

Lecture 7: 7-5

The proof idea is the same as for dense graphs. We use the same canonical paths as before.
The critical difference in the analysis is that we now have to guarantee that for a transition
t = M →M ′,

w(I)w(F) ≤ w(M)P (M,M ′)w(ηt(I, F)),

where ηt(I, F) : cp(t) → Ω′ is the same injective map we used for dense graphs. This
inequality is equivalent to

π(I)π(F) ≤ π(M)P (M,M ′)π(ηt(I, F)).

This ensures that the map η has sufficient weight to encode the initial, final pair. Assuming
this inequality we can still bound the congestion thru a transition t = M →M ′ as follows:

ρt =
1

π(M)P (M,M ′)

∑
(I,F)∈cp(t)

π(I)π(F)|γIF |

≤ 1

π(M)P (M,M ′)

∑
(I,F)∈cp(t)

π(M)P (M,M ′)π(ηt(I, F))n

= n
∑

(I,F)∈cp(t)

π(ηt(I, F))

≤ n.

For bipartite graphs, it turns out that the same canonical paths and encodings ηt as used for
dense graphs, also satisfy the desired inequality on weights. This follows by checking several
cases. (The inequality does not hold for non-bipartite graphs.)

Therefore, if we have these ideal weights w∗ we can generate a random perfect matching in
a polynomial number of steps (with high probability).

What happens if we run the chain with an approximation w to the ideal weights? The chain
still converges rapidly to its stationary distribution, but the stationary distribution is no
longer uniform over hole patterns. The likelihood, in the stationary distribution, of each
hole pattern will be skewed by how far off the weights are from ideal. In particular, we will
have

π(M) ∝ |M|, π(N (u, v)) ∝ w(u, v)|N (u, v)|.

Therefore, we have
π(M)

N (u, v)
=
w∗(u, v)

w(u, v)
.

The left-hand side we can estimate by simply generating many samples from the chain and
count the number of occurrences of each hole pattern. Since we know w(u, v), we can then
estimate w∗(u, v). In other words, given weights which are reasonably close to ideal, we
can revise these weights arbitrarily close to ideal, i.e., we can compute an arbitrarily close
approximation to w∗.

Lecture 7: 7-6

Before presenting the algorithm for generating a random perfect matching, we need to convert
from unweighted graphs to weighted graphs. To avoid confusion with the weights w∗ we call
the weights on edges as fugacities. Given a bipartite graph G = (V1, V2, E) we view it as a
graph with fugacities where for u ∈ V1, v ∈ V2, the edge (u, v) has fugacity

λ∗(u, v) =

{
1 if (u, v) ∈ E
0 otherwise.

Then a matching M has a fugacity λ(M) =
∏

e∈M λ(e). Similarly, we redefine w∗(u, v) to be
over matchings weighted by their fugacity.

Our algorithm starts with a simple graph where we can compute the weights w∗. We then
learn the graph along with the weights w∗ in a slow manner. Our initial graph is the complete
bipartite graph, here we can easily compute w∗. Iteratively, we reduce the fugacities of some
non-edge by a factor of 1/2. We then run the chain with the ideal weights from the previous
graph on this new graph. The old ideal weights are sufficiently close to the new ideal weights,
so that we can estimate the new ideal weights as described above. We repeat this process
until all non-edges have negligible fugacities (fugacities 1/n! suffice since there are at most
n! perfect matchings in any graph).

References

[Jer03] M. Jerrum. Counting, Sampling and Integrating: Algorithms and Complexity. Lec-
tures in Mathematics, ETH Zürich. Birkhaüser Basel, 2003.

[JS89] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Com-
puting, 18(6):1149–1178, 1989.

[JSV04] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. Journal of the ACM, 51(4):671–
697, 2004.

