Homework 2
Due: Wednesday, October 13, 2021 before the start of class at 11am.
Type your solutions using Latex and turn-in via Gradescope.
Let me know if you’re having difficulties and I’ll give you help/hints.
Zoom office hours are Tuesdays/Thursdays at 9pm.

Problem 1:
Consider the following Markov chain for shuffling a deck of \(n \) cards. Let \(\Omega \) denote the set of all \(n! \) permutations of \(\{1, 2, \ldots, n\} \). We will choose a random position \(i \) and a random card \(c \), then we will swap card \(c \) with the card in position \(i \). Formally it is the following.

Notation: For a state \(X \in \Omega \), let \(X = (x_1, \ldots, x_n) \) denote the permutation where \(x_i \) is the card in the \(i \)-th position and let \(X^{-1}(c) \) denote the position of card \(c \in \{1, \ldots, n\} \). For example, for \(X = (3, 4, 2, 1, 5) \) then card 3 is in the first position and \(X^{-1}(2) = 3 \) as card 2 is in position 3.

Markov chain:. From \(X_t \in \Omega \),

1. Choose a position \(i \) u.a.r. from \(\{1, \ldots, n\} \) and a card \(c \) u.a.r. from \(\{1, \ldots, n\} \).
2. Let \(j = X_t^{-1}(c) \) denote the position of card \(c \) in the current permutation \(X_t \).
3. Swap the cards in positions \(i \) and \(j \), i.e., let

\[
X_{t+1}(i) = X_t(j), X_{t+1}(j) = X_t(i), \text{ and for all } k \neq i, j, X_{t+1}(k) = X_t(k).
\]

Part (a): Show that this chain is ergodic with uniform stationary distribution.

Part (b): Give a coupling argument to prove that the mixing time is \(O(n^2) \).

Hint: you should end up with a coupon collector type argument at the end of your analysis but the probabilities of collecting the coupons will be on the order of \(1/n^2 \) (instead of \(1/n \)).

Note: It is OK to use path coupling, however it is a bit subtle to do so correctly. In particular, be careful with the set \(S \subset \Omega \times \Omega \) that you use as “neighboring” pairs and with the definition of the distance metric, make sure it’s a path metric (i.e., for every pair \((X, Y) \in \Omega \times \Omega \) the shortest path in \((\Omega, S) \) between \(X \) and \(Y \) is of length equal to the distance between \((X, Y) \)).