Optimal Mixing of MCMC via Spectral Independence

Eric Vigoda
University of California, Santa Barbara
Joint work with:
Zongchen Chen (MIT) and Kuikui Liu (MIT)

RS\&A, June 2023

Contents

- Independent Sets and Computational Phase Transition
- Spectral Independence Technique
- Proof approach: SI implies fast mixing of Glauber
- Conclusion

Sampling Independent Sets

- Given $G=(V, E)$, let $\Omega=$ set of all independent sets (IS) of G
$I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega|=$ number of IS's of G

Sampling Independent Sets

- Given $G=(V, E)$, let $\Omega=$ set of all independent sets (IS) of G
$I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega|=$ number of IS's of G
- Sampling problem: Sample IS from $\mu=\operatorname{uniform}(\Omega)$

$$
\text { Typically, }|\Omega| \geq \exp (C n)) \text { where } n=|V|
$$

Can we count/sample in time $\operatorname{poly}(n)$?

Sampling Independent Sets

- Given $G=(V, E)$, let $\Omega=$ set of all independent sets (IS) of G
$I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega|=$ number of IS's of G
 $G=(V, E)$
- Sampling problem: Sample IS from $\mu=\operatorname{uniform}(\Omega)$

$$
\text { Typically, }|\Omega| \geq \exp (C n)) \text { where } n=|V|
$$

Can we count/sample in time poly(n)?

- Exact counting is intractable (\#P-complete)

$$
|\Omega|=7
$$

- Can we approximate $|\Omega|$? Approx. Counting \cong Approx. Sampling

Approx. Counting/Sampling

Counting: $|\Omega|=\#$ of IS's; Sampling: $\mu=\operatorname{uniform}(\Omega)$

- FPRAS for Approx Counting: Given G, and $\epsilon, \delta>0$, output EST:

$$
\operatorname{Pr}(E S T(1-\epsilon) \leq|\Omega| \leq \operatorname{EST}(1+\epsilon)) \geq 1-\delta
$$

in time $\operatorname{poly}(n, 1 / \epsilon, \log (1 / \delta))$.

- Approx. Sampler: Given G, and $\delta>0$, samples from π where $\|\pi-\mu\|_{T V} \leq \delta$ in time $\operatorname{poly}(n, \log (1 / \delta))$.

$$
\|\pi-\mu\|_{T V}:=\frac{1}{2} \sum_{x \in \Omega}|\pi(x)-\mu(x)|
$$

- Approx Sampler in $O(n \log n)$ time then FPRAS in $O\left(n^{2} \log ^{2} n\right)$ time.

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Glauber Dynamics / Gibbs Sampling

Goal: sample $\mu=$ uniform (Ω)

From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{1}{2} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{2}\end{cases}$

Mixing time: $\max _{X_{0}} \min \left\{t:\left\|X_{t}-\mu\right\|_{T V} \leq 1 / 4\right\}$

Approx Counting Complexity

Approx counting \# of IS's and sampling uniform(Ω)

- Input: For any $G=(V, E)$ with maximum degree Δ
- $\Delta \leq 5$: $O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21]
$\Longrightarrow O\left(n^{2} \log ^{2} n\right)$ to approx $|\Omega|$
- $\Delta \geq 6$: NP-hard to approx $|\Omega|$ within factor $\exp (C n)$ some $C>0$ [sly'10] (even when restricted to triangle-free graphs of max deg. 6)

Approx Counting Complexity

Approx counting \# of IS's and sampling uniform(Ω)

- Input: For any $G=(V, E)$ with maximum degree Δ
- $\Delta \leq 5$: $O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21]
$\Longrightarrow O\left(n^{2} \log ^{2} n\right)$ to approx $|\Omega|$
- $\Delta \geq 6$: NP-hard to approx $|\Omega|$ within factor $\exp (C n)$ some $C>0$ [sly $\left.{ }^{3} 10\right]$ (even when restricted to triangle-free graphs of max deg. 6)

What happens between $5 \leftrightarrow 6$?

Hardcore (gas) Model

- Given $G=(V, E)$ and fugacity/activity $\lambda>0$
- $\Omega=$ collection of all independent sets of G.

$$
\text { For } I \in \Omega, w(\sigma)=\lambda^{|I|}
$$

Gibbs distribution: $\mu(I)=\frac{w(I)}{Z_{G}(\lambda)}$

$$
\text { Partition function: } Z_{G}(\lambda)=\sum_{I \in \Omega} w(I)
$$

- $\lambda=1: Z(1)=|\Omega|=$ number of $I S$'s, and $\mu=$ uniform (Ω)

$$
Z(\lambda)=1+4 \lambda+2 \lambda^{2}
$$

$$
\mu\left(I_{1}\right)=\lambda / Z
$$

Hardcore (gas) Model

- Given $G=(V, E)$ and fugacity/activity $\lambda>0$
- $\Omega=$ collection of all independent sets of G.

$$
\text { For } I \in \Omega, w(\sigma)=\lambda^{|I|}
$$

Gibbs distribution: $\mu(I)=\frac{w(I)}{Z_{G}(\lambda)}$

- Easy for small λ : see small IS's most of the time
- Hard for large λ : will see large IS's
- $\lambda=1: Z(1)=|\Omega|=$ number of $I S$'s, and $\mu=$ uniform (Ω)

$$
Z(\lambda)=1+4 \lambda+2 \lambda^{2}
$$

$$
\mu\left(I_{1}\right)=\lambda / Z
$$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Glauber Dynamics / Gibbs Sampling

Goal: sample an IS approximately from μ (general λ)
From X_{t} :

1. Pick a vertex $v \in V$ u.a.r.
2. If $X_{t} \cap N(v) \neq \varnothing$, then $X_{t+1}=X_{t}$
3. Otherwise, $X_{t+1}= \begin{cases}X_{t} \cup\{v\}, & \text { with prob. } \frac{\lambda}{1+\lambda} \\ X_{t} \backslash\{v\}, & \text { with prob. } \frac{1}{1+\lambda}\end{cases}$

Approx Counting Complexity

$\lambda=1$ case: Approx counting \# of IS's and sampling uniform(Ω)

- Input: $G=(V, E)$ with maximum degree Δ
- $\Delta \leq 5: O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21] $\Longrightarrow O\left(n^{2} \log ^{2} n\right)$ FPRAS to approx $|\Omega|$
- $\Delta \geq 6$: NP-hard to approx $|\Omega|$ within $\exp (C n)$ some $C>0$ [sly'10]

What happens between $5 \leftrightarrow 6$?

Hard-core Model Complexity

Counting: compute $Z(\lambda)=\sum_{I \in \Omega} \lambda^{|I|} ;$ Sampling: sample from $\mu(I)=\frac{\lambda^{|l|}}{Z_{G}(\lambda)}$

- Input: For any $G=(V, E)$ with $\max \operatorname{deg} \Delta$ and $\lambda>0$:
- For all constant Δ, there exists $\lambda_{c}=\lambda_{c}(\Delta)$:
- All $\lambda<\lambda_{c}(\Delta): \quad O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
- All $\lambda>\lambda_{c}(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp (C n)$
[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16]

Hard-core Model Complexity

Counting: compute $Z(\lambda)=\sum_{I \in \Omega} \lambda^{|I|} ;$ Sampling: sample from $\mu(I)=\frac{\lambda^{|I|}}{Z_{G}(\lambda)}$

- Input: For any $G=(V, E)$ with $\max \operatorname{deg} \Delta$ and $\lambda>0$:
- For all constant Δ, there exists $\lambda_{c}=\lambda_{c}(\Delta)$:
- All $\lambda<\lambda_{c}(\Delta): \quad O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
- All $\lambda>\lambda_{c}(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp (C n)$
[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16]
What is $\lambda_{c}=\lambda_{c}(\Delta)$?

Hard-core Model Complexity

Counting: compute $Z(\lambda)=\sum_{I \in \Omega} \lambda^{|I|} ;$ Sampling: sample from $\mu(I)=\frac{\lambda^{|I|}}{Z_{G}(\lambda)}$

- Input: For any $G=(V, E)$ with $\max \operatorname{deg} \Delta$ and $\lambda>0$:
- For all constant Δ, there exists $\lambda_{c}=\lambda_{c}(\Delta): \quad \lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta-2}$
- All $\lambda<\lambda_{c}(\Delta): \quad O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
- All $\lambda>\lambda_{c}(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp (C n)$
[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16]
What is $\lambda_{c}=\lambda_{c}(\Delta)$?

Hard-core Model Complexity

Counting: compute $Z(\lambda)=\sum_{I \in \Omega} \lambda^{|I|} ;$ Sampling: sample from $\mu(I)=\frac{\lambda^{|l|}}{Z_{G}(\lambda)}$

- Input: For any $G=(V, E)$ with $\max \operatorname{deg} \Delta$ and $\lambda>0: \begin{aligned} & \lambda_{c}(5)=4^{4} / 3^{5} \approx 1.053 \\ & \lambda_{c}(6)=5^{5} / 4^{6} \approx 0.763\end{aligned}$
- For all constant Δ, there exists $\lambda_{c}=\lambda_{c}(\Delta): \quad \lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta-2}$
- All $\lambda<\lambda_{c}(\Delta): \quad O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
- All $\lambda>\lambda_{c}(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp (C n)$
[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16]
What is $\lambda_{c}=\lambda_{c}(\Delta)$?

Phase Transition on Regular Trees

Let $\mu_{h}=$ Gibbs measure for Δ-regular tree of height h.
Does configuration at leaves influence root?
Even height vs. odd height
$\mu_{h}: \Delta$-regular tree of height h

Phase Transition on Regular Trees

$$
\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
$$

Compare marginal at root for even vs odd height
$\mu_{h}: \Delta$-regular tree of height h

$$
\begin{array}{ll}
\lambda<\lambda_{c}(\Delta): & \lim _{h \rightarrow \infty} \mu_{2 h}(r \in I)=\lim _{h \rightarrow \infty} \mu_{2 h+1}(r \in I) \\
\lambda>\lambda_{c}(\Delta): & \lim _{h \rightarrow \infty} \mu_{2 h}(r \in I)<\lim _{h \rightarrow \infty} \mu_{2 h+1}(r \in I)
\end{array}
$$

Computational Phase Transition

Theorem (Hardcore Model) [Chen-Liu-V'21]:
For every $\delta \in(0,1)$ and $\lambda \leq(1-\delta) \lambda_{c}(\Delta)$, for any G of max degree $\leq \Delta$, Glauber dynamics mixes in $\leq C(\Delta, \delta) \times n \log n$ steps.
$O(n \log n)$ mixing time of Glauber on any graph of max degree Δ [Chen-Liu-V'21]
$0 \quad \lambda<\lambda_{c}(\Delta)$
$\lambda_{c}(\Delta)$ $\lambda>\lambda_{c}(\Delta)$
Root-leaf correlations decay for infinite Δ-regular tree \mathbb{T}_{Δ}

$$
\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta-2}
$$

Previous Results

- $\lambda \leq(1-\delta) \lambda_{c}(\Delta)$: Exists poly-time approximate sampler for μ

Methods	Running Time	References
Correlation Decay	$n^{f(\delta) \times O(\log \Delta)}$	Weitz'06
Polynomial Interpolation	$O\left(n^{f(\Delta, \delta)}\right)$	Barvinok'16, Patel-Regts'17, Peters-Regts'19
Glauber Dynamics	$O\left(n^{f(\delta)}\right)$	Anari-Liu-Oveis Gharan'20
Glauber Dynamics	$O\left(n^{O(1 / \delta)}\right)$	Z. Chen-Liu-Vigoda'20
Glauber Dynamics	$\leq C(\Delta, \delta) n \log n$	Z. Chen-Liu-Vigoda'21
Glauber Dynamics	$\leq C(\delta) n \log n$	X. Chen-Feng-Yin-Zhang'22, Y. Chen-Eldan'22
Glauber Dynamics	$\geq C^{\prime}(\Delta) n \log n$	Hayes-Sinclair'07

- $\lambda>\lambda_{c}(\Delta)$: No poly-time approx sampler, assuming RP $\neq \mathrm{NP}$

[^0]
Contents

- Results for Hardcore Model and Computational Phase Transition
- Spectral Independence Technique
- Proof approach: SI implies fast mixing of Glauber
- Conclusion

Spectral Independence

- The (pairwise) influence of vertex u on vertex v is

$$
\Psi(u, v)= \begin{cases}\mu(v \in I \mid u \in I)-\mu(v \in I \mid u \notin I), & u \neq v \\ 0, & u=v\end{cases}
$$

- μ is α-spectrally independent if for any induced subgraph $H: \quad \lambda_{1}\left(\Psi_{H}\right) \leq \alpha$
\uparrow [Anari-Liu-Oveis Gharan'20]
Maximum
Eigenvalue
Ψ is not symmetric and can have negative entries, but all eigenvalues real and non-negative.

Spectral Independence

- The (pairwise) influence of vertex u on vertex v is

$$
\Psi(u, v)= \begin{cases}\mu(v \in I \mid u \in I)-\mu(v \in I \mid u \notin I), & u \neq v \\ 0, & u=v\end{cases}
$$

- μ is α-spectrally independent if for any induced subgraph H :
$\lambda_{1}\left(\Psi_{H}\right) \leq \alpha$
\uparrow
- Small $\eta \Longrightarrow$ Vertices are nearly independent

Maximum
Eigenvalue
empty graph: $\Psi(u, v)=0, \alpha_{\mathrm{SI}}=0$

- Large $\eta \Longrightarrow$ Vertices are strongly correlated
biclique: $\Psi(u, v) \approx-1 / 2$ for $u \in L, v \in R, \alpha_{\mathrm{SI}}=\Theta(n)$
Ψ is not symmetric and can have negative entries, but all eigenvalues real and non-negative.

Spectral Independence

- General setting: for $G=(V, E)$, for μ on $\{0,1\}^{V}$:
- A pinning τ is an assignment $\tau: S \rightarrow\{0,1\}$ for some $S \subset V$.
- The (pairwise) influence of vertex w on vertex v is

$$
\Psi_{\tau}(w, v)= \begin{cases}\mu_{\tau}(\sigma(v)=1 \mid \sigma(w)=1)-\mu_{\tau}(\sigma(v)=0 \mid \sigma(w)=0), & w \neq v \\ 0, & w=v\end{cases}
$$

where μ_{τ} is the distribution μ conditional on partial assignment τ

- μ is α-spectrally independent if for any pinning $\tau: \quad \lambda_{1}\left(\Psi_{\tau}\right) \leq \alpha \quad$ [Anari-Liu-Oveis Gharan'20]
Ψ is not symmetric and can have negative entries,
but all eigenvalues real and non-negative.

Main Theorems [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Theorem 2: All $\Delta, \alpha>0, b>0$, there exists $C(\Delta, \alpha, b)$. If α-spectrally independent and b-marginally bounded then mixing time:

$$
T_{\operatorname{mix}} \leq C(\Delta, \alpha, b) \times n \log n \text { steps. }
$$

Main Theorems [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Theorem 2: All $\Delta, \alpha>0, b>0$, there exists $C(\Delta, \alpha, b)$.
If α-spectrally independent and b-marginally bounded then mixing time:

$$
T_{\operatorname{mix}} \leq C(\Delta, \alpha, b) \times n \log n \text { steps. }
$$

Relaxation time $=$ inverse spectral gap. $O(n)$ relaxation time then FPRAS in $O\left(n^{2} \log ^{2} n\right)$.

Main Theorems [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Theorem 2: All $\Delta, \alpha>0, b>0$, there exists $C(\Delta, \alpha, b)$.
If α-spectrally independent and b-marginally bounded then mixing time:

$$
T_{\operatorname{mix}} \leq C(\Delta, \alpha, b) \times n \log n \text { steps. }
$$

- μ is b-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

$$
\min \left\{\mu_{H}(v \in I), \mu_{H}(v \notin I)\right\} \geq b .
$$

Relaxation time $=$ inverse spectral gap. $O(n)$ relaxation time then FPRAS in $O\left(n^{2} \log ^{2} n\right)$.

Main Theorems [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Theorem 2: All $\Delta, \alpha>0, b>0$, there exists $C(\Delta, \alpha, b)$.
If α-spectrally independent and b-marginally bounded then mixing time:

$$
T_{\operatorname{mix}} \leq C(\Delta, \alpha, b) \times n \log n \text { steps. }
$$

- μ is b-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

$$
\min \left\{\mu_{H}(v \in I), \mu_{H}(v \notin I)\right\} \geq b .
$$

Main Theorems [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Theorem 2: All $\Delta, \alpha>0, b>0$, there exists $C(\Delta, \alpha, b)$.
If α-spectrally independent and b-marginally bounded then mixing time:

$$
T_{\operatorname{mix}} \leq C(\Delta, \alpha, b) \times n \log n \text { steps. }
$$

- μ is b-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

$$
\min \left\{\mu_{H}(v \in I), \mu_{H}(v \notin I)\right\} \geq b
$$

Previously, $n^{C(\alpha)}$ mixing. [Anari-Liu-Oveis Gharan'20]

Contents

- Introduction: Hardcore Model and Phase Transition
- Glauber Dynamics and Spectral Independence
- Proof approach: Spectral independence implies fast mixing of Glauber
- Conclusion

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20]

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20]
Step 2: $O\left(n^{C(\alpha)}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20]
Step 2: $O\left(n^{C(\alpha)}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]
Step 3: $C(\alpha, \Delta) \times n$ relaxation time [Chen-Liu-V'21]

Glauber Dynamics: Alt. View

$$
Q=\{\bullet, \bullet\}
$$

Ω_{3} : set of all full configurations

$\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations $\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations $\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations
$\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations $\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations
$\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$

$$
\begin{aligned}
G= & (V, E) \\
& {[\text { Anari-Liu-Oveis Gharan'20] }}
\end{aligned}
$$

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations $\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$
$G=(V, E)$
[Anari-Liu-Oveis Gharan'20]

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Glauber Dynamics: Alt. View

$Q=\{\bullet, \bullet\}$
Ω_{3} : set of all full configurations $\pi_{3}(V, \sigma)=\mu(\sigma), \forall \sigma: V \rightarrow\{\bullet, \bullet\}$
$G=(V, E)$
[Anari-Liu-Oveis Gharan'20]

Glauber Dynamics is down-up walk P_{n}^{\vee} from Ω_{n} to Ω_{n-1} to Ω_{n}

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\cdot, \cdot\}$

Global Walks in Simplicial Complexes

Ω_{2} : set of all partial configurations on two vertices

$$
\pi_{2}(U, \tau)=\frac{1}{3} \mu\left(\sigma_{U}=\tau\right), \quad \forall U \subseteq V,|U|=2, \tau: U \rightarrow\{\bullet, \bullet\}
$$

Ω_{1} : set of all partial configurations on one vertex
$\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}$

Global Walks in Simplicial Complexes

Ω_{1} : set of all partial configurations on one vertex

$$
\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}
$$

$\Omega_{0}=\{\varnothing\}, \pi_{0}(\varnothing)=1$

Global Walks in Simplicial Complexes

Ω_{1} : set of all partial configurations on one vertex

$$
\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}
$$

$\Omega_{0}=\{\varnothing\}, \pi_{0}(\varnothing)=1$

Global Walks in Simplicial Complexes

Ω_{1} : set of all partial configurations on one vertex

$$
\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}
$$

$\Omega_{0}=\{\varnothing\}, \pi_{0}(\varnothing)=1$

Global Walks in Simplicial Complexes

Ω_{1} : set of all partial configurations on one vertex

$$
\pi_{1}(v, i)=\frac{1}{3} \mu\left(\sigma_{v}=i\right), \quad \forall v \in V, i \in\{\bullet, \bullet\}
$$

$\Omega_{0}=\{\varnothing\}, \pi_{0}(\varnothing)=1$

Ω_{2}

$$
\Omega_{1}=V \times\{0,1\}
$$

$\mathscr{X}(0)=\{\varnothing\}$
\varnothing

$\mathscr{X}(0)=\{\varnothing\}$ \square

$$
x(0)=\{\varnothing\}
$$

\square

Spectrum of local walks $P_{1,2}^{\wedge}$ and $P_{2,1}^{\vee}$ described by influence matrices Ψ_{μ} (spectral independence) [Anari-Liu-Oveis Gharan'20]

Up and Down Walks:

Up and Down Walks:

Let $\pi_{k}(\tau)=\frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_{k}$ is assignment $\tau: S \rightarrow\{0,1\}$ for $|S|=k$ vertices.

Up and Down Walks:

Let $\pi_{k}(\tau)=\frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_{k}$ is assignment $\tau: S \rightarrow\{0,1\}$ for $|S|=k$ vertices.
Down chain: P_{k}^{\downarrow} from $\tau \in \Omega_{k}: \quad P_{k}^{\downarrow}\left(\tau, \tau \backslash\left(i, s_{i}\right)\right)=1 / k$ where $i \in V, s_{i} \in\{0,1\}$

Up and Down Walks:

Let $\pi_{k}(\tau)=\frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_{k}$ is assignment $\tau: S \rightarrow\{0,1\}$ for $|S|=k$ vertices.
Down chain: P_{k}^{\downarrow} from $\tau \in \Omega_{k}: \quad P_{k}^{\downarrow}\left(\tau, \tau \backslash\left(i, s_{i}\right)\right)=1 / k$ where $i \in V, s_{i} \in\{0,1\}$
Up chain: P_{k-1}^{\uparrow} from $\sigma \in \Omega_{k-1}$:

$$
P_{k}^{\uparrow}\left(\sigma, \sigma \cup\left(i, s_{i}\right)\right) \propto \pi_{k}\left(\sigma \cup\left(i, s_{i}\right)\right)=\frac{\mu\left(\sigma \cup\left(i, s_{i}\right)\right)}{(n-k-1) \mu(\sigma)}
$$

Up and Down Walks:

Let $\pi_{k}(\tau)=\frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_{k}$ is assignment $\tau: S \rightarrow\{0,1\}$ for $|S|=k$ vertices.
Down chain: P_{k}^{\downarrow} from $\tau \in \Omega_{k}: \quad P_{k}^{\downarrow}\left(\tau, \tau \backslash\left(i, s_{i}\right)\right)=1 / k$ where $i \in V, s_{i} \in\{0,1\}$
Up chain: P_{k-1}^{\uparrow} from $\sigma \in \Omega_{k-1}$:

$$
\begin{aligned}
P_{k}^{\uparrow}\left(\sigma, \sigma \cup\left(i, s_{i}\right)\right) \propto \pi_{k}\left(\sigma \cup\left(i, s_{i}\right)\right) & =\frac{\mu\left(\sigma \cup\left(i, s_{i}\right)\right)}{(n-k-1) \mu(\sigma)} \\
\text { up-down: } & P_{k-1}^{\wedge}=P_{k-1}^{\uparrow} P_{k}^{\downarrow} \quad \text { down-up: } P_{k}^{\vee}
\end{aligned}=P_{k}^{\downarrow} P_{k-1}^{\uparrow}, ~ l
$$

Useful fact:

$$
\operatorname{gap}\left(P_{k-1}^{\wedge}\right)=\operatorname{gap}\left(P_{k}^{\vee}\right)
$$

Up-Down and Down-Up Walks:

Up-Down and Down-Up Walks:

Glauber Dynamics $=P_{n}^{\vee}=(n, n-1)$ down-up walk (Global Walk)

Up-Down and Down-Up Walks:

Glauber Dynamics $=P_{n}^{\vee}=(n, n-1)$ down-up walk (Global Walk)

For vertices $i, j \in V$, spins $s_{i}, s_{j} \in\{0,1\}, P_{1}^{\wedge}=(1,2)$ up-down walk:

$$
\begin{aligned}
P_{1}^{\wedge}\left(\left(i, s_{i}\right),\left(j, s_{j}\right)\right) & =\frac{1}{2} \frac{1}{n-1} \operatorname{Pr}_{\sigma \sim \mu}\left[\sigma(j)=s_{j} \mid \sigma(i)=s_{i}\right] \\
\Psi(i, j) & =\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=1]-\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=0]
\end{aligned}
$$

Up-Down and Down-Up Walks:

Glauber Dynamics $=P_{n}^{\vee}=(n, n-1)$ down-up walk (Global Walk)

For vertices $i, j \in V$, spins $s_{i}, s_{j} \in\{0,1\}, P_{1}^{\wedge}=(1,2)$ up-down walk:

$$
\begin{aligned}
P_{1}^{\wedge}\left(\left(i, s_{i}\right),\left(j, s_{j}\right)\right) & =\frac{1}{2} \frac{1}{n-1} \operatorname{Pr}_{\sigma \sim \mu}\left[\sigma(j)=s_{j} \mid \sigma(i)=s_{i}\right] \\
\text { Local Walk } Q & =2 P_{1}^{\wedge} \\
\Psi(i, j) & =\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=1]-\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=0]
\end{aligned}
$$

Up-Down and Down-Up Walks:

Glauber Dynamics $=P_{n}^{\vee}=(n, n-1)$ down-up walk (Global Walk)
For vertices $i, j \in V$, spins $s_{i}, s_{j} \in\{0,1\}, P_{1}^{\wedge}=(1,2)$ up-down walk:

$$
\begin{aligned}
P_{1}^{\wedge}\left(\left(i, s_{i}\right),\left(j, s_{j}\right)\right) & =\frac{1}{2} \frac{1}{n-1} \operatorname{Pr}_{\sigma \sim \mu}\left[\sigma(j)=s_{j} \mid \sigma(i)=s_{i}\right] \\
\text { Local Walk } Q & =2 P_{1}^{\wedge} \\
\Psi(i, j) & =\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=1]-\operatorname{Pr}[\sigma(j)=1 \mid \sigma(i)=0]
\end{aligned}
$$

Follows that: $\quad \lambda_{2}(Q)=\frac{\lambda_{\max }(\Psi)}{n-1}$
Fix configuration τ on k vertices, then: $\quad \lambda_{2}\left(Q_{\tau}\right)=\frac{\lambda_{\text {max }}\left(\Psi_{\tau}\right)}{n-k-1} \leq \frac{\alpha}{n-k-1}$

Local to Global Theorem

- [Alev-Lau'20]: If α-Spectrally Independent, then:

$$
\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n}^{\vee}\right) \geq \frac{1}{n} \prod_{i=0}^{n-2} \gamma_{i} \geq \frac{1}{n} \prod_{i=0}^{n-2}\left(1-\frac{\alpha}{n-i-1}\right) \geq \frac{C}{n^{\alpha+1}}
$$

γ_{k} is spectral gap for local walk $Q_{\tau}=2 P_{\tau, 1}^{\wedge}$ for worst assign τ to k vertices.

Local to Global Theorem

- [Alev-Lau'20]: If α-Spectrally Independent, then:

$$
\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n}^{\vee}\right) \geq \frac{1}{n} \prod_{i=0}^{n-2} \gamma_{i} \geq \frac{1}{n} \prod_{i=0}^{n-2}\left(1-\frac{\alpha}{n-i-1}\right) \geq \frac{C}{n^{\alpha+1}}
$$

γ_{k} is spectral gap for local walk $Q_{\tau}=2 P_{\tau, 1}^{\wedge}$ for worst assign τ to k vertices.

Yields: $O\left(n^{\alpha+1}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]

Local to Global Theorem

- [Alev-Lau'20]: If α-Spectrally Independent, then:

$$
\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n}^{\vee}\right) \geq \frac{1}{n} \prod_{i=0}^{n-2} \gamma_{i} \geq \frac{1}{n} \prod_{i=0}^{n-2}\left(1-\frac{\alpha}{n-i-1}\right) \geq \frac{C}{n^{\alpha+1}}
$$

γ_{k} is spectral gap for local walk $Q_{\tau}=2 P_{\tau, 1}^{\wedge}$ for worst assign τ to k vertices.

Yields: $O\left(n^{\alpha+1}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]
How to prove Local to Global Theorem of [Alev-Lau'20]?

Spectral gap = Variance decay

- μ : Gibbs distribution over $\Omega \subset\{0,1\}^{V}$
. For a function $f: \Omega \rightarrow \mathbb{R}_{\geq 0}$, expectation: $\mathbb{E}_{\mu} f=\sum_{\sigma: V \rightarrow Q} \mu(\sigma) f(\sigma)$
. Variance of f is $\operatorname{Var}_{\mu}(f)=\frac{1}{2} \sum_{\sigma, \eta \in \Omega} \mu(\sigma) \mu(\eta)(f(\sigma)-f(\eta))^{2}$
. Local Variance $=$ Dirichlet Form $D_{P}(f)=\frac{1}{2} \sum_{\sigma, \eta \in \Omega} \mu(\sigma) P(\sigma, \eta)(f(\sigma)-f(\eta))^{2}$
- Spectral gap γ equivalent to: $\min _{f} D_{P}(f) \geq \gamma \operatorname{Var}_{\mu}(f)$

$$
\text { then } \operatorname{Var}_{\mu}(P f) \leq(1-\gamma) \operatorname{Var}_{\mu}(f)
$$

Local-to-Global Key Fact: $D_{P_{k}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}}(f)$

Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
D_{P_{k}}(f):=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2}
$$

Local-to-Global Key Fact: $D_{P_{k}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}}(f)$

Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
\begin{gathered}
D_{P_{k}}(f):=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2} \\
P_{k}^{\wedge}(\sigma, \eta): \\
\sigma=\left\{\left(v_{1}, B\right),\left(v_{2}, R\right)\right\}
\end{gathered}
$$

Local-to-Global Key Fact: $D_{P_{k}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}}(f)$
 Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
\begin{aligned}
& D_{P_{k}}(f):=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2} \quad \text { Note: }|\sigma \cap \eta|=k-1 \\
& P_{k}^{\wedge}(\sigma, \eta): \\
& \sigma=\left\{\left(v_{1}, B\right),\left(v_{2}, R\right)\right\} \quad \eta=\left\{\left(v_{3}, R\right),\left(v_{2}, R\right)\right\}
\end{aligned}
$$

Local-to-Global Key Fact: $D_{P_{k}^{(}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}^{\vee}}(f)$

Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
D_{P_{\widehat{k}}}(f):=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2} \quad \text { Note: }|\sigma \cap \eta|=k-1
$$

Local-to-Global Key Fact: $D_{P_{k}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}}(f)$
 Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
\begin{array}{rlrl}
D_{P_{k}}(f) & :=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2} & \\
& =\frac{k}{k+1} \sum_{\tau \in \Omega_{1}} \pi_{k-1}(\tau) D_{Q_{\tau}}(f) & & \text { Nete: }|\sigma \cap \eta|=k-1 \\
& \text { Recall, } \frac{1}{2} Q=P_{\hat{1}}^{\wedge}
\end{array}
$$

Local-to-Global Key Fact: $D_{P_{k}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}}(f)$
 Recall, $\operatorname{gap}\left(P_{k}^{\wedge}\right)=\operatorname{gap}\left(P_{k+1}^{\vee}\right)$

$$
\begin{aligned}
D_{P_{k}}(f) & :=\frac{1}{2} \sum_{\sigma, \eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta)(f(\sigma)-f(\eta))^{2} \\
& =\frac{k}{k+1} \sum_{\tau \in \Omega_{k-1}} \pi_{k-1}(\tau) D_{Q_{\tau}}(f) \quad \text { Note: }|\sigma \cap \eta|=k-1 \\
& \geq \gamma_{k-1} \frac{k}{k+1} \sum_{\tau \in \Omega_{k-1}} \pi_{k-1}(\tau) \operatorname{Var}_{\mu_{\tau, 1}}(f)=\gamma_{k-1} \frac{k}{k+1} D_{P_{k}^{\vee}}(f)
\end{aligned}
$$

Inductive proof of Local to Global Theorem

Goal: $\operatorname{gap}\left(P_{k}^{\vee}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \quad$ equivalent to: $\quad D_{P_{k}^{\vee}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k}}(f)$

Inductive proof of Local to Global Theorem

Goal: $\operatorname{gap}\left(P_{k}^{\vee}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \quad$ equivalent to: $\quad D_{P_{k}^{\vee}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k}}(f)$
Since $\operatorname{gap}\left(P_{k}^{\vee}\right)=\operatorname{gap}\left(P_{k-1}^{\wedge}\right)$ equivalent to: $\quad D_{P_{k-1}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k-1}}(f)$

Inductive proof of Local to Global Theorem

Goal: $\operatorname{gap}\left(P_{k}^{\vee}\right) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \quad$ equivalent to: $\quad D_{P_{k}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k}}(f)$
Since $\operatorname{gap}\left(P_{k}^{\vee}\right)=\operatorname{gap}\left(P_{k-1}^{\wedge}\right)$ equivalent to: $\quad D_{P_{\hat{k}-1}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k-1}}(f)$

$$
\begin{gathered}
D_{P_{k-1}^{\wedge}}(f) \underset{\uparrow}{\underset{\uparrow}{\text { Key Fact }}} \underset{\gamma_{k-2}}{ } \frac{k-1}{k} D_{P_{k-1}^{\vee}}(f) \geq \gamma_{k-2} \frac{k-1}{k} \frac{1}{k-1} \prod_{i=0}^{k-3} \gamma_{i} \operatorname{Var}_{\pi_{k-1}}(f)=\frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \operatorname{Var}_{\pi_{k-1}}(f) . \\
\quad \text { on previous slide }
\end{gathered} \quad \text { by induction } \quad .
$$

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global theorem [Alev-Lau'20]

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global theorem [Alev-Lau'20]
Step 2: $O\left(n^{C(\alpha)}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]

Goal: Proof Sketch [CLV'21]

Let μ be Gibbs dist. of spin system on $G=(V, E)$ of constant max degree $\leq \Delta$.
Theorem 1: For all Δ, all $\alpha>0$, there exists $C(\Delta, \alpha)$.
If μ is α-spectrally independent, then Glauber Dynamics has relaxation time:

$$
T_{\text {relax }} \leq C(\Delta, \alpha) \times n \text { steps }
$$

Step 1: Local to Global theorem [Alev-Lau'20]
Step 2: $O\left(n^{C(\alpha)}\right)$ relaxation time [Anari-Liu-Oveis Gharan'20]
Step 3: $C(\alpha, \Delta) \times n$ relaxation time [Chen-Liu-V'21]

Local to Global Theorem

- [Alev-Lau'20]: If α-Spectrally Independent, then:

$$
\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n, n-1}^{\vee}\right) \geq \frac{1}{n} \prod_{k=0}^{n-2} \gamma_{k} \geq \frac{1}{n} \prod_{k=0}^{n-2}\left(1-\frac{\alpha}{n-k-1}\right) \geq n^{-\alpha-1}
$$

where γ_{k} is spectral gap for local walk with worst assignment τ to k vertices.

Local to Global Theorem

- [Alev-Lau'20]: If α-Spectrally Independent, then:

$$
\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n, n-1}^{\vee}\right) \geq \frac{1}{n} \prod_{k=0}^{n-2} \gamma_{k} \geq \frac{1}{n} \prod_{k=0}^{n-2}\left(1-\frac{\alpha}{n-k-1}\right) \geq n^{-\alpha-1}
$$

where γ_{k} is spectral gap for local walk with worst assignment τ to k vertices.
Want gap $\geq \frac{C}{n} \quad$ but losing too much when $k=o(n)$

Uniform Block Dynamics

βn-Uniform Block Dynamics where $\beta=O(1 / \Delta)$. In each step:

1. Pick $S \subseteq V,|S|=\beta n$ u.a.r.
2. Fix $\sigma_{V \backslash S}$ and update σ_{S} from $\mu_{S}\left(\cdot \mid \sigma_{V \backslash S}\right)$

Uniform Block Dynamics

βn-Uniform Block Dynamics where $\beta=O(1 / \Delta)$. In each step:

1. Pick $S \subseteq V,|S|=\beta n$ u.a.r.
2. Fix $\sigma_{V \backslash S}$ and update σ_{S} from $\mu_{S}\left(\cdot \mid \sigma_{V \backslash S}\right)$

Local-to-Global [Alev-Lau'20]: $\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n}^{\vee}\right)=\frac{1}{n} \prod_{k=0}^{n-2} \gamma_{k} \geq n^{-\alpha-1}$ Improved Local-to-Global:

$$
\operatorname{gap}\left(P_{k}^{\vee}\right) \geq \frac{\Gamma_{k-1}}{\sum_{i=0}^{k-1} \Gamma_{i}} \geq \frac{\Gamma_{k-1}^{k=0}}{k} \text { where } \Gamma_{i}=\prod_{j=0}^{i-1} \gamma_{j}
$$

Uniform Block Dynamics

βn-Uniform Block Dynamics where $\beta=O(1 / \Delta)$. In each step:

1. Pick $S \subseteq V,|S|=\beta n$ u.a.r.
2. Fix $\sigma_{V \backslash S}$ and update σ_{S} from $\mu_{S}\left(\cdot \mid \sigma_{V \backslash S}\right)$

Local-to-Global [Alev-Lau'20]: $\operatorname{gap}\left(P_{\text {Glauber }}\right)=\operatorname{gap}\left(P_{n}^{\vee}\right)=\frac{1}{n} \prod_{k=0}^{n-2} \gamma_{k} \geq n^{-\alpha-1}$ Improved Local-to-Global:

$$
\operatorname{gap}\left(P_{k}^{\vee}\right) \geq \frac{\Gamma_{k-1}}{\sum_{i=0}^{k-1} \Gamma_{i}} \geq \frac{\Gamma_{k-1}^{k=0}}{k} \text { where } \Gamma_{i}=\prod_{j=0}^{i-1} \gamma_{j}
$$

Yields $\operatorname{gap}\left(P_{n,(1-\beta) n}^{\vee}\right) \geq C(\beta, \alpha)$

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size
- $\operatorname{Var}(f) \leq C^{\prime} \mathbb{E}_{S, \tau(\bar{S})}\left[\operatorname{Var}_{S}(f)\right] \quad(\text { gap of } \beta n \text {-uniform block dynamics })^{G}$

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size
- $\operatorname{Var}(f) \leq C^{\prime} \mathbb{E}_{S, \tau(\bar{S}]}\left[\operatorname{Var}_{S}(f)\right]$

$$
=C^{\prime} \mathbb{E}\left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f)\right]
$$

(gap of βn-uniform block dynamics) ${ }^{G}$
(components T, T' are independent)

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size
- $\operatorname{Var}(f) \leq C^{\prime} \mathbb{E}_{S, \tau(\bar{S})}\left[\operatorname{Var}_{S}(f)\right] \quad(\text { gap of } \beta n \text {-uniform block dynamics) })^{G}$

$$
\begin{aligned}
& =C^{\prime} \mathbb{E}\left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f)\right] \quad \text { (components } \mathrm{T}, \mathrm{~T}^{\prime} \text { are ind } \\
& \leq C^{\prime} \times \mathbb{E}\left[\sum_{T \in G[S]}|T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f)\right] \quad \text { (from [ALO'20]) }
\end{aligned}
$$

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size
- $\operatorname{Var}(f) \leq C^{\prime} \mathbb{E}_{S, \tau(\bar{S})}\left[\operatorname{Var}_{S}(f)\right] \quad\left(\right.$ gap of βn-uniform block dynamics) ${ }^{G}$

$$
\begin{array}{lr}
=C^{\prime} \mathbb{E}\left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f)\right] & \text { (components } T, T^{\prime} \text { are ind } \\
\leq C^{\prime} \times \mathbb{E}\left[\sum_{T \in G[S]}|T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f)\right] & \text { (from [ALO'20]) } \\
=C^{\prime \prime} \sum_{v} \mathbb{E}\left[\operatorname{Var}_{v}(f)\right] & \text { (by shattering) }
\end{array}
$$

Shattering

- Pick $S \subseteq V$ of size $|S|=\beta n \approx \frac{n}{1000 \Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
- Each connected component $T \in G[S]$ has $O(1)$ expected size
- $\operatorname{Var}(f) \leq C^{\prime} \mathbb{E}_{S, \tau(\overline{\mathcal{S}})}\left[\operatorname{Var}_{S}(f)\right] \quad$ (gap of βn-uniform block dynamics) ${ }^{G}$

$$
\begin{array}{lr}
=C^{\prime} \mathbb{E}\left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f)\right] \quad \text { (components } \mathrm{T}, \mathrm{~T}^{\prime} \text { are ind } \\
\leq C^{\prime} \times \mathbb{E}\left[\sum_{T \in G[S]}|T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f)\right] \quad \text { (from [ALO'20]) } \\
=C^{\prime \prime} \sum_{v} \mathbb{E}\left[\operatorname{Var}_{v}(f)\right] & \text { (by shattering) } \\
=C^{\prime \prime} n D_{P_{\text {Clawoer }}}(f) &
\end{array}
$$

(Relative) Entropy

- μ : Gibbs distribution over $\{0,1\}^{V}$
- For a function $f:\{0,1\}^{V} \rightarrow \mathbb{R}_{\geq 0}$:
The expectation of f is $\mathbb{E}{\mu} f=\sum_{\sigma: V \rightarrow Q} \mu(\sigma) f(\sigma)$
- The entropy of f is $\operatorname{Ent}_{\mu}(f)=\mathbb{E}_{\mu}\left[f \log \left(\frac{f}{\mathbb{E}_{\mu} f}\right)\right]$
- Entropy describes "fluctuation" of f w.r.t. $\mu\left(\operatorname{Ent}_{\mu}(f)=0 \Leftrightarrow f \equiv \mathbb{E}_{\mu} f\right)$
- Spectral gap γ then $\operatorname{Var}_{\mu}(P f) \leq(1-\gamma) \operatorname{Var}_{\mu}(f)$
- Entropy decay (modified log-Sobolev constant) ρ then $\operatorname{Ent}_{\mu}(P f) \leq(1-\rho) \operatorname{Ent}_{\mu}(f)$

Approximate Tensorization of Entropy

- μ satisfies approximate tensorization (AT) of entropy with constant C if

$$
\operatorname{Ent}(f) \leq C \sum_{v \in V} \mathbb{E}\left[\operatorname{Ent}_{v}(f)\right], \quad \forall f:\{0,1\}^{V} \rightarrow \mathbb{R}_{\geq 0}
$$

"Fluctuation" of f is attributed to the sum of "average local fluctuation" at individual vertices

Fact: AT holds for a product distribution μ with constant $C=1$

Connection to Other Methods

Correlation decay
[Weitz'06, Sinclair-Srivastava-Thurley'14, Li-Lu-Yin'13]

Polynomial interpolation [Barvinok'16, Patel-Regts'17, Peters-Regts'19]

- Large running time \& hard to implement
- We can transform these results to optimal MCMC via Spectral Independence

Picture for Spectral Independence

[Chen-Liu-V'20]
Correlation Decay Proof Approach

[Blanca-Caputo-Chen-Parisi-Stefankovic-V '22, Liu'21]
(Path) Coupling for any Local MCMC
[Chen-Liu-V'21b]
Zero-Free Region of Partition Function

Spectral Independence

Optimal Mixing and Optimal Entropy Decay

Glauber Dynamics
[Chen-Liu-V'21]

Any Block Dynamics
[BCCPSV'22]
Swendsen-Wang (SW) (Global dynamics for Ising)

Conclusion

We showed: $T_{\text {mix }} \leq C(\delta, \Delta) n \log n$ where $\lambda \leq(1-\delta) \lambda_{c}(\Delta)$ for any $\delta>0$
Subsequent work:
$T_{\text {mix }} \leq f(\delta) n \log n$ for any G with max $\operatorname{deg} \Delta$ when $\lambda<\lambda_{c}(\Delta)$
$T_{\operatorname{mix}}=O\left(n^{3}\right)$ for any bipartite G with max deg Δ on LHS when $\lambda<\lambda_{c}(\Delta) \quad$ [Chen-Liu-Yin'23]
Open problem: k-Colorings when $k \geq \Delta+2$?

- General graphs: $k>\left(11 / 6-10^{-5}\right) \Delta$
- Triangle-free graphs: $k>1.764 \Delta$
- Correlation Decay on Trees: $k \geq \Delta+3$
$T_{\text {mix }} \leq C(\Delta) n \log n$ when $k \geq \Delta+3$ and girth $\geq g(\Delta)$

Conclusion

We showed: $T_{\text {mix }} \leq C(\delta, \Delta) n \log n$ where $\lambda \leq(1-\delta) \lambda_{c}(\Delta)$ for any $\delta>0$
Subsequent work:
$T_{\text {mix }} \leq f(\delta) n \log n$ for any G with max $\operatorname{deg} \Delta$ when $\lambda<\lambda_{c}(\Delta)$
$T_{\text {mix }}=O\left(n^{3}\right)$ for any bipartite G with max deg Δ on LHS when $\lambda<\lambda_{c}(\Delta) \quad$ [Chen-Liu-Yin'23]

Open problem: k-Colorings when $k \geq \Delta+2$?

- General graphs: $k>\left(11 / 6-10^{-5}\right) \Delta$
[BCCPSV'21, L'21]
- Triangle-free graphs: $k>1.764 \Delta$
- Correlation Decay on Trees: $k \geq \Delta+3$

$$
T_{\text {mix }} \leq C(\Delta) n \log n \text { when } k \geq \Delta+3 \text { and girth } \geq g(\Delta)
$$

Thank you!

[^0]: [Sly'10, Sly-Sun'14, Galanis-Štefankovič-V'16]

