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Sampling Independent Sets
• Given , let set of all independent sets (IS) of 


  is an IS if  has no adjacent pairs


• Counting problem: Compute  = number of IS’s of 


• Sampling problem: Sample IS from 
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Can we count/sample in time 


|Ω | ≥ exp(Cn)) where n = |V |

poly(n)?
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Typically,        


Can we count/sample in time 


|Ω | ≥ exp(Cn)) where n = |V |

poly(n)?
- Exact counting is intractable (#P-complete)

- Can we approximate ?   Approx. Counting  Approx. Sampling|Ω | ≅

[Jerrum-Valiant-Vazirani ’86]



Approx. Counting/Sampling
Counting: =# of IS’s;   Sampling: 


• FPRAS for Approx Counting: Given G, and , output EST: 
                          
    in time .


• Approx. Sampler: Given G, and , samples from  where   
     in time .


 

- Approx Sampler in  time then FPRAS in  time.

|Ω | μ = uniform(Ω)
ϵ, δ > 0

Pr (EST(1 − ϵ) ≤ |Ω | ≤ EST(1 + ϵ)) ≥ 1 − δ,
poly(n,1/ϵ, log(1/δ))

δ > 0 π ∥π − μ∥TV ≤ δ
poly(n, log(1/δ))

O(n log n) O(n2 log2 n)
4

[Stefankovic-Vempala-Vigoda ’09], [Huber’15], [Kolmogorov’18]

∥π − μ∥TV := 1
2 ∑

x∈Ω
|π(x) − μ(x) |



Goal: sample  


From  :

1. Pick a vertex  u.a.r.

2. If , then 


3. Otherwise, 

μ = uniform(Ω)
Xt

v ∈ V
Xt ∩ N(v) ≠ ∅ Xt+1 = Xt

Xt+1 =
Xt ∪ {v}, with prob.  1

2

Xt∖{v}, with prob.  1
2

Glauber Dynamics / Gibbs Sampling

Mixing time:  max
X0

min {t : ∥Xt − μ∥TV ≤ 1/4}
5
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Approx Counting Complexity
Approx counting # of IS’s and sampling uniform( )


• Input: For any  with maximum degree 

- :    mixing time for Glauber Dynamics.    [CLV’21]     

                             to approx 


- : NP-hard to approx within factor  some   [Sly’10] 
                         (even when restricted to triangle-free graphs of max deg. 6)

Ω
G = (V, E) Δ

Δ ≤ 5 O(n log n)
⟹ O(n2 log2 n) |Ω |

Δ ≥ 6 |Ω | exp(Cn) C > 0
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What happens between ?5 ↔ 6



Hardcore (gas) Model
• Given  and fugacity/activity 


•  = collection of all independent sets of .


For ,  


Gibbs distribution: 


Partition function:  

- : = number of IS’s, and  = uniform( )

G = (V, E) λ > 0
Ω G

I ∈ Ω w(σ) = λ|I|

μ(I) = w(I)
ZG(λ)

ZG(λ) = ∑
I∈Ω

w(I)

λ = 1 Z(1) = |Ω | μ Ω
7

Z(λ) = 1 + 4λ + 2λ2

μ(I2) = λ2/Z

μ(I1) = λ/Z

G = (V, E)
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λ = 1 Z(1) = |Ω | μ Ω
7

Z(λ) = 1 + 4λ + 2λ2

μ(I2) = λ2/Z

μ(I1) = λ/Z

G = (V, E)

- Easy for small : see small IS’s most of the time


- Hard for large : will see large IS’s

λ
λ



Goal: sample an IS approximately from  (general )


From  :

1. Pick a vertex  u.a.r.

2. If , then 


3. Otherwise, 

μ λ

Xt
v ∈ V

Xt ∩ N(v) ≠ ∅ Xt+1 = Xt

Xt+1 =
Xt ∪ {v}, with prob.  λ

1 + λ

Xt∖{v}, with prob.  1
1 + λ
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Pr( ∙ ) = 1
1 + λ
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Approx Counting Complexity
 case: Approx counting # of IS’s and sampling uniform( )


• Input:  with maximum degree 

- :  mixing time for Glauber Dynamics.    [CLV’21]          

                                     FPRAS to approx 


- : NP-hard to approx within  some   [Sly’10]  
                         

λ = 1 Ω
G = (V, E) Δ

Δ ≤ 5 O(n log n)
⟹ O(n2 log2 n) |Ω |

Δ ≥ 6 |Ω | exp(Cn) C > 0
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What happens between ?5 ↔ 6



Hard-core Model Complexity
Counting: compute ;   Sampling: sample from  


• Input: For any  with max deg  and :


• For all constant , there exists :

- All :     mixing time for Glauber Dynamics    [CLV’21]


- All : NP-hard to approx  within    
                                                                [Sly’10,Sly-Sun’14, Galanis-Štefankovič-V’16]

Z(λ) = ∑
I∈Ω

λ|I| μ(I) = λ|I|

ZG(λ)

G = (V, E) Δ λ > 0
Δ λc = λc(Δ)

λ < λc(Δ) O(n log n)

λ > λc(Δ) Z(λ) exp(Cn)
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Δ − 2
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What is  ?λc = λc(Δ)

λc(Δ) = (Δ − 1)Δ−1

(Δ − 2)Δ ∼ e
Δ − 2

λc(5) = 44/35 ≈ 1.053
λc(6) = 55/46 ≈ 0.763



Phase Transition on Regular Trees

Let  = Gibbs measure for -regular tree of height .


Does configuration at leaves influence root?


Even height vs. odd height

μh Δ h

11

: -regular tree of height μh Δ h

r

h



Phase Transition on Regular Trees




Compare marginal at root for even vs odd height

λc(Δ) = (Δ − 1)Δ−1

(Δ − 2)Δ

12

: -regular tree of height μh Δ h

r

h

λ < λc(Δ) : lim
h→∞

μ2h(r ∈ I) = lim
h→∞

μ2h+1(r ∈ I)

λ > λc(Δ) : lim
h→∞

μ2h(r ∈ I) < lim
h→∞

μ2h+1(r ∈ I)



Computational Phase Transition

Root-leaf correlations decay for

infinite -regular tree 


 

Δ 5Δ

Root-leaf correlations persist on 
5Δ

λc(Δ)0 λ < λc(Δ) λ > λc(Δ)

 mixing time of Glauber 

on any graph of max degree 


[Chen-Liu-V’21] 


O(n log n)
Δ

13

NP-hard to approx partition function

within  factor


[Sly-Sun’14, Galanis-Štefankovič-V’16]
exp(ϵn)

Theorem (Hardcore Model) [Chen-Liu-V’21]: 

For every  and , for any G of max degree , 


Glauber dynamics mixes in  steps.
δ ∈ (0,1) λ ≤ (1 − δ)λc(Δ) ≤ Δ

≤ C(Δ, δ) × n log n

λc(Δ) = (Δ − 1)Δ−1

(Δ − 2)Δ ∼ e
Δ − 2



Previous Results
• : Exists poly-time approximate sampler for 


• : No poly-time approx sampler, assuming       [Sly’10, Sly-Sun’14, Galanis-Štefankovič-V’16]

λ ≤ (1 − δ)λc(Δ) μ

λ > λc(Δ) RP ≠ NP

14

Methods Running Time References
Correlation Decay Weitz’06

Polynomial Interpolation Barvinok’16, Patel-Regts’17,

Peters-Regts’19

Glauber Dynamics Anari-Liu-Oveis Gharan’20

Glauber Dynamics Z. Chen-Liu-Vigoda’20

Glauber Dynamics Z. Chen-Liu-Vigoda’21

Glauber Dynamics X. Chen-Feng-Yin-Zhang’22,  
Y. Chen-Eldan’22

Glauber Dynamics Hayes-Sinclair’07

nf(δ)×O(log Δ)

O (nf(Δ,δ))

O (nO(1/δ))
O (nf(δ))

≥ C′ (Δ)n log n

≤ C(Δ, δ)n log n

≤ C(δ)n log n
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Spectral Independence
• The (pairwise) influence of vertex  on vertex  is


 


•  is -spectrally independent if for any induced subgraph :        


                                                                                                                        [Anari-Liu-Oveis Gharan’20]


u v

Ψ(u, v) = {μ(v ∈ I ∣ u ∈ I) − μ(v ∈ I ∣ u ∉ I), u ≠ v
0, u = v

μ α H λ1(ΨH) ≤ α

16

  is not symmetric and can have negative entries, 
but all eigenvalues real and non-negative.

Ψ

Maximum 
Eigenvalue
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u v

Ψ(u, v) = {μ(v ∈ I ∣ u ∈ I) − μ(v ∈ I ∣ u ∉ I), u ≠ v
0, u = v

μ α H λ1(ΨH) ≤ α

16

  is not symmetric and can have negative entries, 
but all eigenvalues real and non-negative.

Ψ

Maximum 
Eigenvalue

- Small   Vertices are nearly independent 

empty graph: , 


- Large   Vertices are strongly correlated

biclique:  for , 

η ⟹
Ψ(u, v) = 0 αSI = 0

η ⟹
Ψ(u, v) ≈ − 1/2 u ∈ L, v ∈ R αSI = Θ(n)



Spectral Independence
• General setting: for  for  on :


• A pinning  is an assignment   for some  


• The (pairwise) influence of vertex  on vertex  is


  
 

where  is the distribution  conditional on partial assignment 


•  is -spectrally independent if for any pinning :              [Anari-Liu-Oveis Gharan’20]


                                                                                                                       

G = (V, E), μ {0,1}V

τ τ : S → {0,1} S ⊂ V .
w v

Ψτ(w, v) = {μτ(σ(v) = 1 ∣ σ(w) = 1) − μτ(σ(v) = 0 ∣ σ(w) = 0), w ≠ v
0, w = v

μτ μ τ

μ α τ λ1(Ψτ) ≤ α

17

  is not symmetric and can have negative entries, 
but all eigenvalues real and non-negative.

Ψ



Main Theorems [CLV’21]

Theorem 1: For all , all , there exists . 
If  is -spectrally independent, then Glauber Dynamics has relaxation time: 
                                    steps.

Δ α > 0 C(Δ, α)
μ α

Trelax ≤ C(Δ, α) × n

18

Let  be Gibbs dist. of spin system on  of constant max degree .μ G = (V, E) ≤ Δ

Theorem 2: All , , , there exists . 
If -spectrally independent and -marginally bounded then mixing time: 
                                    steps.

Δ α > 0 b > 0 C(Δ, α, b)
α b

Tmix ≤ C(Δ, α, b) × n log n
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20
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Step 1: Local to Global: Random Walk theorem    [Alev-Lau’20]

Step 2:  relaxation time    [Anari-Liu-Oveis Gharan’20]O(nC(α))
Step 3:  relaxation time    [Chen-Liu-V’21]C(α, Δ) × n



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ } [Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

[Anari-Liu-Oveis Gharan’20]



Glauber Dynamics: Alt. View
G = (V, E)

Q = { ∙ , ∙ }

21

: set of all full configurations
Ω3
π3(V, σ) = μ(σ), ∀σ : V → { ∙ , ∙ }

: set of all partial configurations on two vertices
Ω2
π2(U, τ) = 1

3 μ(σU = τ), ∀U ⊆ V, |U | = 2, τ : U → { ∙ , ∙ }

Glauber Dynamics is down-up walk  from  to  to P∨
n Ωn Ωn−1 Ωn

[Anari-Liu-Oveis Gharan’20]
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Ω3

Ω2

Ω1 = V × {0,1}

?(0) = {∅}

Ground Set = { } (vertex-spin pairs)

24

Glauber Dynamics =  = (n,n-1) down-up walk P∨
n

Spectral independence =  = (1,2) up-down walkP∧
1

Spectrum of local walks  and  described 
by influence matrices  (spectral independence)        
[Anari-Liu-Oveis Gharan’20]

P∧
1,2 P∨

2,1
Ψμ
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Let  =  where  is assignment  for  vertices.πk(τ) μ(τ)

(n
k)

τ ∈ Ωk τ : S → {0,1} |S | = k

Down chain:  from :      where  P↓
k τ ∈ Ωk P↓

k (τ, τ∖(i, si)) = 1/k i ∈ V, si ∈ {0,1}

Up chain:  from : 

                                             

P↑
k−1 σ ∈ Ωk−1

P↑
k (σ, σ ∪ (i, si)) ∝ πk(σ ∪ (i, si)) = μ(σ ∪ (i, si))

(n − k − 1)μ(σ)

Useful fact:                            gap(P∧
k−1) = gap(P∨

k )
up-down:           down-up:   P∧

k−1 = P↑
k−1P

↓
k P∨

k = P↓
k P↑

k−1
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Glauber Dynamics =  = (n,n-1) down-up walk (Global Walk) P∨
n

For vertices  = (1,2) up-down walk: 

        
 
 
                       

i, j ∈ V,  spins si, sj ∈ {0,1}, P∧
1

P∧
1 ((i, si), ( j, sj)) = 1

2
1

n − 1 Prσ∼μ[σ( j) = sj ∣ σ(i) = si]

Ψ(i, j) = Pr[σ( j) = 1 ∣ σ(i) = 1] − Pr[σ( j) = 1 ∣ σ(i) = 0]

Follows that:         


Fix configuration  on  vertices, then:     

λ2(Q) = λmax(Ψ)
n − 1

τ k λ2(Qτ) =
λmax (Ψτ)
n − k − 1 ≤ α

n − k − 1

Local Walk  Q = 2P∧
1
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• [Alev-Lau’20]:  If -Spectrally Independent, then:                            
         

    


  is spectral gap for local walk   for worst assign  to  vertices.

α

gap(PGlauber) = gap(P∨
n ) ≥ 1

n

n−2

∏
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γi ≥ 1
n
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∏
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(1 − α
n − i − 1 ) ≥ C

nα+1

γk Qτ = 2P∧
τ,1 τ k
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Local to Global Theorem
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• [Alev-Lau’20]:  If -Spectrally Independent, then:                            
         

    


  is spectral gap for local walk   for worst assign  to  vertices.

α

gap(PGlauber) = gap(P∨
n ) ≥ 1

n

n−2

∏
i=0

γi ≥ 1
n

n−2

∏
i=0

(1 − α
n − i − 1 ) ≥ C

nα+1

γk Qτ = 2P∧
τ,1 τ k

Yields:    relaxation time    [Anari-Liu-Oveis Gharan’20]O (nα+1)
How to prove Local to Global Theorem of [Alev-Lau’20]?



Spectral gap = Variance decay
• : Gibbs distribution over 


• For a function ,    expectation: 


• Variance of  is 


• Local Variance = Dirichlet Form  


• Spectral gap  equivalent to:        


                                               then , 

μ Ω ⊂ {0,1}V

f : Ω → ℝ≥0 Eμ f = ∑
σ:V→Q

μ(σ) f(σ)

f Varμ( f ) = 1
2 ∑

σ,η∈Ω
μ(σ)μ(η)( f(σ) − f(η))2

DP( f ) = 1
2 ∑

σ,η∈Ω
μ(σ)P(σ, η)( f(σ) − f(η))2

γ min
f

DP( f ) ≥ γVarμ( f )

Varμ(Pf ) ≤ (1 − γ)Varμ( f )

28



Local-to-Global Key Fact:

  DP∧
k
( f ) := 1

2 ∑
σ,η∈Ωk

πk(σ)P∧
k (σ, η)( f(σ) − f(η))2

29

DP∧
k
( f ) ≥ γk−1

k
k + 1 DP∨

k
( f )

Recall, gap(P∧
k ) = gap(P∨

k+1)



Local-to-Global Key Fact:

  DP∧
k
( f ) := 1

2 ∑
σ,η∈Ωk

πk(σ)P∧
k (σ, η)( f(σ) − f(η))2

29

DP∧
k
( f ) ≥ γk−1

k
k + 1 DP∨

k
( f )

Recall, gap(P∧
k ) = gap(P∨

k+1)

v1

v2

v3

v4
σ = {(v1, B), (v2, R)}

v1

v2

v3

v4
η = {(v3, R), (v2, R)}

P∧
k (σ, η) :

v1
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Goal:      gap(P∨
k ) ≥ 1

k

k−2

∏
i=0

γi DP∨
k
( f ) ≥ 1

k

k−2

∏
i=0

γi × Varπk
( f )equivalent to:
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Goal:      gap(P∨
k ) ≥ 1

k

k−2

∏
i=0

γi DP∨
k
( f ) ≥ 1

k

k−2

∏
i=0

γi × Varπk
( f )

Since  equivalent to:gap(P∨
k ) = gap(P∧

k−1) DP∧
k−1

( f ) ≥ 1
k

k−2

∏
i=0

γi × Varπk−1
( f )

DP∧
k−1

( f ) ≥ γk−2
k − 1

k
DP∨

k−1
( f ) ≥ γk−2

k − 1
k

1
k − 1

k−3

∏
i=0

γiVarπk−1
( f ) = 1

k

k−2

∏
i=0

γiVarπk−1
( f ) .

Key Fact

on previous slide by induction

equivalent to:
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If  is -spectrally independent, then Glauber Dynamics has relaxation time: 
                                    steps.

Δ α > 0 C(Δ, α)
μ α

Trelax ≤ C(Δ, α) × n

32

Let  be Gibbs dist. of spin system on  of constant max degree .μ G = (V, E) ≤ Δ

Step 1: Local to Global theorem    [Alev-Lau’20]

Step 2:  relaxation time    [Anari-Liu-Oveis Gharan’20]O (nC(α))
Step 3:  relaxation time    [Chen-Liu-V’21]C(α, Δ) × n
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where  is spectral gap for local walk with worst assignment  to  vertices.

α

gap(PGlauber) = gap(P∨
n,n−1) ≥ 1

n

n−2

∏
k=0

γk ≥ 1
n

n−2

∏
k=0

(1 − α
n − k − 1 ) ≥ n−α−1

γk τ k

Want     but losing too much when gap ≥ C
n

k = o(n)
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Uniform Block Dynamics
-Uniform Block Dynamics where 


In each step:

1. Pick ,  u.a.r.

2. Fix  and update  from 

βn β = O(1/Δ) .

S ⊆ V |S | = βn
σV∖S σS μS( ⋅ ∣ σV∖S)

34

Yields    gap (P∨
n,(1−β)n) ≥ C(β, α)

gap(P∨
k ) ≥ Γk−1

∑k−1
i=0 Γi

≥ Γk−1
k where Γi =

i−1

∏
j=0

γj
Improved Local-to-Global:

Local-to-Global [Alev-Lau’20]: gap(PGlauber) = gap(P∨
n ) = 1

n

n−2

∏
k=0

γk ≥ n−α−1



Shattering
• Pick  of size  randomly ( : max degree)S ⊆ V |S | = βn ≈ n

1000Δ Δ

• Then  is “shattered” with high probabilityS
- Each connected component  has  expected sizeT ∈ G[S] O(1)
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(Relative) Entropy
• : Gibbs distribution over 


• For a function :


- The expectation of  is 


- The entropy of  is 


• Entropy describes “fluctuation” of  w.r.t.  (  )


• Spectral gap  then 


• Entropy decay (modified log-Sobolev constant)  then 

μ {0,1}V

f : {0,1}V → ℝ≥0

f Eμ f = ∑
σ:V→Q

μ(σ) f(σ)

f Entμ( f ) = Eμ[f log( f
Eμ f )]

f μ Entμ( f ) = 0 ⇔ f ≡ Eμ f

γ Varμ(Pf ) ≤ (1 − γ)Varμ( f )

ρ Entμ(Pf ) ≤ (1 − ρ)Entμ( f )
36



Approximate Tensorization of Entropy
•  satisfies approximate tensorization (AT) of entropy with constant  if


 


“Fluctuation” of  is attributed to the sum of “average local fluctuation” at 
individual vertices


Fact: AT holds for a product distribution  with constant 

μ C

Ent( f ) ≤ C∑
v∈V

E[Entv( f )], ∀f : {0,1}V → ℝ≥0

f

μ C = 1
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Connection to Other Methods
r

u v

r r

v

w

w w

w

w w

x

x

y

y

y

yx

x

Correlation decay

[Weitz’06, Sinclair-Srivastava-Thurley’14, 

Li-Lu-Yin’13]

Polynomial interpolation

[Barvinok’16, Patel-Regts’17, Peters-Regts’19]

• Large running time & hard to implement


• We can transform these results to optimal MCMC via Spectral Independence
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Picture for Spectral Independence 
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Correlation Decay 
Proof Approach

(Path) Coupling for 
any Local MCMC

Zero-Free Region of 
Partition Function

Spectral 
Independence

Glauber Dynamics

Any Block Dynamics

Swendsen-Wang (SW)  
(Global dynamics for 

Ising)

[Chen-Liu-V’20]

[Blanca-Caputo-Chen-Parisi-Stefankovic-V ’22, 
Liu’21]

[Chen-Liu-V’21b]

[Chen-Liu-V’21]

[BCCPSV’22]

Optimal Mixing and  
Optimal Entropy Decay



Conclusion
We showed:   where  for any 


Subsequent work:   


 for any G with max deg  when                         [CFYZ’22],[CE’22]


 for any bipartite G with max deg  on LHS when      [Chen-Liu-Yin’23]


Open problem: -Colorings when ?


- General graphs:                                                        [BCCPSV’21, L’21]


- Triangle-free graphs:                                                                 [CGSV’21,FGYZ’21]

- Correlation Decay on Trees:                                                    [Chen-Liu-Mani-Moitra’23] 

 when  and girth  


Tmix ≤ C(δ, Δ)n log n λ ≤ (1 − δ)λc(Δ) δ > 0

Tmix ≤ f(δ)n log n Δ λ < λc(Δ)
Tmix = O(n3) Δ λ < λc(Δ)

k k ≥ Δ + 2
k > (11/6 − 10−5)Δ

k > 1.764Δ
k ≥ Δ + 3

Tmix ≤ C(Δ)n log n k ≥ Δ + 3 ≥ g(Δ)
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Thank you!



Thank you!
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