Optimal Mixing of MCMC via Spectral Independence

- Eric Vigoda
- University of California, Santa Barbara
 - Joint work with:
- Zongchen Chen (MIT) and Kuikui Liu (MIT)

RS&A, June 2023

Contents

Independent Sets and Computational Phase Transition

• Spectral Independence Technique

Proof approach: SI implies fast mixing of Glauber

Conclusion

Sampling Independent Sets

- Given G = (V, E), let $\Omega = \text{set of all independent sets (IS) of } G$
 - $I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega|$ = number of IS's of G
- Sampling problem: Sample IS from $\mu = uniform(\Omega)$

Sampling Independent Sets

- Given G = (V, E), let $\Omega = \text{set of all independent sets (IS) of } G$
 - $I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega| =$ number of IS's of G
- Sampling problem: Sample IS from $\mu = uniform(\Omega)$
 - Typically, $|\Omega| \ge \exp(Cn)$ where n = |V|

Can we count/sample in time poly(n)?

Sampling Independent Sets

- Given G = (V, E), let $\Omega = \text{set of all independent sets (IS) of } G$
 - $I \subseteq V$ is an IS if I has no adjacent pairs
- Counting problem: Compute $|\Omega| =$ number of IS's of G
- Sampling problem: Sample IS from $\mu = uniform(\Omega)$ Typically, $|\Omega| \ge \exp(Cn)$) where n = |V|
 - Can we count/sample in time poly(n)?
- Exact counting is intractable (#P-complete)
- Can we approximate $|\Omega|$? Approx. Counting \cong Approx. Sampling

[Jerrum-Valiant-Vazirani '86] 3

Approx. Counting/Sampling

- Counting: $|\Omega| = \#$ of IS's; Sampling: $\mu = uniform(\Omega)$
- FPRAS for Approx Counting: Given G, and $\epsilon, \delta > 0$, output EST: $\Pr\left(EST(1-\epsilon) \le |\Omega| \le EST(1+\epsilon)\right) \ge 1-\delta,$ in time poly $(n, 1/\epsilon, \log(1/\delta))$.
- Approx. Sampler: Given G, and $\delta > 0$, samples from π where $\|\pi \mu\|_{TV} \leq \delta$ in time $poly(n, log(1/\delta))$. $\|\pi - \mu\|_{TV} := \frac{1}{2} \sum |\pi(x) - \mu(x)|$
- Approx Sampler in $O(n \log n)$ time then FPRAS in $O(n^2 \log^2 n)$ time.

[Stefankovic-Vempala-Vigoda '09], [Huber'15], [Kolmogorov'18]

- Goal: sample $\mu = uniform(\Omega)$
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: max min $\{t : ||X_t - \mu||_{TV} \le 1/4\}$ X_0

- Goal: sample $\mu = uniform(\Omega)$
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: $\max_{X_0} \min \{ t : \|X_t - \mu\|_{TV} \le 1/4 \}$

- Goal: sample $\mu = uniform(\Omega)$
- From X_{t} :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: max min $\{t : ||X_t - \mu||_{TV} \le 1/4\}$ X_0

- Goal: sample $\mu = uniform(\Omega)$
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: max min $\{t : ||X_t - \mu||_{TV} \le 1/4\}$ X_0

- Goal: sample $\mu = uniform(\Omega)$
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: $\max_{X_0} \min \{ t : \|X_t - \mu\|_{TV} \le 1/4 \}$

- Goal: sample $\mu = uniform(\Omega)$
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$
- 3. Otherwise, $X_{t+1} = \begin{cases} X_t \cup \{v\}, & \text{with prob.} \frac{1}{2} \\ X_t \setminus \{v\}, & \text{with prob.} \frac{1}{2} \end{cases}$

Mixing time: max min $\{t : ||X_t - \mu||_{TV} \le 1/4\}$ X_0

Approx Counting Complexity

- Approx counting # of IS's and sampling uniform(Ω)
- Input: For any G = (V, E) with maximum degree Δ
 - $\Delta \leq 5$: $O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21] $\implies O(n^2 \log^2 n)$ to approx $|\Omega|$
 - $\Delta \ge 6$: NP-hard to approx $|\Omega|$ within factor $\exp(Cn)$ some C > 0 [Sly'10] (even when restricted to *triangle-free* graphs of max deg. 6)

Approx Counting Complexity

- Input: For any G = (V, E) with maximum degree Δ
 - $\Delta \leq 5$: $O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21] $\implies O(n^2 \log^2 n)$ to approx $|\Omega|$
 - $\Delta \geq 6$: NP-hard to approx $|\Omega|$ within factor $\exp(Cn)$ some C > 0 [Sly'10] (even when restricted to triangle-free graphs of max deg. 6)

Approx counting # of IS's and sampling uniform(Ω)

What happens between $5 \leftrightarrow 6?$

Hardcore (gas) Model

- Given G = (V, E) and fugacity/activity $\lambda > 0$
- Ω = collection of all independent sets of G.
 - For $I \in \Omega$, $w(\sigma) = \lambda^{|I|}$
 - Gibbs distribution: $\mu(I) = \frac{w(I)}{Z_G(\lambda)}$
 - Partition functio

- $\lambda = 1: Z(1) = |\Omega| = \text{number of IS's, and } \mu = \text{uniform}(\Omega)$

on:
$$Z_G(\lambda) = \sum_{I \in \Omega} w(I)$$

 $\mu(I_2) = \lambda^2 / Z$

Hardcore (gas) Model

- Given G = (V, E) and fugacity/activity $\lambda > 0$
- Ω = collection of all independent sets of G.
 - For $I \in \Omega$, $w(\sigma) = \lambda^{|I|}$
 - Gibbs distribution: $\mu(I) = \frac{w(I)}{Z_G(\lambda)}$
 - Easy for small λ : see small IS's most of the time - Hard for large λ : will see large IS's

 - $-\lambda = 1: Z(1) = |\Omega| = \text{number of IS's, and } \mu = \text{uniform}(\Omega)$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

- Goal: sample an IS approximately from μ (general λ)
- From X_t :
- 1. Pick a vertex $v \in V$ u.a.r.
- 2. If $X_t \cap N(v) \neq \emptyset$, then $X_{t+1} = X_t$

Approx Counting Complexity

- $\lambda = 1$ case: Approx counting # of IS's and sampling uniform(Ω)
- Input: G = (V, E) with maximum degree Δ
 - $-\Delta \leq 5$: $O(n \log n)$ mixing time for Glauber Dynamics. [CLV'21] $\implies O(n^2 \log^2 n)$ FPRAS to approx $|\Omega|$
 - $\Delta \geq 6$: NP-hard to approx $|\Omega|$ within $\exp(Cn)$ some C > 0 [Sly'10]

What happens between $5 \leftrightarrow 6?$

- Counting: compute $Z(\lambda) = \sum_{I \in \Omega} \lambda^{|I|}$; Sampling: sample from $\mu(I) = \frac{\lambda^{|I|}}{Z_G(\lambda)}$
- Input: For any G = (V, E) with max deg Δ and $\lambda > 0$:
- For all constant Δ , there exists $\lambda_c = \lambda_c(\Delta)$: - All $\lambda < \lambda_c(\Delta)$: $O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
 - All $\lambda > \lambda_c(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp(Cn)$ [Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16]

- Counting: compute $Z(\lambda) = \sum \lambda^{|I|}$; Sampling: sample from $\mu(I) = \frac{\lambda^{|I|}}{Z_G(\lambda)}$ $I \in \Omega$
- Input: For any G = (V, E) with max deg Δ and $\lambda > 0$:
- For all constant Δ , there exists $\lambda_c = \lambda_c(\Delta)$: - All $\lambda < \lambda_c(\Delta)$: $O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
 - All $\lambda > \lambda_c(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp(Cn)$ [Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16] What is $\lambda_c = \lambda_c(\Delta)$?

- Counting: compute $Z(\lambda) = \sum \lambda^{|I|}$; Sampling: sample from $\mu(I) = \frac{\lambda^{|I|}}{Z_G(\lambda)}$ $I \in \Omega$
- Input: For any G = (V, E) with max deg Δ and $\lambda > 0$:
- For all constant Δ , there exists $\lambda_c =$ - All $\lambda < \lambda_c(\Delta)$: $O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]
 - All $\lambda > \lambda_c(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp(Cn)$

=
$$\lambda_c(\Delta)$$
: $\lambda_c(\Delta) = \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \sim \frac{e}{\Delta - 2}$

[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16] What is $\lambda_c = \lambda_c(\Delta)$?

- $I \in \Omega$
- - All $\lambda > \lambda_c(\Delta)$: NP-hard to approx $Z(\lambda)$ within $\exp(Cn)$

Counting: compute $Z(\lambda) = \sum \lambda^{|I|}$; Sampling: sample from $\mu(I) = \frac{\lambda^{|I|}}{Z_G(\lambda)}$

• Input: For any G = (V, E) with max deg Δ and $\lambda > 0$: $\lambda_c(5) = 4^4/3^5 \approx 1.053$ $\lambda_c(6) = 5^5/4^6 \approx 0.763$ • For all constant Δ , there exists $\lambda_c = \lambda_c(\Delta)$: $\lambda_c(\Delta) = \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \sim \frac{e}{\Delta - 2}$

- All $\lambda < \lambda_c(\Delta)$: $O(n \log n)$ mixing time for Glauber Dynamics [CLV'21]

[Sly'10,Sly-Sun'14, Galanis-Štefankovič-V'16] What is $\lambda_c = \lambda_c(\Delta)$?

Phase Transition on Regular Trees

 μ_h : Δ -regular tree of height h

- Let μ_h = Gibbs measure for Δ -regular tree of height h.
 - Does configuration at leaves influence root?
 - Even height vs. odd height

Phase Transition on Regular Trees

 μ_h : Δ -regular tree of height h

 $\lambda < \lambda_c(\Delta) : \lim_{h \to \infty} \mu_{2k}$

 $\lambda > \lambda_c(\Delta)$: $\lim_{h\to\infty}\mu_{2h}$

$$\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}$$

Compare marginal at root for even vs odd height

$${}_{h}(r \in I) = \lim_{h \to \infty} \mu_{2h+1}(r \in I)$$
$${}_{h}(r \in I) < \lim_{h \to \infty} \mu_{2h+1}(r \in I)$$

Computational Phase Transition

Theorem (Hardcore Model) [Chen-Liu-V'21]: For every $\delta \in (0,1)$ and $\lambda \leq (1 - \delta)\lambda_c(\Delta)$, for any G of max degree $\leq \Delta$, Glauber dynamics mixes in $\leq C(\Delta, \delta) \times n \log n$ steps.

> $O(n \log n)$ mixing time of Glauber on any graph of max degree Δ [Chen-Liu-V'21]

 $\lambda < \lambda_c(\Delta)$ 0

Root-leaf correlations decay for infinite Δ -regular tree \mathbb{T}_{Δ}

 $\lambda_c(\Delta) = -$

NP-hard to approx partition function within $exp(\epsilon n)$ factor [Sly-Sun'14, Galanis-Štefankovič-V'16]

 $\lambda_{c}(\Delta)$ $\lambda > \lambda_c(\Delta)$

Root-leaf correlations persist on \mathbb{T}_{Λ}

$$\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \sim \frac{e}{\Delta - 2}$$

Previous Results

• $\lambda \leq (1 - \delta)\lambda_c(\Delta)$: Exists poly-time approximate sampler for μ

Methods	Running Time	References
Correlation Decay	$n^{f(\delta) \times O(\log \Delta)}$	Weitz'06
Polynomial Interpolation	$O\left(n^{f(\Delta,\delta)}\right)$	Barvinok'16, Patel-Regts'17, Peters-Regts'19
Glauber Dynamics	$O\left(n^{f(\delta)}\right)$	Anari-Liu-Oveis Gharan'20
Glauber Dynamics	$O\left(n^{O(1/\delta)}\right)$	Z. Chen-Liu-Vigoda'20
Glauber Dynamics	$\leq C(\Delta, \delta)n\log n$	Z. Chen-Liu-Vigoda'21
Glauber Dynamics	$\leq C(\delta)n\log n$	X. Chen-Feng-Yin-Zhang'22, Y. Chen-Eldan'22
Glauber Dynamics	$\geq C'(\Delta)n\log n$	Hayes-Sinclair'07

• $\lambda > \lambda_c(\Delta)$: No poly-time approx sampler, assuming $\text{RP} \neq \text{NP}$

[Sly'10, Sly-Sun'14, Galanis-Štefankovič-V'16]

Contents

Results for Hardcore Model and Computational Phase Transition

• Spectral Independence Technique

Proof approach: SI implies fast mixing of Glauber

Conclusion

Spectral Independence

• The (pairwise) influence of vertex *u* on vertex *v* is

$$\Psi(u, v) = \begin{cases} \mu(v \in I \mid u \in I) - \mu(v \in I \mid u \notin I), & u \neq v \\ 0, & u = v \end{cases}$$
v independent if for any induced subgraph *H*:
$$\lambda_1(\Psi_H) \leq \alpha$$

$$\uparrow$$
[Anari-Liu-Oveis Gharan'20]
Maximum
Eigenvalue

• μ is α -spectrally

 Ψ is not symmetric and can have negative entries, but all eigenvalues real and non-negative.

Spectral Independence

• The (pairwise) influence of vertex *u* on vertex *v* is

$$\Psi(u, v) = \begin{cases} \mu(v \in I \mid u \in I) - \mu(v \in I \mid u \notin I), & u \neq v \\ 0, & u = v \end{cases}$$

independent if for any induced subgraph *H*: $\lambda_1(\Psi_H) \leq \alpha$
f
[Anari-Liu-Oveis Gharan'20]
Maximum
Eigenvalue

- μ is α -spectrally
 - Small $\eta \Longrightarrow Ve$ empty graph: Ψ
 - Large $\eta \implies$ Vertices are strongly correlated biclique: $\Psi(u, v) \approx -1/2$ for $u \in L, v \in R, \alpha_{SI} = \Theta(n)$

 Ψ is not symmetric and can have negative entries, but all eigenvalues real and non-negative.

Spectral Independence

- General setting: for G = (V, E), for μ on $\{0, 1\}^{V}$:
- A pinning τ is an assignment $\tau: S \to \{0,1\}$ for some $S \subset V$.
- The (pairwise) influence of vertex w on vertex v is

$$\Psi_{\tau}(w,v) = \begin{cases} \mu_{\tau}(\sigma(v) = 1 \mid \sigma(w) = 1) - \mu_{\tau}(\sigma(v) = 0 \mid \sigma(w) = 0), & w \neq v \\ 0, & w = v \end{cases}$$

 $\lambda_1(\Psi_{\tau}) \leq \alpha$ • μ is α -spectrally independent if for any pinning τ : [Anari-Liu-Oveis Gharan'20]

 Ψ is not symmetric and can have negative entries, but all eigenvalues real and non-negative.

where μ_{τ} is the distribution μ conditional on partial assignment τ
Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 2: All Δ , $\alpha > 0$, b > 0, there exists $C(\Delta, \alpha, b)$.

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.
- If α -spectrally independent and b-marginally bounded then mixing time: $T_{\text{mix}} \leq C(\Delta, \alpha, b) \times n \log n$ steps.

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 2: All Δ , $\alpha > 0$, b > 0, there exists $C(\Delta, \alpha, b)$.

Relaxation time = inverse spectral gap. O(n) relaxation time then FPRAS in $O(n^2 \log^2 n)$.

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.
- If α -spectrally independent and b-marginally bounded then mixing time: $T_{\text{mix}} \leq C(\Delta, \alpha, b) \times n \log n$ steps.

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 2: All Δ , $\alpha > 0$, b > 0, there exists $C(\Delta, \alpha, b)$.

• μ is *b*-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.
- If α -spectrally independent and b-marginally bounded then mixing time: $T_{\text{mix}} \leq C(\Delta, \alpha, b) \times n \log n$ steps.
 - $\min\{\mu_H(v \in I), \mu_H(v \notin I)\} \ge b.$ Relaxation time = inverse spectral gap. O(n) relaxation time then FPRAS in $O(n^2 \log^2 n)$.

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 2: All Δ , $\alpha > 0$, b > 0, there exists $C(\Delta, \alpha, b)$.

• μ is *b*-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.
- If α -spectrally independent and b-marginally bounded then mixing time: $T_{\text{mix}} \leq C(\Delta, \alpha, b) \times n \log n$ steps.
 - $\min\{\mu_H(v \in I), \mu_H(v \notin I)\} \ge b.$

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 2: All Δ , $\alpha > 0$, b > 0, there exists $C(\Delta, \alpha, b)$.

• μ is *b*-marginally bounded if for any induced subgraph H, all $v \in V(H)$:

Previously, $n^{C(\alpha)}$ mixing. [Anari-Liu-Oveis Gharan'20]

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.
- If α -spectrally independent and b-marginally bounded then mixing time: $T_{\text{mix}} \leq C(\Delta, \alpha, b) \times n \log n$ steps.
 - $\min\{\mu_H(v \in I), \mu_H(v \notin I)\} \ge b.$

Contents

Introduction: Hardcore Model and Phase Transition \bullet

Glauber Dynamics and Spectral Independence

• Proof approach: Spectral independence implies fast mixing of Glauber

Conclusion

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time:
 - $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20]

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20] Step 2: $O(n^{C(\alpha)})$ relaxation time [Anari-Liu-Oveis Gharan'20]

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$. If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

Step 1: Local to Global: Random Walk theorem [Alev-Lau'20] Step 2: $O(n^{C(\alpha)})$ relaxation time [Anari-Liu-Oveis Gharan'20] Step 3: $C(\alpha, \Delta) \times n$ relaxation time [Chen-Liu-V'21]

Glauber Dynamics: Alt. View

 Ω_3 : set of all <u>full</u> configurations

 $\pi_3(V,\sigma) = \mu(\sigma), \forall \sigma : V \to \{\bullet, \bullet\}$

 $Q = \{\bullet, \bullet\}$

G = (V, E)

[Anari-Liu-Oveis Gharan'20]

Glauber Dynamics: Alt. View Ω_3 : set of all <u>full</u> configurations $\pi_3(V,\sigma) = \mu(\sigma), \forall \sigma : V \to \{\bullet, \bullet\}$ Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices $\pi_2(U,\tau) = \frac{1}{3}\mu(\sigma_U = \tau), \quad \forall U \subseteq V, \ |U| = 2, \ \tau : U \to \{\bullet, \bullet\}$

 Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices

$$\pi_2(U,\tau) = \frac{1}{3}\mu(\sigma_U = \tau), \quad \forall U \subseteq V, \mid U \mid = 2$$

 Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices

 $\pi_1(v,i) = \frac{1}{3}\mu(\sigma_v = i), \quad \forall v \in V, i \in \{\bullet, \bullet\}$

 Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices

$$\pi_2(U,\tau) = \frac{1}{3}\mu(\sigma_U = \tau), \quad \forall U \subseteq V, \mid U \mid = 2$$

 Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices

 Ω_2 : set of all <u>partial</u> configurations on <u>two</u> vertices

 Ω_1 : set of all <u>partial</u> configurations on <u>one</u> vertex

$$\pi_1(v,i) = \frac{1}{3}\mu(\sigma_v = i), \quad \forall v \in V, \ i \in \{\bullet, \bullet\}$$

$\Omega_0 = \{\emptyset\}, \ \pi_0(\emptyset) = 1$

 Ω_1 : set of all <u>partial</u> configurations on <u>one</u> vertex

 $\pi_1(v,i) = \frac{1}{3}\mu(\sigma_v = i), \quad \forall v \in V, i \in \{\bullet, \bullet\}$

$\Omega_0 = \{\emptyset\}, \ \pi_0(\emptyset) = 1$

 Ω_1 : set of all <u>partial</u> configurations on <u>one</u> vertex

$\pi_1(v,i) = \frac{1}{3}\mu(\sigma_v = i), \quad \forall v \in V, i \in \{\bullet, \bullet\}$

$\Omega_0 = \{\emptyset\}, \ \pi_0(\emptyset) = 1$

 Ω_1 : set of all <u>partial</u> configurations on <u>one</u> vertex

$$\pi_1(v,i) = \frac{1}{3}\mu(\sigma_v = i), \quad \forall v \in V, \ i \in \{\bullet, \bullet\}$$

$\Omega_0 = \{\emptyset\}, \ \pi_0(\emptyset) = 1$

 $\mathscr{X}(0) = \{\emptyset\}$

Ground Set = { $\bullet \bullet \bullet \bullet \bullet \bullet$ (vertex-spin pairs)

 \bigcirc

 $\mathscr{X}(0) = \{\emptyset\}$

Ground Set = $\{ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \}$ (vertex-spin pairs)

24

 \emptyset

 $\mathscr{X}(0) = \{\emptyset\}$

Ground Set = $\{ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \}$ (vertex-spin pairs)

24

 \bigcirc

[Anari-Liu-Oveis Gharan'20]

Ground Set = $\{ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \}$ (vertex-spin pairs)

Let $\pi_k(\tau) = \frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_k$ is assignment $\tau : S \to \{0,1\}$ for |S| = k vertices.

Let $\pi_k(\tau) = \frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_k$ is assignment $\tau : S \to \{0,1\}$ for |S| = k vertices.

Down chain: P_k^{\downarrow} from $\tau \in \Omega_k$: $P_k^{\downarrow}(\tau, \tau \setminus (i, s_i)) = 1/k$ where $i \in V, s_i \in \{0, 1\}$

Let $\pi_k(\tau) = \frac{\mu(\tau)}{\binom{n}{\nu}}$ where $\tau \in \Omega_k$ is assignment $\tau : S \to \{0,1\}$ for |S| = k vertices.

Down chain: P_k^{\downarrow} from $\tau \in \Omega_k$: $P_k^{\downarrow}(\tau, \tau \setminus (i, s_i)) = 1/k$ where $i \in V, s_i \in \{0, 1\}$ Up chain: P_{k-1}^{\uparrow} from $\sigma \in \Omega_{k-1}^{\uparrow}$:

$P_k^{\uparrow}(\sigma, \sigma \cup (i, s_i)) \propto \pi_k(\sigma \cup (i, s_i)) = \frac{\mu(\sigma \cup (i, s_i))}{(n - k - 1)\mu(\sigma)}$
Up and Down Walks:

Let $\pi_k(\tau) = \frac{\mu(\tau)}{\binom{n}{k}}$ where $\tau \in \Omega_k$ is assignment $\tau : S \to \{0,1\}$ for |S| = k vertices.

Down chain: P_k^{\downarrow} from $\tau \in \Omega_k$: $P_k^{\downarrow}(\tau, \tau \setminus (i, s_i)) = 1/k$ where $i \in V, s_i \in \{0, 1\}$ Up chain: P_{k-1}^{\uparrow} from $\sigma \in \Omega_{k-1}^{\uparrow}$: $P_{L}^{\uparrow}(\sigma, \sigma \cup (i))$

 $gap(P_{k-1}^{\wedge}) = gap(P_k^{\vee})$

Useful fact:

$$(x, s_i)) \propto \pi_k(\sigma \cup (i, s_i)) = \frac{\mu(\sigma \cup (i, s_i))}{(n - k - 1)\mu(\sigma)}$$

up-down: $P_{k-1}^{\wedge} = P_{k-1}^{\uparrow} P_k^{\downarrow}$ down-up: $P_k^{\vee} = P_k^{\downarrow} P_{k-1}^{\uparrow}$

Up-Down and Down-Up Walks:

Up-Down and Down-Up Walks: Glauber Dynamics = $P_n^{\vee} = (n, n-1)$ down-up walk (Global Walk)

Up-Down and Down-Up Walks: Glauber Dynamics = $P_n^{\vee} = (n, n-1)$ down-up walk (Global Walk)

For vertices $i, j \in V$, spins $s_i, s_j \in \{0, 1\}, P_1^{\wedge} = (1, 2)$ up-down walk: $P_1^{\wedge}((i, s_i), (j, s_j)) = \frac{1}{2} \frac{1}{n-1} Pr_{\sigma \sim \mu}[\sigma(j) = s_j \mid \sigma(i) = s_i]$

$\Psi(i,j) = Pr[\sigma(j) = 1 | \sigma(i) = 1] - Pr[\sigma(j) = 1 | \sigma(i) = 0]$

Up-Down and Down-Up Walks:

For vertices $i, j \in V$, spins $s_i, s_j \in \{0, 1\}, P_1^{\wedge} = (1, 2)$ up-down walk: $P_1^{\wedge}((i, s_i), (j, s_j)) = \frac{1}{2} \frac{1}{n-1} Pr_{\sigma \sim \mu}[\sigma(j) = s_j \mid \sigma(i) = s_i]$ Local Walk $Q = 2P_1^{\wedge}$

- Glauber Dynamics = $P_n^{\vee} = (n, n-1)$ down-up walk (Global Walk)

$\Psi(i,j) = Pr[\sigma(j) = 1 | \sigma(i) = 1] - Pr[\sigma(j) = 1 | \sigma(i) = 0]$

Up-Down and Down-Up Walks: For vertices $i, j \in V$, spins $s_i, s_j \in \{0, 1\}, P_1^{\wedge} = (1, 2)$ up-down walk: $P_1^{\wedge}((i, s_i), (j, s_j)) = \frac{1}{2} \frac{1}{n-1} Pr_{\sigma \sim \mu}[\sigma(j) = s_j \mid \sigma(i) = s_i]$ Local Walk $Q = 2P_1^{\wedge}$ $\Psi(i,j) = Pr[\sigma(j) = 1 \mid \alpha)$ $\lambda_2(Q) = \frac{\lambda_{\max}(\Psi)}{n-1}$ Follows that:

Fix configuration τ on k vertices, then:

- Glauber Dynamics = $P_n^{\vee} = (n, n-1)$ down-up walk (Global Walk)

$$\sigma(i) = 1] - Pr[\sigma(j) = 1 \mid \sigma(i) = 0]$$

$$\lambda_2(Q_{\tau}) = \frac{\lambda_{\max}\left(\Psi_{\tau}\right)}{n-k-1} \le \frac{\alpha}{n-k-1}$$

• [Alev-Lau'20]: If α -Spectrally Independent, then:

 γ_k is spectral gap for local walk $Q_{\tau} = 2P_{\tau 1}^{\wedge}$ for worst assign τ to k vertices.

• [Alev-Lau'20]: If α -Spectrally Independent, then:

Yields: $O(n^{\alpha+1})$ relaxation time [Anari-Liu-Oveis Gharan'20]

 γ_k is spectral gap for local walk $Q_{\tau} = 2P_{\tau 1}^{\wedge}$ for worst assign τ to k vertices.

• [Alev-Lau'20]: If α -Spectrally Independent, then:

Yields: $O(n^{\alpha+1})$ relaxation time [Anari-Liu-Oveis Gharan'20]

How to prove Local to Global Theorem of [Alev-Lau'20]?

 γ_k is spectral gap for local walk $Q_{\tau} = 2P_{\tau 1}^{\wedge}$ for worst assign τ to k vertices.

Spectral gap = Variance decay

- μ : Gibbs distribution over $\Omega \subset \{0,1\}^V$
- For a function $f: \Omega \to \mathbb{R}_{\geq 0}$, expectation

Variance of *f* is
$$\operatorname{Var}_{\mu}(f) = \frac{1}{2} \sum_{\sigma,\eta \in \Omega} \mu(\sigma) \frac{\mu(\eta)(f(\sigma) - f(\eta))^2}{\sigma_{\sigma,\eta \in \Omega}}$$

• Spectral gap γ equivalent to:

n:
$$\mathbb{E}_{\mu} f = \sum_{\sigma: V \to Q} \mu(\sigma) f(\sigma)$$

• Local Variance = Dirichlet Form $D_P(f) = \frac{1}{2} \sum_{\sigma \in O} \mu(\sigma) P(\sigma, \eta) (f(\sigma) - f(\eta))^2$ $\sigma,\eta\in\Omega$

 $\min_{f} D_{P}(f) \ge \gamma \operatorname{Var}_{\mu}(f)$

then $\operatorname{Var}_{\mu}(Pf) \leq (1 - \gamma) \operatorname{Var}_{\mu}(f)$,

 $D_{P_k^{\wedge}}(f) := \frac{1}{2} \sum_{\sigma \in \mathcal{O}} \pi_k(\sigma) P_k^{\wedge}(\sigma, \eta) (f(\sigma) - f(\eta))^2$ $\sigma,\eta\in\Omega_{I}$

$$D_{P_{k}^{\wedge}}(f) := \frac{1}{2} \sum_{\sigma,\eta \in \Omega_{k}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma) P_{k}^{\wedge}(\sigma, \eta) = P_{k}^{\wedge}(\sigma, \eta) : \sum_{v_{2} \neq v_{4} \atop \sigma = \{(v_{1}, B), (v_{2}, R)\}} \pi_{k}(\sigma) P_{k}^{\wedge}(\sigma, \eta) = \frac{1}{2} \sum_{\sigma,\eta \in \Omega_{k}} \pi_{k}(\sigma, \eta) = \frac{$$

 $(\sigma,\eta)(f(\sigma)-f(\eta))^2$

LO

$$\begin{aligned} \text{Discal-to-Global Key Fact: } D_{P_k^{\wedge}}(f) &\geq \gamma_{k-1} \frac{k}{k+1} D_{P_k^{\vee}}(f) \\ \text{Recall, } gap(P_k^{\wedge}) &= gap(P_{k+1}^{\vee}) \\ D_{P_k^{\wedge}}(f) &:= \frac{1}{2} \sum_{\sigma,\eta \in \Omega_k} \pi_k(\sigma) P_k^{\wedge}(\sigma,\eta) (f(\sigma) - f(\eta))^2 \\ P_k^{\wedge}(\sigma,\eta) &: \bigvee_{\nu_2} \bigvee_{\nu_4} \bigvee_{\nu_4} \bigvee_{\nu_4} \\ \sigma &= \{(\nu_1,B), (\nu_2,R)\} \\ \eta &= \{(\nu_3,R), (\nu_2,R)\} \end{aligned}$$

 $D_{P_k^{\wedge}}(f) := \frac{1}{2} \sum_{\sigma,\eta \in \Omega_k} \pi_k(\sigma) P_k^{\wedge}(\sigma,\eta) (f(\sigma) - f(\eta))^2$ Note: $|\sigma \cap \eta| = k - 1$

$$D_{P_k^{\wedge}}(f) := \frac{1}{2} \sum_{\sigma,\eta \in \Omega_k} \pi_k(\sigma) P_k^{\wedge}(\sigma) = \frac{k}{k+1} \sum_{\tau \in \Omega_{k-1}} \pi_{k-1}(\sigma)$$

Local-to-Global Key Fact: $D_{P_k}(f) \ge \gamma_{k-1} \frac{k}{k+1} D_{P_k}(f)$ Recall, $gap(P_k^{\wedge}) = gap(P_{k+1}^{\vee})$ $(\sigma, \eta)(f(\sigma) - f(\eta))^2$ Note: $|\sigma \cap \eta| = k - 1$ Recall, $\frac{1}{2}Q = P_1^{\wedge}$ $(\tau)D_{O_{\tau}}(f)$

Local-to-Global Key

 $D_{P_k^{\wedge}}(f) := \frac{1}{2} \sum_{\sigma,\eta \in \Omega_k} \pi_k(\sigma) P_k^{\wedge}(\sigma) P_k^{\wedge$ $=\frac{k}{k+1}\sum_{\tau\in\Omega_{k-1}}\pi_{k-1}(\tau)$ $\geq \gamma_{k-1} \frac{k}{k+1} \sum_{\tau \in \Omega_{k-1}} \pi_k$

$$\begin{aligned} & \text{Fact: } D_{P_{k}^{\wedge}}(f) \geq \gamma_{k-1} \frac{k}{k+1} D_{P_{k}^{\vee}}(f) \\ & \text{Recall, } gap(P_{k}^{\wedge}) = gap(P_{k+1}^{\vee}) \\ & \sigma, \eta)(f(\sigma) - f(\eta))^{2} \\ & \text{Note: } |\sigma \cap \eta| = k-1 \\ & \tau) D_{Q_{\tau}}(f) \\ & \text{Recall, } \frac{1}{2}Q = P_{1}^{\wedge} \\ & \tau_{k-1}(\tau) \text{Var}_{\mu_{\tau,1}}(f) = \gamma_{k-1} \frac{k}{k+1} D_{P_{k}^{\vee}}(f) \end{aligned}$$

Inductive proof of Local to Global Theorem

Goal:
$$gap(P_k^{\vee}) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i$$
 equ

uivalent to:

$$D_{\mathbf{P}_{k}^{\vee}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_{i} \times \operatorname{Var}_{\pi_{k}}(f)$$

Inductive proof of Local to Global Theorem

$$\begin{aligned} \text{Goal:} \quad gap(P_k^{\vee}) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \quad \text{equivalent to:} \quad D_{P_k^{\vee}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_k}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} \quad D_{P_{k-1}^{\wedge}}(f) \geq \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \end{aligned}$$

Inductive proof of Local to Global Theorem

$$\begin{array}{ll} \text{Goal:} & gap(P_k^{\vee}) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i & \text{equivalent to:} & D_{P_k^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_k}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} & D_{P_{k-1}^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_k^{\wedge}) \text{ equivalent to:} & D_{P_k^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_k^{\wedge}) \text{ equivalent to:} & D_{P_k^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_k^{\vee}) \text{ equivalent to:} & D_{P_k^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f) \\ \text{Since } gap(P_k^{\vee}) = gap(P_k^{\vee}) + gap(P_k^$$

$$\text{pal:} \quad gap(P_k^{\vee}) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \quad \text{equivalent to:} \quad D_{P_k^{\vee}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_k}(f)$$

$$\text{Since } gap(P_k^{\vee}) = gap(P_{k-1}^{\wedge}) \text{ equivalent to:} \quad D_{P_{k-1}^{\wedge}}(f) \ge \frac{1}{k} \prod_{i=0}^{k-2} \gamma_i \times \operatorname{Var}_{\pi_{k-1}}(f)$$

$$k - 1 \quad k - 1 \quad 1 \quad \frac{k-3}{k} \quad 1 \quad \frac{k-3}{k}$$

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time:
 - $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

Step 1: Local to Global theorem

- **Theorem 1**: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.
- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

[Alev-Lau'20]

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$.

Step 1: Local to Global theorem Step 2: $O(n^{C(\alpha)})$ relaxation time [Anari-Liu-Oveis Gharan'20]

- If μ is α -spectrally independent, then Glauber Dynamics has relaxation time: $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

- [Alev-Lau'20]

Theorem 1: For all Δ , all $\alpha > 0$, there exists $C(\Delta, \alpha)$. If μ is α -spectrally independent, then Glauber Dynamics has relaxation time:

Step 1: Local to Global theorem Step 2: $O(n^{C(\alpha)})$ relaxation time [Anari-Liu-Oveis Gharan'20] Step 3: $C(\alpha, \Delta) \times n$ relaxation time [Chen-Liu-V'21]

- $T_{\text{relax}} \leq C(\Delta, \alpha) \times n$ steps.

- [Alev-Lau'20]

• [Alev-Lau'20]: If α -Spectrally Independent, then:

$$gap(P_{\text{Glauber}}) = gap(P_{n,n-1}^{\vee}) \ge \frac{1}{n} \prod_{k=0}^{n-2} \gamma_k \ge \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2}$$

where γ_k is spectral gap for local walk with worst assignment τ to k vertices.

-1

• [Alev-Lau'20]: If α -Spectrally Independent, then:

$$gap(P_{\text{Glauber}}) = gap(P_{n,n-1}^{\vee}) \ge \frac{1}{n} \prod_{k=0}^{n-2} \gamma_k \ge \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha-2} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2} \left(1 - \frac{\alpha}{n-k-1} \right) \ge n^{-\alpha} - \frac{1}{n} \prod_{k=0}^{n-2}$$

where γ_k is spectral gap for local walk with worst assignment τ to k vertices.

Want $gap \ge \frac{C}{n}$ but losing too much when k = o(n)

-1

Uniform Block Dynamics

 βn -Uniform Block Dynamics where $\beta = O(1/\Delta)$. In each step: 1. Pick $S \subseteq V$, $|S| = \beta n$ u.a.r. 2. Fix $\sigma_{V \setminus S}$ and update σ_S from $\mu_S(\cdot | \sigma_{V \setminus S})$

Uniform Block Dynamics

 βn -Uniform Block Dynamics where $\beta = O(1/\Delta)$. In each step: 1. Pick $S \subseteq V$, $|S| = \beta n$ u.a.r. 2. Fix $\sigma_{V \setminus S}$ and update σ_S from $\mu_S(\cdot | \sigma_{V \setminus S})$

Local-to-Global [Alev-Lau'20]: gap

Improved Local-to-Global:

$$P(P_{\text{Glauber}}) = gap(P_n^{\vee}) = \frac{1}{n} \prod_{k=0}^{n-2} \gamma_k \ge n^{-\alpha-1}$$

$$gap(P_k^{\vee}) \ge \frac{\Gamma_{k-1}}{\sum_{i=0}^{k-1} \Gamma_i} \ge \frac{\Gamma_{k-1}}{k} \text{ where } \Gamma_i = \prod_{i=0}^{i-1} \prod_{i=0}^{i-1} \Gamma_i$$

Uniform Block Dynamics

 βn -Uniform Block Dynamics where $\beta = O(1/\Delta)$. In each step: 1. Pick $S \subseteq V$, $|S| = \beta n$ u.a.r. 2. Fix $\sigma_{V \setminus S}$ and update σ_S from $\mu_S(\cdot | \sigma_{V \setminus S})$

Local-to-Global [Alev-Lau'20]: gap

Improved Local-to-Global:

Yields
$$gap\left(P_{n,(1-\beta)n}^{\vee}\right) \geq C(\beta, \alpha)$$

$$P(P_{\text{Glauber}}) = gap(P_n^{\vee}) = \frac{1}{n} \prod_{k=0}^{n-2} \gamma_k \ge n^{-\alpha-1}$$
$$gap(P_k^{\vee}) \ge \frac{\Gamma_{k-1}}{\sum_{i=0}^{k-1} \Gamma_i} \ge \frac{\Gamma_{k-1}}{k} \text{ where } \Gamma_i = \prod_{i=0}^{i-1} \prod_{j=0}^{i-1} \Gamma_j$$

- Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size

- Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size
- $\operatorname{Var}(f) \le C' \mathbb{E}_{S,\tau(\overline{S})}[\operatorname{Var}_{S}(f)]$ (gap of βn -uniform block dynamics) G

• Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)

- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size

•
$$\operatorname{Var}(f) \leq C' \mathbb{E}_{S,\tau(\overline{S})}[\operatorname{Var}_{S}(f)]$$
 (g
= $C' \mathbb{E} \left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f) \right]$

- gap of βn -uniform block dynamics) G
 - (components T, T' are independent)

• Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)

- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size
- (gap of βn -uniform block dynamics) G• $\operatorname{Var}(f) \leq C' \mathbb{E}_{S,\tau(\overline{S})}[\operatorname{Var}_{S}(f)]$ $= C' \mathbb{E} \left[\sum_{T \in G[S]} \operatorname{Var}_{T}(f) \right]$ (components T, T' are independent) $\leq C' \times \mathbb{E} \left[\sum_{T \in G[S]} |T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f) \right] \quad \text{(from [ALO'20])}$

• Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)

- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size
- (gap of βn -uniform block dynamics) G• $\operatorname{Var}(f) \leq C' \mathbb{E}_{S,\tau(\overline{S})}[\operatorname{Var}_{S}(f)]$ $= C' \mathbb{E} \left[\sum_{T \in C[G]} \operatorname{Var}_{T}(f) \right]$ (components T, T' are independent) $\leq C' \times \mathbb{E}\left[\sum_{T \in G[S]} |T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f)\right] \quad \text{(from [ALO'20])}$ $= C'' \sum \mathbb{E}[\operatorname{Var}_{v}(f)]$ (by shattering)

- Pick $S \subseteq V$ of size $|S| = \beta n \approx \frac{n}{1000\Delta}$ randomly (Δ : max degree)
- Then S is "shattered" with high probability
 - Each connected component $T \in G[S]$ has O(1) expected size
- (gap of βn -uniform block dynamics) G• $\operatorname{Var}(f) \leq C' \mathbb{E}_{S,\tau(\overline{S})}[\operatorname{Var}_{S}(f)]$ $= C' \mathbb{E} \left[\sum_{T \in C[G]} \operatorname{Var}_{T}(f) \right]$ (components T, T' are independent) $\leq C' \times \mathbb{E}\left[\sum_{T \in G[S]} |T|^{\alpha+1} \sum_{v \in T} \operatorname{Var}_{v}(f)\right] \quad \text{(from [ALO'20])}$ $= C'' \sum \mathbb{E}[\operatorname{Var}_{v}(f)]$ (by shattering) $= C'' n D_{P_{\text{Glauber}}}(f)$ 35

(Relative) Entropy

- μ : Gibbs distribution over $\{0,1\}^V$
- For a function $f: \{0,1\}^V \to \mathbb{R}_{>0}$:

The expectation of f is $\mathbb{E}_{\mu}f = \sum_{\mu} \mu(e)$ $\sigma: V \rightarrow O$

_ The entropy of f is $\operatorname{Ent}_{\mu}(f) = \mathbb{E}_{\mu} \Big[f \log f \Big]$

- Entropy describes "fluctuation" of f w.r.t. μ ($\text{Ent}_{\mu}(f) = 0 \Leftrightarrow f \equiv \mathbb{E}_{\mu}f$)
- Spectral gap γ then $\operatorname{Var}_{u}(Pf) \leq (1 \gamma)\operatorname{Var}_{u}(f)$
- Entropy decay (modified log-Sobolev constant) ρ then $\operatorname{Ent}_{\mu}(Pf) \leq (1 \rho)\operatorname{Ent}_{\mu}(f)$

$$(\sigma) f(\sigma)$$

$$g\left(\frac{f}{\mathbb{E}_{\mu}f}\right)$$

Approximate Tensorization of Entropy

• μ satisfies approximate tensorization (AT) of entropy with constant C if

$$\operatorname{Ent}(f) \le C \sum_{v \in V} \mathbb{E}[\operatorname{Ent}_{v}(f)], \qquad \forall f : \{0,1\}^{V} \to \mathbb{R}_{\ge 0}$$

- "Fluctuation" of f is attributed to the sum of "average local fluctuation" at individual vertices
- **Fact**: AT holds for a product distribution μ with constant C = 1
Connection to Other Methods

Correlation decay [Weitz'06, Sinclair-Srivastava-Thurley'14, Li-Lu-Yin'13]

- Large running time & hard to implement

Polynomial interpolation [Barvinok'16, Patel-Regts'17, Peters-Regts'19]

We can transform these results to optimal MCMC via Spectral Independence

Picture for Spectral Independence

[Chen-Liu-V'20]

Liu'21]

Correlation Decay Proof Approach

[Blanca-Caputo-Chen-Parisi-Stefankovic-V'22,

(Path) Coupling for any Local MCMC

[Chen-Liu-V'21b]

Zero-Free Region of **Partition Function**

Optimal Mixing and Optimal Entropy Decay

Glauber Dynamics

[Chen-Liu-V'21]

Any Block Dynamics

[BCCPSV'22]

Swendsen-Wang (SW) (Global dynamics for lsing)

Spectral Independence

Conclusion

We showed: $T_{\text{mix}} \leq C(\delta, \Delta) n \log n$ where $\lambda \leq (1 - \delta) \lambda_c(\Delta)$ for any $\delta > 0$ Subsequent work:

 $T_{\text{mix}} \leq f(\delta)n \log n$ for any G with max deg Δ when $\lambda < \lambda_c(\Delta)$ [CFYZ'22],[CE'22] $T_{\text{mix}} = O(n^3)$ for any bipartite G with max deg Δ on LHS when $\lambda < \lambda_c(\Delta)$ [Chen-Liu-Yin'23] Open problem: k-Colorings when $k \geq \Delta + 2$? - General graphs: $k > (11/6 - 10^{-5})\Delta$ [BCCPSV'21, L'21] - Triangle-free graphs: $k > 1.764\Delta$

- Correlation Decay on Trees: $k \ge \Delta + 3$ $T_{\text{mix}} \leq C(\Delta)n \log n$ when $k \geq \Delta + 3$ and girth $\geq g(\Delta)$ [CGSV'21,FGYZ'21]

[Chen-Liu-Mani-Moitra'23]

Conclusion

We showed: $T_{\text{mix}} \leq C(\delta, \Delta) n \log n$ where $\lambda \leq (1 - \delta) \lambda_c(\Delta)$ for any $\delta > 0$ Subsequent work:

 $T_{\text{mix}} \leq f(\delta)n \log n$ for any G with max deg Δ when $\lambda < \lambda_c(\Delta)$ [CFYZ'22],[CE'22] $T_{\text{mix}} = O(n^3)$ for any bipartite G with max deg Δ on LHS when $\lambda < \lambda_c(\Delta)$ [Chen-Liu-Yin'23] Open problem: k-Colorings when $k \geq \Delta + 2$? - General graphs: $k > (11/6 - 10^{-5})\Delta$ [BCCPSV'21, L'21]

- Triangle-free graphs: $k > 1.764\Delta$
- Correlation Decay on Trees: $k \ge \Delta + 3$ $T_{\text{mix}} \leq C(\Delta)n \log n$ when $k \geq \Delta + 3$ and girth $\geq g(\Delta)$

[CGSV'21,FGYZ'21]

[Chen-Liu-Mani-Moitra'23]

Thank you!