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Spectral Independence

These notes are based on the lecture by Kuikui Liu. This is part of the 2022 Summer School on
New tools for optimal mixing of Markov chains: Spectral independence and entropy decay, which was
held at the University of California, Santa Barbara (UCSB) from August 8, 2022 to August 12, 2022.
More information on the summer school is available at: https://sites.cs.ucsb.edu/∼vigoda/School/

7.1 Overview

In this lecture we will introduce the notion of spectral independence. For a n vertex graph, the
spectral independence condition is a bound on the maximum eigenvalue of the n×n influence matrix
whose entries capture the influence between pairs of vertices, it is closely related to the covariance
matrix. We will show that spectral independence implies the mixing time of the Glauber dynamics
is polynomial (where the degree of the polynomial depends on certain parameters). The proof
utilizes the local-to-global theorems presented in Tali Kaufman’s lectures and the ideas from the
analysis of the bases-exchange walk for generating a random matroid. In the subsequent lecture we
will show that spectral independence with some additional conditions implies an optimal mixing
time bound of O(n log n) for the Glauber dynamics.

7.2 Introduction

7.2.1 Hard-core Model

Let’s focus on the following simpler setting. Consider a distribution µ on {0, 1}n. An example to
keep in mind is the so-called hard-core model.

The input to the hard-core model is a graph G = (V,E) and a parameter λ > 0. The hard-core
model is an idealized model of a gas where λ corresponds to the fugacity of the gas. Configurations
of the model are defined on independent sets of G; recall, an independent set is a subset S of vertices
which does not contain an edge, i.e., for all {x, y} ∈ E either x /∈ S and/or y /∈ S. Let Ω denote
the collection of independent sets of G (regardless of their sizes). In the terminology of Pietro
Caputo’s first lecture, this set Ω corresponds to the set Ω0 in Caputo’s notation for configurations
with positive measure in the Gibbs distribution. For an independent set σ ∈ Ω, we can view σ as
an n-dimensional vector in {0, 1}n where the i-th coordinate is assigned 1 if the i-th vertex is in σ
and is assigned 0 otherwise.

The Gibbs distribution is defined as:

µ(σ) =
1

Z
λ|σ| for σ ∈ Ω,

where |σ| is the number of occupied vertices in the independent set σ and the partition function
Z = ZG,λ =

∑
η∈Ω λ|η|.
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The Glauber dynamics, also known as the Gibbs sampler, is a simple Markov chain designed
to sample from the Gibbs distribution. For the case of the hard-core model the chain is defined as
follows. From a state Xt ∈ Ω,

1. Choose a vertex v uniformly at random from V .

2. Let

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ)

3. If X ′ ∈ Ω (i.e., it is a valid independent set) then set Xt+1 = Xt and otherwise set Xt+1 = Xt.

Notice that the Glauber dynamics is irreducible (since all states can reach the empty set) and
aperiodic (since there is a self-loop of not changing the state at v) and hence the chain is ergodic
where the stationary distribution is the Gibbs distribution.

More generally, the Glauber dynamics is defined as follows. From a state Xt ∈ {0, 1}n,

1. Choose a coordinate i uniformly at random from V .

2. For all j ̸= i, let Xt+1(j) = Xt(j).

3. Choose Xt+1(j) from the conditional Gibbs distribution µ(σ(i)|σ(j) = Xt+1(j) for all j ̸= i}),
i.e., fix the spin at all vertices except i and resample the spin at i conditional on the fixed
configuration on the rest of the vertices.

7.3 Spectral Independence

The spectral independence was introduced by Anari, Liu, and Oveis Gharan [ALO20].

Definition 7.1 (Influence Matrix). Let G = (V,E) be a graph where V = {1, . . . , n}, and µ be a
distribution on {0, 1}n. Let Ψ be the following real-valued n× n matrix. For 1 ≤ i, j ≤ n,

Ψ(i → j) = Ψ(i, j) := Pr
σ∼µ

[σ(j) = 1 | σ(i) = 1]− Pr
σ∼µ

[σ(j) = 1 | σ(i) = 0]

The matrix Ψ can be asymmetric and the entries of Ψ can be positive or negative. Nevertheless
all of its eigenvalues are real.

Lemma 7.2. All eigenvalues of Ψ are non-negative real numbers.

Proof. For every i, j ∈ [n], the covariance of 1i,1j is given by

Covµ(i, j) = Eµ[1i1j ]− Eµ[1i] · Eµ[1j ]

= Pr
σ∼µ

[σ(i) = σ(j) = 1]− Pr
σ∼µ

[σ(i) = 1] · Pr
σ∼µ

[σ(j) = 1]

= Pr[σ(i) = 1]×
(
Pr[σ(j) = 1 | σ(i) = 1]− Pr[σ(j) = 1]

)
Plugging in

Pr[σ(j) = 1] = Pr[σ(j) = 1 | σ(i) = 1] · Pr[σ(i) = 1] + Pr[σ(j) = 1 | σ(i) = 0] · Pr[σ(i) = 0],
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we obtain that

Covµ(i, j) = Pr[σ(i) = 1]×
(
Pr[σ(j) = 1 | σ(i) = 1]− Pr[σ(j) = 1 | σ(i) = 1] · Pr[σ(i) = 1]

− Pr[σ(j) = 1 | σ(i) = 0] · Pr[σ(i) = 0]
)

= Pr[σ(i) = 1]×
(
Pr[σ(j) = 1 | σ(i) = 1](1− Pr[σ(i) = 1])

− Pr[σ(j) = 1 | σ(i) = 0] · Pr[σ(i) = 0]
)

= Pr[σ(i) = 1] · Pr[σ(i) = 0])×
(
Pr[σ(j) = 1 | σ(i) = 1]− Pr[σ(j) = 1 | σ(i) = 0]

)
.

From the definition of the influence matrix Ψ we have:

Covµ(i, j) = Pr[σ(i) = 1] · Pr[σ(i) = 0] ·Ψµ(i, j).

Since this holds for all i, j ∈ [n], if we let D denote the diagonal matrix with D(i, i) = Pr[σ(i) =
1] · Pr[σ(i) = 0] for all i ∈ [n], then we have the matrix identity

Ψµ = D−1Covµ.

Since Covµ is symmetric positive semidefinite and D is a diagonal matrix with positive diagonal
entries, it follows that Ψµ has nonnegative real eigenvalues.

Since all eigenvalues of Ψ are real numbers we can denote the maximum eigenvalue by λmax(Ψ).
Now we can define spectral independence.

Definition 7.3 (Spectral Independence). For η > 0, we say that µ is η-spectrally independent if
λmax(Ψ) ≤ 1 + η.

Note that the spectral independence condition only depends on the distribution µ, it is not a
function of the Glauber dynamics. Moreover, the definition does not require that µ is a Gibbs
distribution. The definition was extended to non-binary spin spaces, such as the Potts model and
colorings, in [FGYZ21, CGŠV21] (see also [CLV21, BCC+22] for a general formulation).

When µ is a product distribution then η = 0. Our goal is to show that η is constant.

Remark 7.4. Note the diagonals of the influence matrix Ψ are 1 since if i = j then conditioning on
i prescribes j. We could have defined the influence matrix so that the off-diagonal entries remain
the same and the diagonals are 0; this would decrease all of the eigenvalues by 1, and hence with
this alternative definition we would change the spectral independence requirement from 1+ η to η.

7.4 Rapid mixing

The main result of this lecture is that if µ is η-spectrally independent for a constant η and for all
pinnings the conditional distribution is also η-spectrally independent, then the Glauber dynamics
has polynomial mixing time. Recall from Pietro Caputo’s Lecture 1 that a pinning is a fixed
assignment of spins to a subset of vertices. Hence, for S ⊂ [n] = {1, . . . , n} and for a pinning
τ : S → {0, 1} then let µτ denote the conditional Gibbs distribution, i.e., the distribution µ
conditional on the fixed assignment τ on S.

We will bound the mixing time of the Glauber dynamics by considering the spectral gap. Let
γ = 1−λ2 where 1 > λ2 > · · · ≥ 0 are the eigenvalues of the (lazy version of the) Glauber dynamics.
The following result was proved by Anari, Liu, and Oveis Gharan [ALO20].
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Theorem 7.5 ([ALO20]). Let µ be a probability distribution on {0, 1}n. Suppose there exists
η > 0 such that for all S ⊂ [n], all τ : S → {0, 1}, the conditional distribution µτ is η-spectrally
independent, then the spectral gap of the Glauber dynamics satisfies:

γ(PGlauber) ≥ Ω
(
n−(1+η)

)
.

Therefore, the mixing time satisfies Tmix = O(n2+η log n).

Therefore, the goal is to prove that η = O(1). This has been established in a variety of settings,
including the hard-core model in the tree uniqueness region; this will be explained in Zongchen
Chen’s lecture.

7.5 Proof of Theorem 7.5

The proof of Theorem 7.5 will follow from the random walk theorem of Alev and Lau [AL20],
which improved upon Kaufman and Oppenheim [KO20]; this result was presented and proved in
Tali Kaufman’s lectures.

Consider the following simplicial complex X. The ground set are the (vertex, spin) pairs
{(i, si) : 1 ≤ i ≤ n, si ∈ {0, 1}}. The faces are “consistent” sets of (vertex, spin) pairs (in particular,
we have the following: every vertex occurs in at most one pair).

Let’s begin by defining the local walks Qµ introduced in Tali Kaufman’s lectures. The matrix
Qµ is a real-valued 2n× 2n matrix. For 1 ≤ i ̸= j ≤ n, si, sj ∈ {0, 1}, let

Qµ((i, si), (j, sj)) =
1

n− 1
Pr
σ∼µ

[σ(j) = sj | σ(i) = si].

The Glauber dynamics is the down-up walk on levels (n, n−1). Hence the random walk theorem
implies:

γ(PGlauber) ≥
1

n

n−2∏
k=0

(1− λk), (7.1)

where
λk = max

S⊂[n]:|S|=k
max

τ∈{0,1}S
λ2(Qµτ )

is the second largest eigenvalue for the local walk with a worst-case link on level k, i.e., pinning k
vertices.

We begin by bounding λ2 of the local walkQµ in terms of the influence matrix Ψµ for the spectral
independence technique. In fact, we can relate the entire spectrum of Qµ with the spectrum of Ψµ

in the following manner.

Lemma 7.6. We have

λ2(Qµ) =
1

n− 1
(λmax(Ψµ)− 1) .

Moreover,

spectrum(Qµ) = spectrum

(
1

n− 1
(Ψµ − I)

)
∪ {1} ∪

{
n− 1 copies of

−1

n− 1

}
. (7.2)
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Proof. To prove this lemma, we take the local random walk Qµ and we “zero-out” the trivial eigen-
values of 1 and −1/(n−1); the latter come from the n-partite structure of the graph corresponding
to Qµ, one part for each coordinate/vertex. This is obtained as follows. Let

Mµ = Qµ − n

n− 1
1µT +

1

n− 1

n∑
i=1

1iµ
T
i ,

where µ is the stationary distribution of the local walk (that is, µ((j, sj)) = (1/n) Prσ∼µ[σ(j) = sj ])
and µi is the marginal distribution at vertex i (that is, µj((j, sj)) = Prσ∼µ[σ(j) = sj ], with the
remaining entries 0).

Then we notice that Mµ has the following block structure:

Mµ =

(
Aµ −Aµ

Bµ −Bµ

)
, (7.3)

where

Aµ −Bµ =
1

n− 1
(Ψµ − I). (7.4)

To see (7.3) and (7.4) note that for i ̸= j we have

Mµ((i, si), (j, sj)) =
1

n− 1

(
Pr
σ∼µ

[σ(j) = sj | σ(i) = si]− Pr
σ∼µ

[σ(j) = sj ]
)
,

and
Mµ((i, si), (i, si)) = Mµ((i, si), (i, 1− si)) = 0.

Note that if w is a left-eigenvector of Aµ − Bµ then
(

w
−w

)
is a left-eigenvector of Mµ with

the same eigenvalue. Note that the vectors of the form (vT vT ) (a space of dimension n) are 1)
right-eigenvectors of Mµ with eigenvalue 0 and 2) are perpendicular to the left-eigenvectors of the
form

(
w
−w

)
. The vectors of the form (vT vT ) yield right-eigenvectors of n

n−11µ
T − 1

n−1

∑n
i=1 1iµ

T
i ,

where 1 has eigenvalue 1 and the subspace perpendicular to µ (a space of dimension n − 1) has
eigenvectors with eigenvalue − 1

n−1 . This implies (7.2).

We can now utilize Lemma 7.6 with (7.1) to conclude the main theorem about the spectral gap
of the Glauber dynamics.

Proof of Theorem 7.5. Recall, the definition of spectral independence in Defintion 7.3. First of all
it states that the maximum eigenvalue is at most 1 + η. This means that, from Lemma 7.6, we get
that λ2(Qµ) ≤ η/(n− 1). Moreover, Definition 7.3 is for the worst-case pinning and hence we can
apply Lemma 7.6 to any pinning. Hence, we have that λk ≤ η/(n − k − 1) (where λk is defined
below (7.1)). Note, when n− k = O(1) then λk < C for some constant C < 1.
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Now we can apply (7.1) and we obtain the following:

γ(PGlauber) ≥
1

n

n−2∏
k=0

(1− λk)

≥ (1− C)η × 1

n

n−2−η∏
k=0

(1− λk)

≥ (1− C)η × 1

n

n−2−η∏
k=0

(
1− η

n− k − 1

)

≥ C ′

n

n−2−η∏
k=0

(
1− η

n− k − 1

)

≥ C ′

n
exp

(
−

n−2−η∑
k=0

η

n− k − 1− η

)
since 1− x ≥ exp

(
− x

1−x

)
≥ C ′′

n
exp(−η ln(n− 1− η))

=
C ′′

n
(n− 1− η)−η

= Ω
(
n−1−η

)
.
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